J. E. Garneau and S. Moineau, Bacteriophages of lactic acid bacteria and their impact on milk fermentations, Microb. Cell Factories, vol.10, 2011.

H. Brüssow, Population Genomics of Bacteriophages, pp.297-334, 2018.

J. Mahony, J. Murphy, and D. Van-sinderen, Lactococcal 936-type phages and dairy fermentation problems: From detection to evolution and prevention, Front. Microbiol, vol.3, p.335, 2012.

D. Veesler and C. Cambillau, A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol, Mol. Biol. Rev, vol.75, pp.423-433, 2011.

V. Campanacci, D. Veesler, J. Lichière, S. Blangy, G. Sciara et al., Solution and electron microscopy characterization of lactococcal phage baseplates expressed in escherichia coli, J. Struct. Biol, vol.172, pp.75-84, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01595270

D. A. Shepherd, D. Veesler, J. Lichiere, A. E. Ashcroft, and C. Cambillau, Unraveling lactococcal phages baseplate assembly by mass spectrometry, Mol. Cell. Proteomics, 2011.

D. Veesler, S. Spinelli, J. Mahony, J. Lichière, S. Blangy et al., Structure of the phage tp901-1 1.8 mda baseplate suggests an alternative host adhesion mechanism, Proc. Natl. Acad. Sci, vol.109, pp.8954-8958, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02066321

G. Sciara, C. Bebeacua, P. Bron, D. Tremblay, M. Ortiz-lombardia et al., Structure of lactococcal phage p2 baseplate and its mechanism of activation, Proc. Natl. Acad. Sci, vol.107, pp.6852-6857, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01595268

S. Hayes, Y. Duhoo, H. Neve, J. Murphy, J. Noben et al., Identification of dual receptor binding protein systems in lactococcal 936 group phages, Viruses, vol.10, p.668, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094461

S. Spinelli, A. Desmyter, C. T. Verrips, H. J. De-haard, S. Moineau et al., Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses, Nat. Struct. Mol. Biol, vol.13, pp.85-89, 2006.

D. M. Tremblay, M. Tegoni, S. Spinelli, V. Campanacci, S. Blangy et al., Receptor-binding protein of lactococcus lactis phages: Identification and characterization of the saccharide receptor-binding site, J. Bacteriol, vol.188, pp.2400-2410, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02066247

S. Ricagno, V. Campanacci, S. Blangy, S. Spinelli, D. Tremblay et al., Crystal structure of the receptor-binding protein head domain from lactococcus lactis phage bil170, J. Virol, vol.80, pp.9331-9335, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02066261

S. Spinelli, D. Veesler, C. Bebeacua, and C. Cambillau, Structures and host-adhesion mechanisms of lactococcal siphophages, Front. Microbiol, vol.5, 2014.

J. Mahony, W. Kot, J. Murphy, S. Ainsworth, H. Neve et al., Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny, Appl. Environ. Microbiol, vol.79, pp.4385-4392, 2013.

S. Ainsworth, I. Sadovskaya, E. Vinogradov, P. Courtin, Y. Guerardel et al., Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity, vol.5, pp.880-894, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204398

J. Murphy, F. Bottacini, J. Mahony, P. Kelleher, H. Neve et al., Comparative genomics and functional analysis of the 936 group of lactococcal siphoviridae phages, Sci. Rep, 2016.

S. Hayes, R. Vincentelli, J. Mahony, A. Nauta, L. Ramond et al., Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various gram-positive bacteria, Mol. Microbiol, vol.110, pp.777-795, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094299

B. Collins, C. Bebeacua, J. Mahony, S. Blangy, F. P. Douillard et al., Structure and functional analysis of the host-recognition device of lactococcal phage tuc2009, J. Virol, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02066311

P. Legrand, B. Collins, S. Blangy, J. Murphy, S. Spinelli et al., The atomic structure of the phage tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules, vol.7, pp.1781-1796, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439078

J. Murphy, B. Royer, J. Mahony, L. Hoyles, K. Heller et al., Biodiversity of lactococcal bacteriophages isolated from 3 gouda-type cheese-producing plants, J. Dairy Sci, vol.96, pp.4945-4957, 2013.

S. Ainsworth, Characterisation of Bacteriophage-Host Interactions in Lactococcus Lactis, 2014.

D. Lillehaug, An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages, J. Appl. Microbiol, vol.83, pp.85-90, 1997.

A. Hildebrand, M. Remmert, A. Biegert, and J. Söding, Fast and accurate automatic structure prediction with hhpred, Proteins Struct. Funct. Bioinform, vol.77, pp.128-132, 2009.

J. Söding, A. Biegert, and A. N. Lupas, The hhpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res, vol.33, pp.244-248, 2005.

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Res, vol.16, pp.10881-10890, 1988.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of coot, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

P. Emsley and K. Cowtan, Coot: Model-building tools for molecular graphics, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., Ucsf chimera-A visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

W. L. Delano, The Pymol Molecular Graphics System, p.27, 2002.

J. Turchetto, A. F. Sequeira, L. Ramond, F. Peysson, J. L. Brás et al., High-throughput expression of animal venom toxins in escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery, vol.16, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802802

M. E. Dieterle, S. Spinelli, I. Sadovskaya, M. Piuri, and C. Cambillau, Evolved distal tail carbohydrate binding modules of l actobacillus phage j-1: A novel type of anti-receptor widespread among lactic acid bacteria phages, Mol. Microbiol, vol.104, pp.608-620, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802813

C. Bebeacua, D. Tremblay, C. Farenc, M. Chapot-chartier, I. Sadovskaya et al., Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2, J. Virol, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004635

C. S. Vegge, H. Neve, L. Brøndsted, K. J. Heller, and F. K. Vogensen, Analysis of the collar-whisker structure of temperate lactococcal bacteriophage tp901-1, Appl. Environ. Microbiol, vol.72, pp.6815-6818, 2006.

P. G. Leiman, M. M. Shneider, V. V. Mesyanzhinov, and M. G. Rossmann, Evolution of bacteriophage tails: Structure of t4 gene product 10, J. Mol. Biol, vol.358, pp.912-921, 2006.

C. Bebeacua, L. Lai, C. S. Vegge, L. Brøndsted, M. Van-heel et al., Visualizing a complete siphoviridae member by single-particle electron microscopy: The structure of lactococcal phage tp901-1, J. Virol, vol.87, pp.1061-1068, 2013.

L. G. Pell, A. Liu, L. Edmonds, L. W. Donaldson, P. L. Howell et al., The x-ray crystal structure of the phage ? tail terminator protein reveals the biologically relevant hexameric ring structure and demonstrates a conserved mechanism of tail termination among diverse long-tailed phages, J. Mol. Biol, vol.389, pp.938-951, 2009.

N. M. Taylor, N. S. Prokhorov, R. C. Guerrero-ferreira, M. M. Shneider, C. Browning et al., Structure of the t4 baseplate and its function in triggering sheath contraction, Nature, vol.533, pp.346-352, 2016.

C. A. Arnaud, G. Effantin, C. Vivès, S. Engilberge, M. Bacia et al., Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection, Nat. Commun, vol.8, 1953.
URL : https://hal.archives-ouvertes.fr/hal-01666069

M. Sassi, C. Bebeacua, M. Drancourt, and C. Cambillau, The first structure of a mycobacteriophage, araucaria, J. Virol, 2013.

L. G. Pell, G. M. Gasmi-seabrook, M. Morais, P. Neudecker, V. Kanelis et al., The solution structure of the c-terminal ig-like domain of the bacteriophage ? tail tube protein, J. Mol. Biol, vol.403, pp.468-479, 2010.

J. S. Fraser, K. L. Maxwell, and A. R. Davidson, Immunoglobulin-like domains on bacteriophage: Weapons of modest damage?, Curr. Opin. Microbiol, vol.10, pp.382-387, 2007.

I. Auzat, A. Dröge, F. Weise, R. Lurz, and P. Tavares, Origin and function of the two major tail proteins of bacteriophage spp1, Mol. Microbiol, vol.70, pp.557-569, 2008.

A. Bhardwaj, S. R. Casjens, and G. Cingolani, Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using x-ray crystallography, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.70, pp.342-353, 2014.

C. Montanier, V. A. Money, V. M. Pires, J. E. Flint, B. A. Pinheiro et al., The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions, PLoS Biol, 2009.

M. E. Dieterle, J. F. Martin, R. Durán, S. I. Nemirovsky, C. S. Rivas et al., Characterization of prophages containing "evolved" dit/tal modules in the genome of lactobacillus casei bl23, Appl. Microbiol. Biotechnol, vol.100, pp.9201-9215, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01498340