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Glycoside hydrolase family 74 (GH74) is a historically impor-
tant family of endo-�-glucanases. On the basis of early reports of
detectable activity on cellulose and soluble cellulose derivatives,
GH74 was originally considered to be a “cellulase” family,
although more recent studies have generally indicated a high
specificity toward the ubiquitous plant cell wall matrix glycan
xyloglucan. Previous studies have indicated that GH74 xyloglu-
canases differ in backbone cleavage regiospecificities and can
adopt three distinct hydrolytic modes of action: exo, endo-dis-
sociative, and endo-processive. To improve functional predic-
tions within GH74, here we coupled in-depth biochemical
characterization of 17 recombinant proteins with structural
biology– based investigations in the context of a comprehensive
molecular phylogeny, including all previously characterized
family members. Elucidation of four new GH74 tertiary struc-
tures, as well as one distantly related dual seven-bladed �-
propeller protein from a marine bacterium, highlighted key
structure–function relationships along protein evolutionary
trajectories. We could define five phylogenetic groups, which
delineated the mode of action and the regiospecificity of GH74
members. At the extremes, a major group of enzymes diverged
to hydrolyze the backbone of xyloglucan nonspecifically with a
dissociative mode of action and relaxed backbone regiospecific-
ity. In contrast, a sister group of GH74 enzymes has evolved a
large hydrophobic platform comprising 10 subsites, which facil-

itates processivity. Overall, the findings of our study refine our
understanding of catalysis in GH74, providing a framework for
future experimentation as well as for bioinformatics predictions
of sequences emerging from (meta)genomic studies.

Terrestrial plants harbor �80% of the biomass on Earth,
some 450 gigatons of carbon, in the form of lignocellulose (cell
walls comprised of cellulose, matrix glycans, lignin, and other
polymers) (1). Although terrestrial biomass represents an
attractive renewable resource for the production of fuels,
chemicals, and materials for human consumption, the con-
trolled degradation of lignocellulose, whether (thermo)chemi-
cal or enzymatic, is hindered by its heterogeneous composition
and complex organization (2). Hence, significant efforts have
been made to identify enzymes able to efficiently modify and
deconstruct this complex material.

Xyloglucans (XyGs)3 comprise a prominent family of cell
wall matrix glycans (hemicelluloses). XyGs are ubiquitous in
land plants, in which they constitute up to 20% of the dry weight
of cell walls (3, 4). Notably, XyGs are secreted by roots of diverse
plant species and are therefore likely to actively influence rhi-
zobiota (5). XyGs are also found as storage polysaccharides
comprising �50% of the mass of some seeds (e.g. tamarind and
nasturtium) and therefore represent important agricultural by-
products with applications in the food, biomaterial, and medi-
cal sectors (6, 7). XyGs have a �-1,4 –linked glucosyl backbone
(“G” unit), some of which are decorated with an �-(1,6)-D-xy-
losyl residue (together comprising an “X” unit; nomenclature
according to Ref. 8). Generally, three of four contiguous gluco-
syl units are xylosylated, forming repeating (XXXG)n-type
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XyGs. Depending on the plant tissue, the xylosyl branches may
be further substituted with a variety of other saccharides (4).
Therefore, total saccharification of XyGs requires the con-
certed action of several side chain– debranching and backbone-
cleaving enzymes (9 –12).

Endo-xyloglucanases, which cleave the XyG backbone, are
found in glycoside hydrolase (GH) families GH5, GH9, GH12,
GH16, GH44, and GH74 (11). Of these, GH74 currently com-
prises �500 members, ranking it among the smaller GH fami-
lies. GH74 is further distinguished from these other poly-spe-
cific families by a nearly singular specificity for XyG (13). The
first GH74 enzyme to be biochemically characterized, from
Aspergillus aculeatus, was described in 1989 as an “avicelase”
(Avicel� is a brand of microcrystalline cellulose) (14). As a
result, GH74 is sometimes myopically referred to as a cellulase
family, and its members are often annotated as such in (meta)-
genomics studies (15). However, numerous studies since the
turn of this century have shown that many GH74 enzymes are
in fact highly specific xyloglucanases (16 –35). The biological
importance of this family is underscored by (meta)genomic
studies, which have revealed the ubiquity of GH74 members in
diverse ecological niches, including soil, termite and human
guts, and hot springs (36 –40).

GH74 members present subtle structural variation and
modes of action, which have been reviewed recently (41).
Briefly, backbone hydrolysis can occur either in the middle of
the polysaccharide chain (endo-xyloglucanases, EC 3.2.1.151)
or at the chain end (exo-xyloglucanases, EC 3.2.1.150). Endo-
xyloglucanases can be further delineated into endo-dissociative
enzymes, which hydrolyze the backbone and immediately
release both new chain ends, and endo-processive enzymes,
which perform multiple hydrolytic events, releasing short
oligosaccharides before disengaging. The ability of some GH74
enzymes (26, 28, 29, 35) to act processively on soluble XyG is
notable, considering that this mode of action is more com-
monly associated with GHs acting on crystalline cellulose or
chitin (42–47).

To unify disparate studies on GH74 members and resolve
gaps in our current understanding of the distribution of the
distinct modes of action in the family, molecular phylogeny was
coupled with detailed enzymology to elucidate the substrate
specificity, backbone cleavage regiospecificity, and processivity
of 17 recombinant GH74 proteins in the present study. The
determination of crystal structures of four GH74s and one dis-
tantly related dual seven-bladed �-propeller protein, together
with analysis of existing GH74 structures, highlighted key
structure–activity relationships across this family. Overall, this
study refines our understanding of catalysis in GH74 and
reveals the evolutionary trajectory of this enzyme family from
dissociative toward processive modes of action.

Results

Production and biochemical characterization

A molecular phylogeny using isolated GH74 catalytic mod-
ules from the CAZy database (13) was generated to guide pro-
tein production, enzymology, and structural biology. Previ-
ously characterized GH74 enzymes that were absent from the

CAZy database were also included in this analysis (GenBankTM

accession numbers CCG35167 (23) and XP_747057 (20)). In
addition, two proteins (GenBank accession numbers AFV00434
and AFV00474) encoded in the Simiduia agarivorans genome,
which are distantly related to GH74 enzymes based on hydropho-
bic cluster analysis (HCA) (48), were included as an outgroup.
Thirty candidates were selected across the phylogenetic tree, of
which 17 proteins were successfully recombinantly produced and
purified (Fig. 1).

Proteins were first screened for activity on a range of sub-
strates, including polysaccharides and pNP substrates. The
recombinant AFV00434 and AFV00474 proteins from S. aga-
rivorans were not active on the range of substrates tested,
including XyG (data not shown). All other recombinant GH74
modules showed a strict preference for tamarind XyG. No
endo-mannanase activity toward konjac glucomannan, no
endo-xylanase activity toward wheat flour arabinoxylan and
beechwood xylan, and no endo-glucanase activity using CM-
cellulose were observed. Endo-glucanase activity on HE-cellu-
lose and on barley �-glucan was generally estimated to be less
than 1% compared with xyloglucanase activity (data not
shown). As such, we did not perform further biochemical char-
acterization on these substrates. Overall, these results, together
with previous studies (16 –35), suggest that GH74 enzymes are,
in general, very specific for XyG.

To further investigate the biochemical properties of GH74
enzymes, optimum pH (Fig. S1) and temperature (Fig. S2)
ranges were evaluated using XyG as a substrate (Table 1). Gen-
erally, recombinant enzymes were active at pH values ranging
from 5 to 8, with optimum activities observed around pH 6
(except for Niastella koreensis GH74, which displayed maxi-
mum activity at pH 4.5). The highest activities were observed at
temperatures ranging from 45 to 65 °C for most recombinant
enzymes, except for the thermophilic Caldicellulosiruptor lac-
toaceticus GH74a and GH74b and Caldicellulosiruptor bescii
GH74, whose highest activities were recorded at 80 °C.
Michaelis–Menten analysis confirmed the high specificity of
the GH74 catalytic domains for XyG, with Km and kcat values
generally ranging from 0.02 to 0.31 mg/ml and from 18.1 to
170.2 s�1, respectively (Table 1 and Fig. S3). These values are in
the same range as previously characterized GH74 enzymes (16,
22, 29, 35). Exceptionally, recombinant Streptomyces venezu-
elae GH74b was very unstable and precipitated rapidly in solu-
tion, which did not allow accurate kinetic characterization.

Among previously characterized GH74 enzymes, Thermo-
toga maritima Xeg74 showed higher activity for mixed linkage
barley �-glucan than tamarind XyG (19), which constitutes an
anomaly in this family. Unfortunately, we were unable to
recombinantly produce T. maritima Xeg74 to verify this find-
ing independently.

Regiospecificity and processivity of GH74 members

The mode of action of GH74 xyloglucanases has been
described for a limited number of enzymes. Oligoxyloglucan
reducing end-specific cellobiohydrolases (OXG-RCBHs) (EC
3.2.1.150) are exo-type xyloglucanases that release Glc2-based
products such as XG or LG from tamarind XyG (17, 49). Endo-
xyloglucanases can act in a dissociative fashion to generate a
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wide distribution of product chain lengths (23, 26, 33), or they
can act in a processive fashion to rapidly release small xyloglu-
can oligosaccharides (XyGOs) at early stages of XyG hydrolysis
(20, 26, 28, 29, 35). To investigate the mode of action of our
recombinant GH74 enzymes, we analyzed the time-course hy-
drolysis of tamarind XyG at early stages of the reaction by
HPAEC-PAD (Fig. 2 and Fig. S4).

Also, most previously characterized GH74 endo-xylogluca-
nases release XXXG-type XyGOs via the exclusive hydrolysis of
XyG at unbranched glucosyl residues (16, 22, 28, 33, 50); how-
ever, some cleave exclusively at xylosylated glucosyl units (21,
23), and others can cleave at both G and X motifs (20, 26, 32,
35). To investigate the backbone regiospecificity of GH74
enzymes, the limit digests of tamarind XyG, of XXXGXXXG,
and of XXXG were analyzed by HPAEC-PAD (Fig. 3). The
details of these analyses for 17 enzymes are discussed below in
the context of five GH74 phylogenetic groups that delineate
processivity and cleavage regiospecificity (Fig. 1).

Distantly related proteins—Proteins AFV00434 and AFV00474
from the marine bacterium S. agarivorans have very low
sequence similarity to GH74 members, yet a distant relation-
ship was detected by HCA (48) (data not shown). To investigate
the structural basis for their lack of activity on XyG, we solved
the tertiary structure of SaAFV00434 (PDB code 6P2K) using
SelMet-derivatized protein and single anomalous dispersion
(SAD) phasing. This protein shares the canonical GH74 struc-
ture (16, 35, 49 –52), comprising two seven-bladed �-propeller
domains forming a long and wide cleft (Fig. 4A). This structure
validates the HCA prediction of a distant relationship to GH74
and suggests a superfamily or “clan” (53). Two aspartic acid
residues (Asp35 and Asp419), located 8.3 Å apart in the putative
catalytic site, have an adequate spatial position to catalyze the
hydrolysis of the glycosidic bond via an inverting mechanism.
However, comparison of the protein backbone in the crystal
structure of AFV00434 and Group 5 Paenibacillus odorifer

GH74 (PDB entry 6MGL) (35) revealed that AFV00434 loops
Trp121–Ala136, Ser468–Asn476, and Ser706–Tyr716 obstruct the
active cleft at subsites �3/�2, �1/�2, and �4/�3, respec-
tively, providing a possible explanation for the lack of polysac-
charide hydrolysis (Fig. 4A). Furthermore, SaAFV00434 lacks
apparent �3, �4, and �5 subsites (i.e. aromatic amino acids
available for interactions with xyloglucan or other polysaccha-
rides; see below).

Group 1—As defined here by the limits of our ability to dis-
criminate members on the basis of enzyme activity, phyloge-
netic Group 1 (Fig. 1) encompasses a very sequence-diverse set
of enzymes. These 123 bacterial enzymes belong mainly to the
phyla Proteobacteria and Firmicutes, as well as Cyanobacteria,
but low sequence conservation (identity �50%) results in long
branches on the phylogenetic tree (Fig. 1).

Some of the most divergent enzymes we attempted to study
could not be recombinantly produced. However, we success-
fully produced N. koreensis GH74, Ruminococcus albus GH74a,
and C. lactoaceticus GH74a. These three enzymes acted as
endo-dissociative xyloglucanases (Fig. 2 and Fig. S4 (A, B, and
C)) like the previously characterized Xanthomonas citri pv.
mangiferaeindicae GH74 (23), which also belongs to the phylo-
genetic Group 1. Notably, this group also contains T. maritima
Cel74, which was previously shown to be 4 times more active on
barley �-glucan than on tamarind XyG (19); this difference of
specificity is not easily rationalized in light of the phylogenetic
relationship with C. lactoaceticus GH74a (Fig. 1).

Recent reports showed that two tryptophan residues found
in the �3 and �5 subsites in the active site cleft are necessary
for the processivity of GH74 enzymes (32, 35) and are con-
served in all previously reported endo-processive xylogluca-
nases in this family (26, 28) (see below; Group 5). Very few
sequences from the Group 1 enzymes possess one or both �3
and �5 subsite Trp residues (15 and 4%, respectively), consis-
tent with the lack of processivity observed in our examples.

Figure 1. Phylogenetic tree and summary of modes of action of GH74 enzymes. This phylogeny is based on isolated GH74 catalytic module sequences (i.e.
with CBMs removed). Maximum-likelihood phylogenetic Groups 1–5 are highlighted and numbered, with bootstrap values indicated at selected nodes.
Biochemical properties are indicated as described in the key. Data from previous studies comprise BAC69567 and BAC70285 (26), CAA20642 (22), ABK52391
(51), ACE84745 (16) (and this study), CAD58415 (30), AAZ55647 (27), BAE44527 (29, 32), AAP57752 (21), BAF95189 (28), BAA29031 (14), XP_747057 (20),
CAE51306 (34, 50), BAD11543 (33, 52), BAC22065 (31, 52), EAA64249 (17), CCG35167 (23), and AAD35393 (19).

Table 1
Biochemical properties of recombinant GH74 modules on tamarind XyG

Protein Bacterial strain
Optimum

temperature/pH Km kcat

mg/ml s�1

ClGH74a Caldicellulosiruptor lactoaceticus 81 °C/pH 5 0.028 � 0.001 71.8 � 1.2
ClGH74b C. lactoaceticus 83 °C/pH 6 0.014 � 0.002 44.9 � 1.4
CbGH74 Caldicellulosiruptor bescii 85 °C/pH 6.5 0.04 � 0.02 51.2 � 3.2
NkGH74 Niastella koreensis 55 °C/pH 4.5 0.09 � 0.008 18.1 � 0.7
PgGH74 Paenibacillus graminis 55 °C/pH 6 0.039 � 0.001 170.2 � 4.6
PbGH74 Paenibacillus borealis 45 °C/pH 6 0.022 � 0.001 91.8 � 1.4
PpGH74 Paenibacillus polymyxa 54 °C/pH 6 0.095 � 0.010 26.9 � 1.4
PjGH74 Paenibacillus jamilae 60 °C/pH 6 0.057 � 0.013 24.4 � 1.4
PmGH74 Paenibacillus mucilaginosus 60 °C/pH 6 0.117 � 0.011 96.5 � 2.6
RaGH74a Ruminococcus albus 50 °C/pH 6 0.028 � 0.003 47.5 � 2.8
RaGH74b R. albus 45 °C/pH 6 0.314 � 0.045 37.9 � 1.9
AFV00434 Simiduia agarivorans NAa NA NA
AFV00474 S. agarivorans NA NA NA
SrGH74 Streptomyces rapamycinicus 65 °C/pH 6 0.014 � 0.001 45.2 � 2.6
SvGH74a Streptomyces venezuelae 25 °C/pH 6 1.05 � 0.34 1.0 � 0.1
SvGH74b S. venezuelae 55 °C/pH 7 0.023 � 0.003 52.3 � 2.2
SatGH74 Streptomyces atroolivaceus 54 °C/pH 6 0.09 � 0.01 31.1 � 1.0

a NA, not active on xyloglucan.
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Remarkably, C. lactoaceticus GH74a has both positive-subsite
Trp residues (Fig. S5) but nonetheless acted as a dissociative
enzyme. Thus, the presence of this pair of Trp residues is nec-
essary but not sufficient for processivity in GH74.

N. koreensis GH74, R. albus GH74a, and C. lactoaceticus
GH74a all had relaxed regiospecificity and were thus able to
cleave the backbone of XyG at both xylosylated (X) and
unbranched glucosyl (G) units (Fig. 3). In contrast, X. citri pv.
mangiferaeindicae GH74 cleaved specifically after X motifs
(23). These four enzymes have a Gly residue in the �1 subsite,
as do 60% of enzymes from Group 1. This residue has been
shown to be responsible for the ability of previously character-
ized GH74 endo-xyloglucanases to cleave at X units (35, 54).
However, some Group 1 members have an Ala (20%), a Trp
(10%), or a Gln (7%) residue in the corresponding position, sug-
gesting that some Group 1 members may have a strict prefer-
ence for XyG hydrolysis at G units.

To investigate the structural determinants for the mode of
action of enzymes belonging to Group 1, we solved the tertiary
structure of C. lactoaceticus GH74a in complex with the XyG
fragment LLG (PDB code 6P2M), and of N. koreensis GH74 in
complex with two XyG fragments, XXLG and XXXG (PDB
code 6P2L; Fig. 4B). These represent the first three-dimen-
sional structures described in Group 1. Vis-à-vis SaAFV00434
in the distantly related sister clade (Fig. 1), these structures
reveal a broad, active-site cleft poised to accept the highly
branched XyG polysaccharide chain. The structure of C. lacto-
aceticus GH74a clearly demonstrates the positioning of consec-
utive Trp residues, Trp328 and Trp329, comprising the �3 and

�5 subsites (Fig. 5 and Fig. S5). Remarkably, the N. koreensis
GH74 active-site cleft also harbors two Trp residues in homo-
logous �3 and �5 subsite positions (Trp328 and Trp337), but
instead of being found consecutively in the primary structure,
they are interspersed with a loop comprising Ser329–Thr336

(Fig. 5 and Fig. S5).
Active-site aromatic residues, in particular tryptophan resi-

dues, are important for substrate recognition and processivity
in glycoside hydrolases (55–57). Across the active-site cleft, we
found only five hydrophobic residues positioned to interact
with the XyG backbone from the �4 to the �5 subsite in C. lac-
toaceticus GH74a (Tyr122, Trp126, Trp328, Trp329, and Trp375)
and N. koreensis GH74 (Tyr117, Phe118, Trp328, Trp337, and
Trp376) (Fig. 5). In comparison, the active-site cleft of the pro-
cessive xyloglucanase P. odorifer GH74 (PDB code 6MLG) of
Group 5 (see below) is lined with 12 aromatic residues (35),
which create a large hydrophobic platform extending from the
�4 to the �6 subsites (Fig. 5). C. lactoaceticus GH74a and
N. koreensis GH74 completely lack a corresponding �6 subsite.
Overall, these results suggest that Group 1 comprises enzymes
with the first sequence features allowing for dissociative
endo-xyloglucanase activity but that the limited number of
hydrophobic interactions in their active cleft does not enable
processivity.

Group 2—Group 2 specifically segregates the fungal endo-
xyloglucanase Geotrichum sp. XEG74 (EC 3.2.1.151) and two
OXG-RCBHs (EC 3.2.1.150) from Geotrichum sp. (49) and
Aspergillus nidulans (17). This small clade comprises previ-
ously characterized enzymes. In particular, seminal work by
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Figure 2. Time-course hydrolysis of tamarind XyG monitored by HPAEC-PAD. A, endo-dissociative NkGH74; B, endo-processive SrGH74.
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Yaoi et al. (52) demonstrated that the strict exo-activity of the
OXG-RCBH enzymes, which results in the production of Glc2-
based products (e.g. XG and LG), is dictated by the presence of
an 11-amino acid loop that blocks one end of the active-site
cleft. Our analysis of the current CAZy database, which contains
only GenBankTM-deposited sequences (13), indicated that only
Geotrichum sp. and A. nidulans OXG-RCBHs possess this “exo-
loop.” However, Damasio et al. (20) found 19 additional putative
OXG-RCBHs from the analysis of 293 Eurotiomycete and Ascomy-
cete genomes, reinforcing the observation that OXG-RCBHs
enzymes form their own evolutionarily divergent clade within
GH74.

Group 3—Group 3 is currently comprised of 22 bacterial
enzymes belonging to the genus Streptomyces as well as one
Proteobacteria enzyme. All enzymes from Group 3 carry the
Trp residue in subsite �3, which is found in some members of
Group 1 but is ubiquitous in Groups 4 and 5. At the same time,
Group 3 members lack the �5 subsite Trp found in Groups
4 and 5 (Fig. 1). In addition, enzymes from Group 3 have also
acquired hydrophobic residues in the �4 and �3 subsites that
are conserved in the Group 5 processive xyloglucanase P. odor-
ifer GH74 (35) (see below) (Fig. S5). Within Group 3, Strepto-
myces atroolivaceus GH74 acted as an endo-dissociative
enzyme (Fig. S4D), analogous to the previously characterized
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Figure 3. Regiospecificity of recombinant GH74 enzymes. HPAEC-PAD analysis of the limit digest of tamarind xyloglucan polysaccharide (A), the limit digest
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Streptomyces avertimilis GH74b (26). Both enzymes were able
to cleave XyG backbone at both G and X motifs, yet with a clear
preference for the unbranched G unit (Fig. 3) (26), reflective of
the presence of a Gly residue in the �1 subsite.

Despite the lack of three-dimensional structural representatives
from phylogenetic Group 3, sequence analysis indicates the pres-
ence of hydrophobic residues in subsites �4, �3, �2, and �3 in
the active cleft of these enzymes (Fig. S5). As in Group 1, these, and
especially the limited aromatic platform in the positive subsites,
are apparently insufficient to enable processivity (Fig. S4D). The

current data indicate that Group 3 members are endo-dissociative
enzymes that preferentially hydrolyze the XyG backbone at
unbranched glucosyl units (Fig. 3).

Group 4 —Group 4 is comprised of 19 bacterial enzymes
belonging to the family Streptomycetaceae. Sequence align-
ment indicates that Group 4 members have retained the all
active-site aromatic residues characteristic of Group 3 and
additionally acquired the �5 subsite Trp residue found in
Group 5 members (Fig. S5). Unfortunately, instability of recom-
binant S. venezuelae GH74a precluded detailed enzymology.

Figure 4. Crystal structures of S. agarivorans AFV00434, N. koreensis GH74, C. lactoaceticus GH74, P. graminis GH74, S. rapamycinicus GH74, and
P. odorifer GH74 (PDB code 6MGL). A, overlay of crystal structures of AFV00434 (red) and Group 5 PoGH74�(D70A)�(XXLG � XGXXLG) (PDB code 6MGL) (black)
in ribbon configuration; putative catalytic residues of AFV00434 are indicated in a stick configuration, and loops impeding xyloglucan accommodation in the
active site of AFV00434 are represented in cartoon representation. B, overlay of crystal structure of Group 1 NkGH74�(XXLG � XXXG) (green) and ClGH74a (pink)
shown in cartoon representation. C, overlay of crystal structure of Group 5 PgGh74 (orange), PoGH74�(D70A)�(XXLG � XGXXLG) (PDB code 6MGL) (black), and
SrGH74�(XLLG � XXXG) (cyan). D, overlay of crystal structures of Group 1 NkGH74�(XXLG � XXXG) (green) and Group 5 PoGH74�(D70A)�(XXLG � XGXXLG) (PDB
code 6MGL) (black). The loop additions/extensions allowing the position of aromatic residues in the �2, �5, and �6 subsites in the active site of Group 5
enzymes are shown in cartoon representation.
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Nonetheless, time-course hydrolysis of XyG analyzed by
HPAEC-PAD analysis clearly indicated that this enzyme acted
as an endo-dissociative enzyme (Fig. S4E) and hydrolyzed the
polysaccharide backbone at both X and G units (Fig. 3). The
presence of a conserved Gly in subsite �1 of all enzymes from
Group 4 is consistent with this relaxed regiospecificity (Fig. S5).
However, the presence of an extended positive subsite platform
is insufficient to support processivity (Fig. S4E).

Group 5—Group 5 is comprised of 173 bacterial and fungal
enzymes that form a monophyletic group supported by a high
bootstrap value of 75. Notably, most GH74 catalytic modules of
this group are appended to a carbohydrate-binding module
(CBM) (16, 26, 35), whereas CBMs are generally absent in
enzymes from other phylogenetic groups (Fig. 1).

Nearly all enzymes from Group 5 (166 of 173) contain the
subsite �3/�5 Trp pair, which constitute an extended sub-
strate-binding platform also observed in Group 4 (Fig. 1). This
platform appears to be a prerequisite for processivity, as all
presently (Fig. S4, F, G, and I–O) and previously characterized
processive GH74 endo-xyloglucanases belong to Group 5 (20,
24, 26, 28, 29, 35). Indeed, previous work on Group 5 members
P. odorifer GH74 (35) and Paenibacillus sp. strain KM21 (29)
used site-directed mutagenesis to define the critical role of both
�3 and �5 aromatic residues in processivity. Further, R. albus
GH74b is a rare instance of a natural variant in this phyloge-
netic group, in which the conserved �5 subsite Trp has been
substituted with Ala. Accordingly, R. albus GH74b is an endo-
dissociative xyloglucanase (Fig. S4H). Thus, both Trp residues
are not sufficient (as in Group 4); they are nonetheless neces-
sary for processivity (as in Group 5).

These observations prompted us to reevaluate our previous
analysis of Cellvibrio japonicus GH74, in which we described
this Group 5 enzyme as endo-dissociative (16). However, the
presence of the pair of �3/�5 subsite Trp residues (Trp353 and
Trp354) in this enzyme predicts an endo-processive mode of
action. A more refined time-course analysis of XyG degrada-
tion showed that the WT C. japonicus GH74 had an endo-pro-
cessive mode of action, consistent with its active-site composi-
tion and placement in Group 5, whereas the subsite variants
W353A and W354A acted as endo-dissociative enzymes (Fig.
S6), analogous to homologous mutants (29, 35).

As in other phylogenetic groups, the residue occupying the
�1 subsite in the active cleft of GH74 xyloglucanases affects the
backbone cleavage regiospecificity of Group 5 enzymes, yet it is
not the only determinant. The vast majority (90%) of enzymes
from Group 5 have a Gly residue in subsite �1, whereas the
remainder have either a Tyr, a Leu, an Ala, or an Arg residue in
this position. Among this latter group, the previously charac-
terized Phanerochaete chrysosporium Xgh74B has a Leu in the
�1 subsite (28), whereas C. bescii GH74 and C. lactoaceticus
GH74 have a Tyr here (Fig. 1 and Fig. S5). These three enzymes
showed a strict specificity for XyG backbone hydrolysis at
unbranched G units (Fig. 3).

Among enzymes with a Gly residue in the �1 subsite, the
data were more equivocal. Whereas the regiospecificities of
R. albus GH74b and Paenibacillus mucilaginosus GH74 are
relaxed, Paenibacillus graminis GH74 and Paenibacillus bore-
alis GH74 were the only Group 5 enzymes that could efficiently
hydrolyze XXXG to XX � XG. On the other hand, Paenibacil-
lus jamilae GH74 and Paenibacillus polymyxa GH74 showed a
clear, but not exclusive, preference for cleavage at G units and a
propensity to hydrolyze XXXG. Last, Streptomyces rapa-
mycinicus GH74 and S. venezuelae GH74 strictly cleave XyG
backbone at the unbranched glucosyl unit (Fig. 3).

To further investigate the determinants for the cleavage pat-
tern of GH74 enzymes, we used P. odorifer GH74 (35) as a plat-
form for site-directed mutagenesis. This enzyme shares over
90% sequence identity with P. graminis GH74 and P. borealis
GH74 and likewise hydrolyzes XXXG to XX � XG (Fig. 3).
P. odorifer GH74 has a mobile loop (Asn642–Ala651) that is con-
served in P. graminis GH74 and P. borealis GH74 (Fig. S5). In
the closed conformation, this loop protrudes into the active
site, covering subsite �4 and hindering subsite �3 (35). Thus,
we first eliminated the possibility that this loop might force
XX�XG into a �2 to �2 binding mode in these enzymes,
thereby promoting hydrolysis between two X units (as indi-
cated here with the vertical bar). Indeed, the P. odorifer GH74
deletion variant �Asn642–Ala651 behaved like the WT enzyme
(Fig. S7).

Hence, we investigated the role of the residue found in the
�1 subsite in the active site cleft of P. odorifer GH74. In a pre-
vious study, we showed that a G476Y mutation in the �1 sub-
site switched the mode of action to exclusively cleave the XyG
backbone at the G unit (35). Analogously, here we produced
three single-point mutations representing the other amino acid
variants found in the �1 subsite of GH74 enzymes (viz. G476A,
G476W, and G476Q). Like the G476Y mutant, G476A, G476W,
and G476Q variants all showed strict specificity for XyG hydro-

Figure 5. Details of the active sites of the NkGH74�(XXLG � XXXG),
ClGH74a, PoGH74(D70A)�(XXLG � XGXXLG), and SrGH74�(XLLG � XXXG)
complexes. A, comparison of NkGH74�(XXLG � XXXG) and ClGH74a, showing
that each enzyme possesses five aromatic residues in its active site, including
the presence of tryptophan residues at the �3 and �5 subsites. B, compari-
son of SrGH74�(XLLG � XXXG) and PoGH74cat�(XXLG � XGXXLG) (PDB code
6MGL), showing that the xyloglucan fragments occupy the same position in
each enzyme, with small differences in the �4 and �3 subsites. Conservation
of the position of all 12 aromatic acids in the active-site clefts of each enzyme
is observed.
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lysis at the G motif (Fig. S7). Thus, even the relatively small
methyl side chain of the Ala residue hinders the accommoda-
tion of a xylose side chain in the subsite �1 and shifts the reg-
ister of XyG backbone hydrolysis to the canonical unbranched
G unit (11, 58).

We solved the crystal structure of Group 5 members
P. graminis GH74 (PDB code 6P2N) and S. rapamycinicus
GH74 in complex with two XyG fragments (XLLG and XXXG)
(PDB code 6P2O), thereby increasing the number of Group 5
tertiary structures from four to six (16, 35, 50, 51). Using
P. odorifer GH74 as a reference, P. graminis GH74 and S. rapa-
mycinicus GH74 are similar in overall conformation, with nota-
ble deviations localized to loops impinging on the �4, �3, and
�2 subsites (i.e. P. graminis GH74 residues 643– 653, 121–128,
and 209 –217 versus P. odorifer GH74 residues 607– 618,
86 –94, and 174 –182 and S. rapamycinicus GH74 residues
643– 646, 129 –137, and 218 –227) (Fig. 4C). In particular, these
conformational changes caused P. graminis GH74 residues
Trp126, Tyr122, and Tyr214 to rotate out of the active site cleft as
compared with their equivalents Trp91, Tyr87, and Tyr179 in
P. odorifer GH74 (Fig. S8). The absence of a bound xyloglucan
ligand in our structure of P. graminis GH74 may explain these
conformational movements and likely reflects inherent flexibil-
ity in this region. XLLG and XXXG bound to S. rapamycinicus
GH74 superimposed nearly exactly to XXLG and XGXXLG
bound to P. odorifer GH74 (PDB code 6MGL), with the excep-
tion of small changes in the positions of the sugars in the �3
and �4 subsites (Figs. 4C and 5B).

A striking feature of P. odorifer GH74 was the presence of 12
aromatic residues that lined the active-site cleft of the enzyme,
which formed a large hydrophobic platform that extended from
the �4 to the �6 subsites (35). Consistent with the conserved
binding position of the xyloglucan fragments noted above,
these residues are conserved in S. rapamycinicus GH74 (Fig. 5)
as well as in P. graminis GH74 and nearly all enzymes from
Group 5 (Fig. S5 and File S1 (GH74_CatalyticModules_
Aligned.mfa)). In comparison, Group 1 members N. koreensis
GH74 and C. lactoaceticus GH74a only have up to five of these
active-site cleft aromatic residues (Fig. 5).

As might be expected, sequence analysis revealed that the
acquisition of some of these key aromatic residues by Group
5 enzymes occurred through single point mutations. For
instance, a Tyr residue is found in the P. graminis GH74
(Tyr295) and S. rapamycinicus GH74 (Tyr307) �1 subsites,
whereas an Asn or a Ser occupies the corresponding positions
in C. lactoaceticus GH74a and N. koreensis GH74, respectively
(Fig. S5). However, loop extensions have also played a major
role in building the hydrophobic platform. In particular, loops
Tyr206–Gly215, Gly320–Tyr325, and Gly371–Ala381 provided the
scaffold for the insertion of Tyr214, Trp325, and Tyr373 in the
subsites �2, �5, and �6 in P. graminis GH74 (Fig. 4D). These
loops are conserved across members of Group 5 but are absent
in other phylogenetic groups (Fig. S5). Notably, the loop com-
posed of Gly371–Ala381 added the �6 subsite, which is found
only in Group 5. The insertion of these aromatic residues cre-
ated a network of stacking interactions with the XyG backbone
that contribute to the processivity of GH74 enzymes. For exam-
ple, residues Trp406 (�2 subsite) and Tyr372 (�6 subsite) con-

tribute to processivity in P. odorifer GH74 (35), whereas Trp61

(�4 subsite) and Trp64 (�3 subsite) contribute to the pro-
cessivity of Paenibacillus KM.21 XEG74 (29), beyond the essen-
tial requirement of Trp residues in subsites �3 and �5 in these
enzymes. Most of these auxiliary aromatic residues are con-
served in Group 5 enzymes but are not found in the other phy-
logenetic groups.

Discussion

Enzymes from the same GH family share a common struc-
tural fold and catalytic mechanism (13, 53). However, many
CAZyme families harbor members with diverse specificities
(poly-specific families), which makes functional annotation
challenging due a general lack of detailed biochemical charac-
terization (13). For a handful of larger GH families examined to
date, phylogeny-based subfamily classification has enabled fur-
ther refinement of activities into monospecific clades in some
cases (59 –62). Thus, phylogenies highlight different structural
trajectories within GH families that correlate with conserved
sequence residues and substrate specificities. Not least, such
delineation guides functional and structural analyses toward
the characterization of enzymes significantly divergent from
those previously studied and thus can resolve knowledge gaps.

Through the largest systematic experimental analysis to date,
this study provides a broad overview of structure–function
relationships in GH74. Enzymes from this family have evolved a
unique tertiary structure comprising a large cleft to accommo-
date the highly branched XyG chain. From this scaffold, we
observe different evolutionary trajectories that delineate the
mode of action and backbone cleavage regiospecificity. Nota-
bly, GH74 is sister to a group of distantly related, dual seven-
bladed �-propeller proteins, of which we were able to solve the
first tertiary structure, but for which we were unable to find
polysaccharide hydrolase activity.

Across the GH74 phylogeny, the characterized members of the
diverse Group 1 generally evidence a relaxed backbone cleavage
specificity, with the ability to hydrolyze at X or G units through an
endo-dissociative (i.e. nonprocessive) mode of action. Although
we were only able to observe strict XyG specificity in the examples
we characterized, the observation that T. maritima Cel74 is 4
times more active on �-glucan than on XyG (19) might imply that
broader specificity exists among the sequence-diverse Group 1
members. At the same time, the C. lactoaceticus GH74a in a
closely related sister clade was a strict xyloglucanase (Fig. 1).
Regrettably, we were unable to reproduce T. maritima Cel74 to
explore this further, but certainly functional characterization of
additional Group 1 members, including from completely unchar-
acterized major clades (Fig. 1), is warranted.

Phylogenetic Groups 3 and 4 are individually dominated by
single genera or phyla and therefore may simply reflect specia-
tion and not functional evolution. Nonetheless, characterized
members of these clades possess unique constellations of
active-site residues (as well as CBM modularity) (Fig. 1). In
particular, the stepwise gain of key active-site aromatic resi-
dues, which are necessary for processivity in Group 5 enzymes,
may suggest that these group represent extant evolutionary
intermediates. However, generally low bootstrap values for
many clades preclude definitive conclusions from being drawn
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in this regard. Most distinctly, members of Group 5 have
evolved a large hydrophobic platform of 10 subsites through a
series of point mutations and loop insertions, which engender a
processive mode of action.

The biological basis of the molecular selection for pro-
cessivity across a wide range of Group 5 members is not imme-
diately intuited. Processivity is generally considered to be
advantageous for enzymes acting on crystalline substrates such
as cellulose or chitin, where initial chain engagement is thought
to be rate-limiting (42–47). However, this would not be
expected for soluble polysaccharides, such as XyG, especially
under dilute assay conditions in vitro. In the plant cell wall, XyG
associates with crystalline cellulose microfibrils and other
matrix glycans in an amorphous, hydrated state (63–65).

Hence, we hypothesize that processivity in GH74 may be uti-
lized in the context of substrate sensing, in which the initial, rapid
release of short, highly diffusible XyG oligosaccharides acts as a
signal to up-regulate the production of cognate enzymes (66, 67).
In contrast, classical endo-dissociative activity predominantly gen-
erates large polysaccharide fragments during early stages of attack,
which would remain associated with the cell wall. Supporting this
proposal, recent transcriptomics analysis revealed that the gene
encoding C. japonicus GH74 (a highly efficient, secreted, pro-
cessive endo-xyloglucanase (16) (Fig. S6)) is constitutively ex-
pressed at a low level and is not up-regulated in the presence of
XyG (9). This regulation contrasts with other highly specific exo-
glycosidases (GH3, GH31, GH35, and GH95), an endo-xylogluca-
nase (GH5_4), and a transporter (9).

Signal peptide analysis (68) suggests that all of the GH74
enzymes in our study are extracellular, whereas many of those
from Group 5 also have CBMs, which is indicative of cell wall
targeting. In this context, we might speculate that processivity
in GH74 enzymes is independent of XyG type (i.e. side-chain
composition); processivity appears to be primarily driven by
polysaccharide backbone interactions with key active-site aro-
matic residues, and inspection of the several crystallographic
complexes now available reveals little capacity for interaction
with distal side-chain residues on xylosyl branches.

Although they are generally associated with saprotrophic
organisms (16, 21, 22, 26, 30 –33, 35), the extent to which GH74
enzymes might play a role in beneficial plant–microbe interac-
tions remains to be studied (5). We also note that microbial
processive glycanases operating on amorphous polysaccharides
have been identified among several GH families (69 –74), which
may also imply a wider deployment of “sensing” (67) enzymes
than generally appreciated.

Experimental procedures

Bioinformatic analyses

GH74 protein sequences were extracted from the CAZy
database (13) (January 2019), and redundant sequences were
excluded using UCLUST (75). In addition to the 22 fungal and
320 bacterial nonredundant GH74 catalytic modules refer-
enced in the CAZy database, previously characterized GH74
modules from X. citri pv. mangiferaeindicae (GenBankTM

accession number CCG35167) (23) and Aspergillus fumigatus
(GenBankTM XP_747057) (20) and three uncharacterized

GH74 modules from P. polymyxa Sb3-1, P. jamilae, and S. atroo-
livaceus (GenBankTM WP_019687396, WP_063210590, and
WP_033303664, respectively) were included. Distantly related
sequences were included from the sea bacterium S. agarivorans
SA1 (GenBankTM accession numbers AFV00434 and AFV00474).

The resulting 342 nonredundant sequences were screened
for the presence of a signal peptide using SignalP version 4.0
(68). Modular architecture was inferred from BLASTP analysis
(76) and the CAZy database (13). The sequences were aligned
with MAFFT G-INS-i (77), and the quality of the alignment was
manually inspected in Jalview (78). A maximum-likelihood
phylogenetic tree was estimated by RAxML version 8 (79) using
File S1, GH74_CatalyticModules_Aligned.mfa as input on the
CIPRES gateway (80), using 100 bootstrap replicates and S. aga-
rivorans SA1 sequences AFV00434 and AFV00474 as an out-
group. The resulting phylogeny was visualized with FigTree
(http://tree.bio.ed.ac.uk/software/figtree/).4

Cloning and site-directed mutagenesis

Cloning of target genes was performed as described previously
(81). C. lactoaceticus (DSM 9545), C. bescii (DSM 6725), N. kore-
ensis GR20-10 (DSM 17620), P. graminis (DSM 15220), P. borealis
(DSM 13188), P. polymyxa (DSM 36), P. jamilae (DSM13815),
R. albus 7 (DSM 20455), S. agarivorans SA1 (DSM 21679), S. ra-
pamycinicus (DSM 41530), S. venezuelae (DSM 40230), and
S. atroolivaceus (DSM 40137) gDNAs were purchased from the
Leibniz Institute DSMZ-German Collection of Microorganisms
and Cell Cultures (Germany). cDNAs encoding GH74 catalytic
modules were PCR-amplified from gDNA using the high-fidelity
Q5 DNA polymerase (New England Biolabs) and specific primers
(PCR primers are listed in Table S1).

The PCRs were designed such that only the GH74 catalytic
module was amplified, thus removing signal peptides and other
modules (e.g. CBMs), and the sequence was flanked by ligation-
independent cloning (LIC) adaptors, following the recommen-
dations given previously (81). LIC was performed in the vector
pMCSG53 as described (81) to fuse the recombinant proteins
with a N-terminal His6 tag, with a tobacco etch virus protease
cleavage site. Alternatively, LIC was performed in the vector
pMCSG-GST or pMCSG69 to fuse the recombinant proteins
with an N-terminal GST-His6 tag or an N-terminal MBP-His6
tag, respectively (see Table S1).

PoGH74cat-G476A, PoGH74cat-G476Q, and PoGH74cat-
G476W were generated using the PCR-based QuikChange II
site-directed mutagenesis kit (Agilent Technologies Inc., Santa
Clara, CA) in accordance with the manufacturer’s instructions
and using pMCSG53::PoGH74cat as template (35). Similarly,
CjGH74-W353A and CjGH74-W354A were generated using
pET28a::CjGH74 as a template DNA (16). Primer sequences are
provided in Table S2.

Gene expression and protein purification

Constructs were individually transformed into chemically
competent E. coli BL21 DE3 cells. Colonies were grown on
lysogeny broth solid medium supplemented with ampicillin

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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(100 �g/ml). Isolated colonies of the transformed E. coli cells
were inoculated in lysogeny broth medium containing ampicil-
lin (100 �g/ml) and grown overnight at 37 °C with rotary shak-
ing at 200 rpm. Precultures were used to inoculate ZYP5052
autoinducing medium (82) containing ampicillin (100 �g/ml).
Cultures were grown at 37 °C for 4.5 h and transferred at 16 °C
for overnight incubation with rotary shaking at 200 rpm until
reaching an A600 nm of approximately 11. Cultures were then
centrifuged at 4500 � g for 30 min, and pellets were resus-
pended in 50 mM sodium phosphate buffer, pH 7.4, 500 mM

NaCl, 20 mM imidazole, and the suspension was frozen at
�20 °C. Frozen cells were thawed and lysed by the addition of
lysozyme (0.5 mg/ml) and benzonase (25 units) followed by
incubation at 37 °C for 1 h. In addition, cells were disrupted by
sonication, and the cell-free extract was separated by centrifu-
gation at 4 °C (14,500 � g for 45 min).

Recombinant proteins were purified from the cell-free
extract with an Akta Purifier FPLC system using a Ni2� affinity
column. A gradient up to 100% elution buffer (50 mM sodium
phosphate buffer, pH 7.4, 500 mM NaCl, 500 mM imidazole) was
applied. The purity of the recombinant proteins was deter-
mined by SDS-PAGE and staining with Coomassie Brilliant
Blue. Pure fractions were pooled, concentrated, and buffer-ex-
changed against 50 mM sodium phosphate buffer, pH 7.0.
Removal of the GST tag for RaGH74a and the MBP tag for
ClGH74b and CbGH74 was performed overnight at 4 °C using 1
mg of tobacco etch virus protease per 50 mg of recombinant
protein. Untagged proteins were purified using a Ni2� affinity
column as described above. The final purification step was
performed on a size-exclusion Superdex 200 column eluted
with 50 mM sodium phosphate buffer, pH 7.0. Protein con-
centration was estimated using the Epoch Micro-Volume
Spectrophotometer System (BioTek Inc., Winooski, VT) at
280 nm. Molar extinction coefficients used for protein
concentration determination were 206,525 M�1�cm�1 for
ClGH74a, 220,380 M�1�cm�1 for ClGH74b, 216,370
M�1�cm�1 for CbGH74, 159,085 M�1�cm�1 for NkGH74,
210,160 M�1�cm�1 for PgGH74, 217,150 M�1�cm�1 for
PbGH74, 192,170 M�1�cm�1 for PpGH74, 190,680 M�1�cm�1

for PjGH74, 193,200 M�1�cm�1 for PmGH74, 178,955
M�1�cm�1 for RaGH74a, 182,380 M�1�cm�1 for RaGH74b,
241,100 M�1�cm�1 for SmAFV00434, 219,670 M�1�cm�1 for
SmAFV00474, 208,670 M�1�cm�1 for SrGH74, 155,270
M�1�cm�1 for SvGH74a, 201,220 M�1�cm�1 for SvGH74b,
and 181,405 M�1�cm�1 for SatGH74. Accurate protein
molecular masses were confirmed by intact MS (83).

Carbohydrate sources

Tamarind seed xyloglucan, konjac glucomannan, barley
�-glucan, wheat flour arabinoxylan, and beechwood xylan
were obtained from Megazyme (Bray, Ireland). Hydroxy-
ethyl-cellulose was purchased from Amresco (Solon, OH)
and carboxymethyl cellulose from Acros Organics (Morris
Plains, NJ). pNP-�-D-xylopyranoside and pNP-�-D-glucopy-
ranoside were obtained from Sigma-Aldrich. A mixture of
XyGOs (XXXG, XLXG, XXLG, and XLLG), XXXG, and
XXXGXXXG were prepared from tamarind seed XyG as
described previously (58).

Carbohydrate analytics

HPAEC-PAD and MALDI-TOF MS were performed exactly
as described previously (35).

Enzyme kinetics and product analysis

For all enzyme assays on polysaccharides, the activity was deter-
mined using the BCA assay as described previously (84). Substrate
specificity was determined in 50 mM sodium phosphate buffer, pH
7.0, using 0.5 mg/ml substrate and 1 �g/ml enzyme overnight at
37 °C. The optimum pH was established in 50 mM citrate buffer,
pH 3.0, 4.0, 5.0, 5.5, and 6.0, or 50 mM sodium phosphate buffer, pH
6.0, 6.5, 7.0, and 8.0. The optimum temperature was determined in
a 50 mM concentration of the optimum buffer (citrate or phos-
phate at the optimum pH; see Fig. S1), using tamarind seed XyG at
a concentration of 0.5 mg/ml and appropriate concentration of
recombinant protein (typically around 0.5 �g/ml) at temperatures
ranging from 25 to 98 °C.

To determine Michaelis–Menten parameters of recombi-
nant proteins for XyG, different concentrations of substrate
solutions were used over the range 0.02–2 mg/ml. The reac-
tions were performed at 37 °C (or 65 °C for thermostable
enzymes ClGH74a, ClGH74b, and CbGH74 or 20 °C for
SvGH74a) in a 50 mM concentration of their optimum buffer
(citrate or phosphate at the optimum pH; see Fig. S1), using
typically 0.1 �g/ml enzyme.

To determine the products released by recombinant GH74
enzymes, tamarind seed XyG was incubated at 37 °C (or 65 °C
for ClGH74a, ClGH74b, and CbGH74) in a 50 mM concentra-
tion of their optimum buffer (citrate or phosphate at the opti-
mum pH; see Fig. S1) at a concentration of 0.5 mg/ml in the
presence of 0.1 �g/ml enzyme (or 1 �g/ml for SvGH74a). After
various incubation times (0, 5, 10, 30, and 60 min), 100 �l of the
reaction were sampled and transferred into 100 �l of boiling
water for 15 min. The reaction solution was then analyzed by
HPAEC-PAD. Limit digestion products were obtained simi-
larly after 72 h using 10 �g/ml enzyme (or 100 �g/ml for
SvGH74a) and 0.1 mg/ml tamarind seed XyG. Limit digestion
products of XXXGXXXG and of XXXG were obtained simi-
larly after overnight incubation of 5 �M substrate with 1 �g/ml
enzyme (or 10 �g/ml for SvGH74a).

X-ray crystallography

The PgGH74 and AFV00434 proteins were produced as sel-
enomethionine-substituted derivatives using the standard M9
high-yield growth procedure according to the manufacturer’s
instructions (Shanghai Medicilon) and purified as described
above. AFV00434 was also purified as the native protein to
obtain higher-resolution crystals. All other proteins were puri-
fied as native proteins for crystallography. All crystals were
grown using the sitting-drop method at 22 °C. The following
protein and reservoir solutions were utilized for crystal growth:
AFV00434 (SelMet), 25 mM zinc acetate, 20% (w/v) PEG 3350, 1
mM magnesium sulfate; AFV00434 (native), 25 mM zinc acetate,
20% (w/v) PEG 3350, 1.5% (w/v) 2-methyl-2,4-pentanediol;
NkGH74, protein � XyGO mixture (i.e. XXXG, XLXG, XXLG,
and XLLG), 1 M ammonium sulfate, 1 M sodium chloride, 0.1 M

Bistris propane, pH 7; ClGH74a, protein � XyGO mixture, 25%
PEG 3350 (w/v), 0.1 M Tris pH 8.5; PgGH74, 25% (w/v) PEG
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3350, 0.2 M sodium chloride, 0.1 M sodium citrate, pH 5.6, 0.5%
(w/v) glycerol; SrGH74, protein � XyGO mixture, 1.6 M ammo-
nium sulfate, 0.1 M sodium chloride, 0.1 M Hepes, pH 7.5. Crys-
tals were cryoprotected with glycerol, PEG 200, or paratone oil
before flash freezing in a liquid nitrogen stream.

X-ray diffraction data were collected at beamline 19-ID/BM
of the Structural Biology Center, Advanced Photon Source,
Argonne National Laboratory (Argonne, IL) (for PgGH74
SelMet, SrGH74 native, and AFV00434 SelMet and native),
beamline 08-ID at the Canadian Macromolecular Crystallogra-
phy Facility, Canadian Light Source (Saskatoon, Saskatchewan,
Canada) (for native NkGH74), or on a Rigaku HF-007 home
source with an R-AXIS IV detector (for native ClGH74a). Data
for PgGH74 and AFV00434 SelMet crystals were collected at
the selenomethionine absorption peak wavelength. X-ray dif-
fraction data were reduced using HKL-3000 (85).

The structure of AFV00434 SelMet was solved using SAD
phasing using Phenix.solve (86) and Phenix.autobuild; subse-
quent refinement was completed using higher-resolution crys-
tals of AFV00434 native protein using this initial model. The
structure of PgGH74 was also solved using SAD phasing and
Phenix.solve. The structures of NkGH74, SrGH74, and ClGH74
were solved by Molecular Replacement and Phenix.phaser
using models constructed by the Phyre2 server (87) onto
PoGH74 (PDB code 6MGL), a putative xyloglucanase from
Streptomyces sp. SirexAA-E (PDB code 5JWZ), and C. japoni-
cus GH74 (PDB code 5FKQ), respectively.

Phenix.autobuild, Phenix.refine, and Coot (88) were used
for refinement and model building. The presence of xyloglu-
can was readily apparent in Fo � Fc maps after resolving the
positions of the protein atoms. All B-factors were refined,
and TLS parameterization was included in the final rounds
of refinement. All geometry was verified using the Phenix
and the wwPDB server, and structures were deposited to the
Protein Data bank with accession numbers 6P2K, 6P2M,
6P2L, 6P2N, and 6P2O for S. agarivorans AFV00434, C. lac-
toaceticus GH74a in complex with the XyG fragment LLG,
N. koreensis GH74 in complex with two XyG fragments
(XXLG and XXXG), and P. graminis GH74 and S. rapa-
mycinicus GH74 in complex with two XyG fragments (XLLG
and XXXG), respectively. All X-ray crystallographic statis-
tics are provided in Table S3.
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