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—— Abstract

Engineering related research, such as research on worst-case execution time, uses experimentation

to evaluate ideas. For these experiments we need example programs. Furthermore, to make the
research experimentation repeatable those programs shall be made publicly available.

We collected open-source programs, adapted them to a common coding style, and provide
the collection in open-source. The benchmark collection is called TACLeBench and is available
from GitHub in version 1.9 at the publication date of this paper. One of the main features
of TACLeBench is that all programs are self-contained without any dependencies on standard
libraries or an operating system.
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TACLeBench: A Benchmark Collection to Support WCET Research

1 Introduction

Good, realistic benchmark suites are essential for the evaluation and comparison of worst-
case execution time (WCET) analysis, compiler, and computer architecture techniques.
TACLeBench provides a freely available and comprehensive benchmark suite for timing
analysis and related research topics. TACLeBench will be continuously extended by novel
benchmarks, especially by parallel multi-task/multi-core benchmarks. The extension of
TACLeBench will be carefully managed with snapshots and versioning so that it is clear which
code has been used in a research experiment. The overall goal is to establish TACLeBench as
the standard benchmarking suite for WCET analysis, WCET oriented compiler and computer
architecture research worldwide.

TACLeBench is a collection of currently 53 benchmark programs from several different
research groups and tool vendors around the world. These benchmarks are provided as ISO
C99 source codes. The source codes are 100% self-contained; no dependencies to system-
specific header files via #include directives or an operating system exist. All input data is
part of the C source code. Potentially used functions from math libraries are also provided
in the form of C source code. This makes the TACLeBench collection useful for general
embedded /barebone systems where no standard library is available.

Furthermore, almost all benchmarks are processor-independent and can be compiled
and evaluated for any kind of target processor. The only exception is PapaBench that uses
architecture-dependent I/O addresses and currently supports Atmel AVR processors only.

Since TACLeBench addresses the needs imposed by timing analysis tools, all benchmarks
are completely annotated with flow facts. These flow facts are directly incorporated into the
C source codes using pragmas. TACLeBench distinguishes between so-called flow restrictions,
loop bounds, and entry points. Besides flow restrictions, TACLeBench also uses loop bound
flow facts, which simplify the annotation of regular loops. Loop bounds provide an upper
and a lower bound for the number of iterations of the annotated loop. Finally, TACLeBench
uses entry point annotations that denote points in a program’s control flow graph where the
control flow may start. Typically, this is the “main” function of a program, but in a (possibly
interrupt-driven) multi-task system, there may be multiple entry points in a single set of
source files. These entry points may even share some common code. In order to mark such
task entries, each function of a multi-task application where a task begins can be marked as
an entry point. The complete specification of the used flow fact language can be found in [3],
which is part of the source distribution.

If you would like to share your benchmarks with us, feel free to contact Heiko Falk (or
any coauthor of this paper) in order to have your source codes included in TACLeBench.

The first version of TACLeBench (version 1.0, available from!), which was produced by
Heiko Falk, was a collection of 102 programs from several different research groups. We keep
this first version tagged with “V1.0” in the public GitHub repository.? The version described
in this paper is version 1.9 and tagged as such in the repository. Version 2.0 will be soon
available when the last missing programs have been formatted. The intention is to have
the HEAD of the master branch being the most recent, versioned snapshot of TACLeBench.
Future development and additions will be performed on a development branch so that HEAD
of master is always a consistent snapshot.

This paper is organized in 5 sections: The following section presents related work.

! http://www.tacle.eu/index.php/activities/taclebench
2 https://github.com/tacle/tacle-bench
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Section 3 presents the benchmark collection, its classification, and the updates to make them
useful. Section 4 evaluates the benchmark collection. Section 5 concludes.

2 Related Work

The Mélardalen WCET benchmarks (MRTC) [6] is the first collection of programs especially
intended for benchmarking WCET analysis tools, with a focus on program flow analysis. It
was collected from several sources in 2005, and has since then been used in many WCET
research projects as well as for the WCET Tool Challenge 2006 [5]. A subset of the Mélardalen
benchmarks has even been translated to Java [8]. Most benchmarks are relatively small,
except two C programs that have been generated from tools. The benchmarks also contain
all input data. This effectively turns them into single-path programs, which makes them
less suitable for evaluating tools that can handle multi-path codes. We include most of the
benchmarks from the Méalardalen WCET benchmark suite in TACLeBench. We dropped
benchmarks where the licensing terms are unknown or even disallow distributing the source.

MiBench [7] is a collection of benchmarks targeting the embedded domain and providing
them in open-source. We include some of the MiBench benchmarks, especially those where
it was possible to include the input data with the C source.

DEBIE [9] is a program derived from a satellite-mounted detector of micro-meteorids and
space debris. It was developed by Space Systems Finland Ltd and was converted by Tidorum
Ltd into a portable benchmark for real-time applications. DEBIE is a multi-task application
that consists of 8, partially small, different tasks. DEBIE is accompanied by a specification
of valid input and output data and of required activation rates of the individual tasks.

PapaBench [10] has been derived from Paparazzi,® a project for unmanned aerial vehicles.
PapaBench includes two software components that run on separate processors: the fly-by-wire
part controls the flight while the autopilot part controls the GPS and executes the flight
plan (which is decided offline). Both software parts cumulate 13 tasks that are subject to
precedence constraints and 6 interrupt service routines.

The Embedded Microprocessor Benchmark Consortium (EEMBC) [2] provides a bench-
mark suite dedicated to the evaluation of the performance of embedded hardware and
embedded software. The benchmarks are divided into subsets according to the target domain,
e.g., the automotive domain, phones and tablets, but also big data and cloud computing.
To improve comparability between different systems, the consortium provides a test-harness
that allows deriving certifiable scores. The test-harness, being a clear advantage in terms
of comparability, constitutes a hindrance in terms of portability and usability. Whereas
the TACLeBench has been designed to ease portability and to allow the immediate use
of the benchmark with a large variety of tools and platforms, the EEMBC benchmarks
are not stand-alone executable without the test-harness. Furthermore, in stark contrast
to TACLeBench, the EEMBC benchmarks are not published under an open-source license.
Instead, the benchmarks are behind a pay-wall, even for purely academic research.

JemBench [13] is a Java benchmark suite targeting embedded Java platforms. JemBench
only assumes the availability of a CLDC API, the minimal configuration defined for the
J2ME. The core of the benchmark suite consists of adapted real-world applications. The
benchmarks are structured in micro, kernel, application, parallel, and streaming benchmarks.
Micro benchmarks are used to measure short bytecode sequences; kernel benchmarks compute
a computational kernel; and application benchmarks are real-world programs restructured

3 https://wiki.paparazziuav.org/

2:3

WCET 2016


https://wiki.paparazziuav.org/

2:4

Table 1 TACLeBench kernel benchmarks.

TACLeBench: A Benchmark Collection to Support WCET Research

Name Description Code Size Origin
(SLOC)

binarysearch Binary search of 15 integers 47 SNU-RT
bitcount Couting number of bits in an integer 164 Bob St(?ut &

array Auke Reitsma
bitonic Bitonic sorting network 52 MiBench
bsort Bubblesort program 32 MRTC
complex_updates Multiply-add with complex vectors 18 DSPStone
countnegative Counts signes in a matrix 35 MRTC
fac Factorial function 21 MRTC
fft 1024-point FFT, 13 bits per twiddle 78 DSPStone
filterbank Filter bank for multirate signals 75 StreamlIt
fir2dim 2-dimensional FIR filter convolution 75 DSPStone
iir Biquad IIR 4 sections filter 27 DSPStone
insertsort Insertion sort 35 SNU-RT
jtdetint SD;;C;:(ZCET;I;E transformation on a 123 SNU-RT
Ims LMS adaptive signal enhancement 51 SNU-RT
ludcmp LU decomposition 68 SNU-RT
matrix1 Generic matrix multiplication 28 DSPStone
md5 Message digest algorithm 344 NetBench
minver Floating point matrix inversion 141 SNU-RT
pm Pattern match kernel 484 HPEC
prime Prime number test 41 MRTC
quicksort Quick sort of strings and vectors 992 MiBench
recursion Artificial recursive code 18 MRTC
sha NIST secure hash algorithm 382 MiBench
st Statistics calculations 90 MRTC

as standalone benchmarks. Parallel and streaming benchmarks are intended to explore
multicore speedup. Benedikt Huber ported one of the application benchmarks (Lift) to C
and we include it in TACLeBench.

3 The Benchmark Collection

3.1 Benchmark Sources and Classification

The benchmarks included in TACLeBench are sourced from single sources and benchmarks
collections. The benchmarks are: SNU-RT benchmark suite, MiBench embedded benchmark
suite, Milardalen Real-Time Research Center (MRTC) WCET benchmarks, DSPStone from
RWTH Aachen, Streamlt from MIT, NetBench from UCLA, MediaBench, and the HEPC
challenge benchmark suite. We have specified the origin of each benchmark in Tables 1-5.

As a measure of the size of each benchmark, we present the number of source lines of
code (SLOC). The SLOC count excludes input data arrays and the initialization code. We
used the Linux utility sloccount to measure the SLOC. The benchmarks are divided into
five classes: Kernel, sequential, application, test, and parallel.



H. Falk et al.

Table 2 TACLeBench sequential benchmarks.

Name Description Code Size Origin
(SLOC)
adpcm__dec ADPCM decoder 293 SNU-RT
adpcm__enc ADPCM encoder 316 SNU-RT
ammunition C compiler arithmetic stress test 2431 Vladimir
Makarov
anagram Word anagram computation 2710 Raymond Chen
audiobeam Audio beam former 833 Streamlt
cjpeg_transupp JPEG image transcoding routines 608 MediaBench
cjpeg_wrbmp JPEG image bitmap writing code 892  Thomas G. Lane
dijkstra All pairs shortest path 117 MiBench
epic Efficient pyramid image coder 451 MediaBench
fmref Software FM radio with equalizer 680 StreamlIt
g723_enc CCITT G.723 encoder 480 . SUN
Microsystems
gsm__dec GSM provisional standard decoder 543 MediaBench
gsm__enc GSM provisional standard encoder 1491 MediaBench
h264 dec H.264 block decoding functions 460 MediaBench
huff dec Huffman decoding with a file source to 183 David Bourgin
decompress
huff enc Huffman encoding with a file source to 395 David Bourgin
compress
mpeg2 MPEG2 motion estimation 1297 MediaBench
ndes Complex embedded code 260 MRTC
petrinet Petri net simulation 500 Friedhelm
Stappert
rijndael__dec Rijndael AES decryption 820 MiBench
rijndael enc Rijndael AES encryption 734 MiBench
Statechart simulation of a car window Friedhelm
statemate lift control 1038 Stappert
susan MR image recognition algorithm 1491 MiBench

The kernel benchmarks, listed in Table 1, are synthetic benchmarks implementing small
kernel functions; the size of the kernel benchmarks is in the range of 18 to 992 SLOC.

The sequential benchmarks, listed in Table 2, implement large function blocks, such as
encoders and decoders, which are used in many embedded systems. The size of the sequential
benchmarks is in the range of 117 to 2710 SLOC. The sequential benchmarks cover graph
search, cryptographic algorithms, compression algorithms, etc.

Three artificial test benchmarks, listed in Table 3, are used to stress test WCET analysis
tools.

The two parallel benchmarks, listed in Table 4, are: Debie and PapaBench. These two
benchmarks are comparable in size and in the number of tasks.

The application benchmarks, derived from real applications and provided with simulated
input stimuli, are listed in Table 5. Lift is a lift controller that has been deployed at a factory
in Turkey. The hardware is based on a Java processor (JOP). The controller has just a few
inputs (command buttons and input sensors for the height measurement) and a simple motor

2:5

WCET 2016



2:6

TACLeBench: A Benchmark Collection to Support WCET Research

Table 3 TACLeBench test benchmarks.

Name Description Code Size Origin
(SLOC)
cover Artificial code with lots of different 620 MRTC
control flow paths
duff Duff’s device 35 MRTC
test3 Artificial WCET analysis stress test 4235 Universitat des
Saarlandes

Table 4 TACLeBench parallel benchmarks.

Name Description #Tasks Code Size Origin
(SLOC)
DEBIE-1 instrument observing
Debie micro-meteoroids and small space 8 6615 Tidorum Ltd
debris
PapaBench UAV autopilot and fly-by-wire 10 6336 Paparazzi
software

control. The I/O devices are simulated in the benchmark. The Java version of Lift is part of
the Java benchmark suit JemBench [13]. Benedikt Huber has translated lift to C.

powerwindow implements a controller for an electric window in a car. Both the driver
and the passenger are able to control the window by requesting the window to roll up or
down. In case an object is stuck between the window and the doorframe, the controller will
move the window down to avoid damaging the object.

3.2 Issues with the Original Sources

The original benchmarks include all input data or we added input data into the C source.
However, this effectively turns them into single-path programs. This fact could be used
by analysis tools to explore only this single path. Another consequence of the fixed input
data, and that some programs do not provide any return value, is that compilers with
optimizations turned on can optimize most of the code away. However, to prohibit the
unwanted compiler optimizations we changed the way input data is represented in variables
(made them volatile), and made the return of main dependent on the benchmark calculation.

Some benchmarks contain target dependent code. For example, PapaBench contains
hardcoded I/O addresses. Furthermore, a few benchmarks (e.g., rijndael) are byte order
dependent and there is no standard way in C to detect the byte order of a processor. Finally,
some benchmarks can be executed only once, either because they rely on global initialization,
or because they use malloc but not free.

3.3 Benchmark Updates

The benchmarks have been rewritten to split the functions of input data initialization, the
benchmark itself, and computing a return value depending on the output data. Moving the
input data generation into its own function resulted sometimes in movements from originally
stack allocated data into global data. All function and variable names are prepended with
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Table 5 TACLeBench application benchmarks.

Name Description #Tasks Code Size Origin
(SLOC)

. . Martin

lift A lift controller 1 361 Schoeberl

powerwindow  Distributed power window control 4 2533 CoSys-Lab

the benchmark name to provide unique names. All loops have been annotated with loop
bounds. Moreover, several bugs have been fixed, and compiler warnings have been eliminated.
The benchmarks are now ISO C99 compliant. Some benchmarks have been renamed. The
original name of a benchmark can be found in the comment header of each benchmark. The
library functions used by some benchmarks have been moved to their own files. All source
files adhere to a common set of formatting rules that can be found in the git repository
(doc/code__formatting.txt).

Due to these changes, results obtained with the TACLeBench versions of these benchmarks
are not comparable with the original versions of the benchmarks.

3.4 Licenses

An issue we encountered with several benchmarks was that the original source did not
include any licensing information. In absence of such information, we had to assume that
the copyright holder reserves all rights. Wherever necessary, we contacted the copyright
holders to obtain the right to use, modify, and redistribute the benchmarks. In a small
number of cases we however discovered that the code was in fact under a license that made
the benchmark unusable; the respective benchmarks were consequently dropped from the
TACLeBench benchmark suite. All benchmarks in the benchmark suite now contain licensing
information, such that future developments do not require tracking down the original authors
of the benchmark.

3.5 Usage Recommendations

TACLeBench is released in source form. However, to report results based on TACLeBench,
the benchmarks shall not be changed. Furthermore, the version of TACLeBench shall be
included in any paper.

If possible, use all benchmarks in your evaluation. One issue with subsetting a bench-
mark collection is to selecting the most representative benchmarks to show an improvement.
However, this introduces a bias in the result and is considered scientific misconduct. If you
really need to subset a benchmark collection you have two possibilities: (1) use only one
class of benchmarks, e.g., the sequential benchmarks or (2) use a random selection, possibly
generated by a program.

If some benchmarks have not been used, state the reason for exclusion (e.g., “the
tool/target architecture does not support floating point numbers”).

3.6 Known Uses of TACLeBench

Although TACLeBench is a relative new collection of embedded benchmarks, we can already
list some usage of the collection in research projects. This early adaption of TACLeBench is
already a strong indication of the need of such a benchmark collection.

2:7
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Compiler optimizations: The origin of TACLeBench is the collection of free programs
used for evaluation of the wce compiler [4].

Measurement-based analysis: TACLeBench has been used to evaluate the continuous
measurement-based WCET estimation approach presented in [1]. The different charac-
teristics of the different benchmarks proved to be very useful to trigger edge cases in
the analysis and led to various improvements of the prototype. However, the evaluation
for this approach happened before version 2.0 of TACLeBench has been finished, which
makes the results non-comparable to the final benchmark collection.

Hybrid analysis: The hybrid model splits the code of tasks into basic blocks and uses
measurements to obtain instruction traces. The challenge of this two-layer hybrid
approach is tackling the computational complexity problems within the static analysis
and accuracy within the measurements based layer. The TACLeBench is used in the
COBRA-HPA (COde Behaviour fRAmework-Hybrid Program Analyser) framework that
facilitates evaluation of the different approaches using different block sizes. Furthermore,
COBRA-TG (Taskset Generator) uses TACLeBench for schedulability analysis. Different
scheduling methodologies can be analyzed in a reproducible way using generated tasksets
based on specific application descriptions.

Hardware design: As the TACLeBench collection is self contained, it leads itself as an easy
to use benchmark collection to evaluate computer architecture design in the embedded
and real-time domain. We have used version 1.0 for the evaluation of the stack cache
design optimized for real-time systems [12].

3.7 Source Access and Compiling the Benchmarks

The benchmarks are hosted on GitHub at https://github.com/tacle/tacle-bench. Each
benchmark is in its own folder and can simply be compiled with your favorite C compiler
with following command:

cc/gec/clang *.c

4 Evaluation and Sanity Checks

To evaluate the complexity of the benchmarks and their resilience against compiler optim-
izations, we executed each benchmark on pasim, a cycle-accurate simulator of the Patmos
architecture [11]. Each benchmark was compiled using patmos-clang with activated compiler
optimizations (i.e., -O2). The results of this evaluation are summarized in Figure 1. All
execution traces start at the function marked as entry point by a pragma directive in the
source code of the benchmark. The execution times range from 305 cycles (binarysearch) up
to 1,658,333,567 cycles (test3). To put this into relation, the benchmark program test3 runs
approximately for 21 seconds on the Patmos platform assuming a CPU Frequency of 80 Mhz.
From this evaluation we make the main observation that TACLeBench consists of both short-
and long running benchmarks with a huge variety in execution time. No benchmark in the
suite is optimized to a single return statement.

Different members of the TACLe COST action changed the code. Such a collaborative
procedure is inherently error-prone. Human errors can occur and the original sources were
often faulty to start with. The distributive work on the benchmarks led to an additional
source of error detection: a benchmark behaving well under system configuration A may
be faulty under configuration B. To ensure the quality of the benchmarks and to improve
portability, we have thus implemented automatic sanity checks.
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Figure 1 Execution times of programs in TACLeBench range from 305 cycles up to more than
1,600,000,000 cycles on the Patmos architecture.

The code quality is validated centrally and the latest results can be viewed online.* For
this sanity check, all benchmarks are compiled using gcc, g++ and clang, executed and the
return values are checked against the expected value. Clang’s static analyzer® is used to
further reveal programming bugs, such as out-of-bounds errors, and also to validate the
compliance of the code with the code-formatting rules.

The portability has been checked via a shell-script (checkBenchmark.sh) that is now part
of the TACLeBench repository. The script allows to quickly identifying incompatibilities

of the benchmarks with specific operating systems, compilers, and system configurations.

Even though full coverage of all system configurations can never be achieved, we were able
to cover most of the common operating systems and compilers.

5 Conclusion

Research in the field of embedded real-time systems needs benchmarks to evaluate research
ideas. TACLeBench provides an open source collection of 53 benchmarks. As all benchmarks
are self-contained, they are easy to use in systems that are lacking the standard library or an
operating systems. 2.0 will be released when the last missing programs have been adapted
to the common coding style. We intend to grow the collection of programs and coordinate
the release of benchmark versions. We further welcome contributions to the benchmark
collection.

Acknowledgements. We want to thank Bendikt Huber for porting the Lift benchmark
from Java to C. We want to thank Niklas Holsti from Tidorum Ltd for contributing DEBIE
in open-source. We want to thank Yorick De Bock, Florian Kluge, Jorg Mische, and Haoxuan
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