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1. INTRODUCTION 

 
It is now well known [1-3] that a medium whose optical properties are functions of the thickness z of the traversed 

medium, are governed by a differential equation: 
 

𝑑𝑴(𝑧)

𝑑𝑧
= 𝒎(𝑧). 𝑴(𝑧)                                                                                                   (1) 

 
 
relating the Mueller matrix M(z) at a distance z into the medium to its spatial derivative along the light propagation. For 
a non-depolarizing medium, this equation is completely defined by the knowledge of the initial condition and the 
differential Mueller matrix m(z) since this matrix is a deterministic one.  

This differential matrix (noted mND(z) in this case) can be written using 6 parameters [4, 5]. According to the notation 
convention used, the parameters occupy different positions in the matrix. It is worth noticing that the matrix previously 
described in [4] used the standard quantum notation rather than the usual optical notation adopted in [5] and in this 
paper. With this convention: 

 

        𝒎𝑁𝐷(𝑧) = [

  0 −𝐿𝐷
−𝐿𝐷    0

−𝐿𝐷′ 𝐶𝐷
𝐶𝐵 𝐿𝐵′

−𝐿𝐷′ −𝐶𝐵
  𝐶𝐷 −𝐿𝐵′

 
 0 −𝐿𝐵

 𝐿𝐵   0

]                                                                               (2) 

 
 
where linear dichroism (LD) and birefringence (LB), 45°-linear dichroism (LD’) and birefringence (LB’), and circular 
dichroism (CD) and birefringence (CB) are the six phenomenological elementary polarization properties fully 
characterizing the medium. Generally these parameters are functions of the thickness z of the traversed medium. The 
most elementary situation is given for homogeneous medium where these parameters are proportional to z. 

The relations between these parameters (but also between the different notations used by the first authors on this 
subject [1,2,6]) and the corresponding physical effects are given in [7] for instance. 
 

The underlying structure of this differential matrix is related to the 6 generators of the Lie algebra of SO(3,1) (the 
proper orthochronous Lorentz group) that can be dissociated in terms of more familiar quantities: 3 rotation generators 
J1, J2, J3 and 3 boost generators K1, K2 and K3 (these generators and their relations are described in Appendix A of [8]): 

 
𝒎𝑁𝐷(𝑧) =  −𝐿𝐷(𝑧). 𝑲1 − 𝐿𝐷′(𝑧). 𝑲2 + 𝐶𝐷(𝑧). 𝑲3 + 𝐿𝐵(𝑧). 𝑱1 + 𝐿𝐵′(𝑧). 𝑱2 − 𝐶𝐵(𝑧). 𝑱3                              (3) 

 
 
The Lie algebra of the Lorentz group can be reduced to the direct product of two sub-algebras (the algebra of SU(2), 

the group of two-dimensional unitary matrices with unit determinant) by transforming its generators 
{𝑱1, 𝑱2, 𝑱3, 𝑲1, 𝑲2, 𝑲3} to a new basis [9]: 

 



 

{
𝑴𝑚 =

𝑲𝑚+𝑖𝑱𝑚

√2

𝑵𝑚 =
𝑲𝑚−𝑖𝑱𝑚

√2

    𝑤𝑖𝑡ℎ 𝑚 = 1,2,3                                                                            (4) 

 

The factor √2 is used in order to define some unitary transformations that will be necessary above.  A straightforward 
calculation shows that: [𝑴𝑚 , 𝑵𝑛 ] = 0 where [A,B] = AB-BA is the commutator operator. This property of 
commutativity is not verified for J and K generators. It is also obvious that 𝑵𝑚 = 𝑴𝑚

∗ . 
It is useful to define a general retardation for each of the birefringence-dichroism pairs (usually referred to as 

spectroscopic notations); thus: 
 

{
𝐿 = −(𝐿𝐷 + 𝑖𝐿𝐵)

  𝐿′ = −(𝐿𝐷′ + 𝑖𝐿𝐵′)
𝐶 = 𝐶𝐷 + 𝑖𝐶𝐵

                                                                                               (5) 

 
 
With these notations, Eq. (3) becomes: 
 

𝒎𝑁𝐷(𝑧) =
𝐿

√2
𝑴1 +

𝐿′

√2
𝑴2 +

𝐶

√2
𝑴3 +

𝐿∗

√2
𝑵1 +

𝐿′∗

√2
𝑵2 +

𝐶∗

√2
𝑵3                                               (6) 

 
Where * stands for the complex conjugate. 

 
Eq. (6) is exactly the Eqs. (62) and (63) in the paper of Sheppard [10] where the expression of m(z) is derived from the 

Dirac matrices (termed ij in [10]) and can be related - at least in the case of homogeneous medium - to the Z matrix 

recently introduced by Kuntman [11]. The factor 1/√2 in Eq. (6) is necessary taking into account the factor 1/√2  in the 
definition of the matrices Mm and Nm given Eq. (4). The product of these two factors gives the present factor 1/2 in the ij 
matrices (Fig. 1 in Sheppard [10 ]). 

 

2. DEPOLARIZING MEDIUM 

 

2.1. Depolarizing differential Mueller matrix 

 
For depolarizing medium the differential Mueller matrix must be considered [8, 12-13] as a matrix of random 

processes generated by the spatial fluctuations of the birefringence and dichroism components.  
Eq. (1) is then a stochastic differential equation. This equation is now ccompletely defined by the knowledge of the 

initial condition (which can be random in the most general case) and the statistical laws associated to the differential 
matrix m(z) 

 
From a statistical point of view, Eq. (6) shows that we have to deal with three complex random processes ( L , L ’, C ) 

and it is well known [14] that with such processes both the complex process and its conjugate must be considered in 
order to extract all the statistical information. It is obvious when we notice that 𝐿𝐷 =  −(𝐿 + 𝐿∗)/2 and 𝐿𝐵 =  −(𝐿 −
𝐿∗)/2𝑖 for instance. 

 
M(z) is then seen as an average value of non-depolarizing Mueller matrices MND(z) associated to their differential 

matrices mND(z) but random [12, 15]: 
 

𝑴(𝑧) = 〈𝑍⃖ 𝑒𝑥𝑝 (∫ 𝒎𝑁𝐷(𝑠)𝑑𝑠

𝑧

0

)〉 = 𝑍⃖𝑒𝑥𝑝 (∑ ∫ 𝒄𝑛(𝑠)𝑑𝑠

𝑧

0

+∞

𝑛=1

)   

(7) 
 



The mean value is denoted by angular brackets, c(n) stands for the cumulant of n order and  𝑍⃖ is a space-ordering 
operator introduced by Fox [16] that causes the factors in a product to appear in the same sequence as in the medium of 
interest. This space-ordering operator is made necessary since the matrices mND(z1) and mND(z2) do not commute for z1 
z2 in general. 

2.2. Complex random processes 

 
Since we are dealing with three complex random processes (L , L ’, C), we introduce the complex 6x6 matrix [17,18] in 

order to build complex vectors: 
 

𝑻6 =
1

√2
[
𝑰3 −𝑖𝑰3

𝑰3 +𝑖𝑰3
] 

                                               (8) 
 

where I3 is the identity matrix of dimension 3. It obvious that T6 is Hermitian (meaning 𝑻6𝑻6
𝐻 = 𝑰6 = 𝑻6

𝐻𝑻6 where H 
stands for the Hermitian conjugate). 

 
From the real and imaginary parts of ( L , L ’, C ), we define a vector of dimension 6x1: 
 

𝒓 = [𝑫𝑇 𝐵𝑇]𝑇 = [
𝑫
𝑩

]                                                                                         (9) 

 
With: 

  𝑫 = [
−𝐿𝐷
−𝐿𝐷′

𝐶𝐷
]    𝑩 = [

−𝐿𝐵
−𝐿𝐵′

𝐶𝐵
]                                                                                   (10) 

 
We also build two vectors of dimension 1x3 where Km and Jn (Mm and Nn respectively) are considered as the components 
of K and J (M and N respectively) vectors: 

 
𝑲 = [𝑲1 𝑲2 𝑲3]      𝑱 = [𝑱1 𝑱2 𝑱𝟑] 

        (11) 
𝑴 = [𝑴1 𝑴2 𝑴3]      𝑴∗ = 𝑵 = [𝑵1 𝑵2 𝑵3] 

 
From Eq. (3) and with these previously introduced notations, mND(z) is given by:  
 

          𝒎𝑁𝐷(𝑧) = [𝑲 𝑱]. [
𝑫
𝑩

] = [𝑲 𝑱]. 𝑻6
𝐻 . 𝑻6. [

𝑫
𝑩

] = [𝑴∗  𝑴]. [
𝒑
𝒑∗] =  𝒎𝑁𝐷(𝒑(𝑧), 𝒑∗(𝑧) ) 

(12) 
                             

where p is a 1x3 complex vector. 
 

The differential Mueller matrix clearly appears as a function of the 6x1 complex vectors: 
 

 = [
𝒑
𝒑∗] = 𝑻6. [

𝑫
𝑩

] =
1

√2
[
𝑫 − 𝑖𝑩
𝑫 + 𝑖𝑩

]                                                               (13) 

 
From Eq. (7) under a second order approximation hypothesis, the differential matrix m(z) is given by:  

 

                      𝒎(𝑧) = 𝑚1(𝑧) + 𝑚2(𝑧) = [𝑴∗  𝑴]. [
𝒑
𝒑∗] =  𝒎𝑁𝐷(𝒑(𝑧), 𝒑∗(𝑧) )                                          (14) 

 
From Eq. (12) and the definition of first and second order cumulants [12] we have: 
 
 



𝑚1(𝑧) =  ∫ 𝑑𝑧1
𝑧

0
 [𝑴∗  𝑴]. [

〈𝒑〉

〈𝒑∗〉
]                                                                              (15) 

 
And 
 

𝑚2(𝑧) =  ∫ 𝑑𝑧2 ∫ 𝑑𝑧1[𝑴∗  𝑴]
𝑧2

0

𝑧

0
 𝐶𝑜𝑣((𝑧2),(𝑧1)) [ 𝑴𝑻

𝑴∗𝑻]                                                     (16) 

 
Where: 

 

𝐶𝑜𝑣((𝑧2),(𝑧1)) = [
𝑝𝑝 𝐶𝑝𝑝

𝐶𝑝𝑝
∗ 𝑝𝑝

∗ ]                                                                                   (17) 

 
Stands for the covariance matrix between the complex vector   at z1 and z2 respectively with:  

 
 

𝑝𝑝 = 〈𝒑(𝑧1)𝒑𝐻(𝑧2)〉 =
1

2
{𝐷𝐷(𝑧1, 𝑧2) + 𝐵𝐵(𝑧1, 𝑧2) + 𝑖. [𝐷𝐵(𝑧1, 𝑧2) − 𝐵𝐷(𝑧1, 𝑧2)]}                (18) 

and: 
 

𝑪𝑝𝑝 = 〈𝒑(𝑧1)𝒑𝑇(𝑧2)〉 =
1

2
{𝐷𝐷(𝑧1, 𝑧2) − 𝐵𝐵(𝑧1, 𝑧2) − 𝑖. [𝐷𝐵(𝑧1, 𝑧2) + 𝐵𝐷(𝑧1, 𝑧2)]}               (19) 

 
 
𝑋𝑌(𝑧1, 𝑧2) = 〈𝑿(𝑧1)𝒀𝑇(𝑧2)〉 in Eqs. (18) and (19) is the classical covariance matrix between a real vector X at z1 and a 
real vector Y at z2. 

 
It is worth noticing that describing the second-order behavior of complex variable (or process) p needs the knowledge 

of 𝑝𝑝 and 𝑪𝑝𝑝  

𝑝𝑝 is the classical covariance matrix between the complex vector p at z1 and z2 respectively and 𝑪𝑝𝑝 is commonly 

referred to under the name of complementary covariance matrix [18].  
 
With Eq. (17) and the conjugation property between N and M, Eqs. (15) - (16) become respectively: 
 
 

{
𝒎1(𝑧) = ∫ 𝑑𝑧1[𝟏(𝑧) + 1

∗(𝑧)]
𝑧

0
 

𝒎2(𝑧) =  ∫ 𝑑𝑧2 ∫ 𝑑𝑧1[ (2(𝑧) + 2
∗ (𝑧))]

𝑧2

0

𝑧

0

                                                                 (20) 

 
with 

{
1(𝑧) = (𝑴∗. 〈𝒑〉)

2(𝑧) = 𝑵𝑝𝑝𝑴𝑻 + 𝑵𝑪𝑝𝑝𝑵𝑻                                                                              (21)                            

 
𝑵𝑝𝑝𝑴𝑻 is termed [14] the complex cumulant of order (1,1) and 𝑵𝑪𝑝𝑝𝑵𝑻 is the complex cumulant of  order (2,0). 

 
Using  

- on the one hand the decomposition of the differential Mueller matrix  proposed by Ossikovski [19] into its non-
depolarizing and depolarizing part (verifying the Minkowski antisymmetric and symmetric property respectively),  
- on the other hand the commutation property of Mi et Nj matrices, 

is straightforward to verify that: 
-  𝒎1(𝑧) gives a non-depolarizing contribution  
- [1(𝑧),1

∗(𝑧)] = 0  (the 1 matrix and its conjugate commutes) 
 
 Decomposing 𝒎1(𝑧) according to Eq. (20) is thus exactly the decomposition of non-depolarizing differential Mueller 

matrix according to the Z matrix or state-generating matrix recently introduced by Kuntman [11] and also analyzed by 
Sheppard [10].  



 

2.3. State-generating matrix for depolarizing differential Mueller matrix 

 
Let us now consider the decomposition of  𝒎2(𝑧). In the general case, this second order term breaks down into a 

depolarizing contribution and a non-depolarizing one. The existence of this latter contribution can be related to the 
statistical properties of the underlying processes. 

 
From the standpoint of statistical processes it is therefore justified to regard the complex processes L, L’ and C of Eq. 

(5) and their conjugates simultaneously. From Eq. (14) it is equivalent to consider the corresponding 𝑝𝑝 and 𝑪𝑝𝑝 at 

least in a second-order approach. 
Considering this new parametrization is nevertheless more interesting for analyzing the depolarizing and non-

depolarizing effects present in  𝒎2(𝑧)..  
 
We first introduce the following notation for the covariance matrices: 
 

𝑋𝑌(𝑧1, 𝑧2) = 〈𝑿(𝑧1)𝒀𝑇(𝑧2)〉 = [

𝑥1𝑦1 𝑥1𝑦2 𝑥1𝑦3
𝑥2𝑦1 𝑥2𝑦2 𝑥2𝑦3
𝑥3𝑦1 𝑥3𝑦2 𝑥3𝑦3

]                                                          (22) 

 
Where X, Y = D, B and the convention that xi is evaluated at z1 and yj at z2. 
 
The general expression of 𝑵𝑝𝑝𝑴𝑻 + 𝑵𝑪𝑝𝑝𝑵𝑻is given in Appendix A using this new notation. It is worth noticing that 

the cross-correlation between same nature (linear, 45°-linear or circular) birefringence and dichroism terms only appear 
on imaginary part of the diagonal entries of  2(𝑧) matrix (see Eq. (A1)).  Since 𝒎2(𝑧) is the summation of 2(𝑧) with 
its conjugate, all these cross-correlations are not preserved in the 𝒎2(𝑧) expression. We find the same phenomenon as 
for the global phase in the non-depolarizing case as described by Kuntman [11].  

Obviously the fact that this information is not explicitly allowed in 𝒎2(𝑧) does not mean that it does not affect the 
depolarizing behavior of the medium.  

An example of this phenomenon can be found in [15], where the existence of a correlation between birefringence and 
dichroism terms causes the appearance of damped oscillations in the depolarization curve. 

 
It is well known [20] that the different configurations of the 𝑪𝑝𝑝term lead to different statistical properties of the 

associated complex processes. These different configurations for 𝑪𝑝𝑝  can be straightforwardly related to the existence 

of a non-depolarizing contribution coming from the second-order terms which adds to the non-depolarizing term 
coming from the mean values of the processes given by Eq. (15). 

 

According to the different nature of the complementary covariance matrix, 𝑀𝐴𝑃(𝒎2(𝑧)) =
1

2
 [𝒎2(𝑧) −

𝑮 . 𝒎𝟐
𝑻(𝑧) . 𝑮] the Minkowski Antisymmetric Part of  𝒎2(𝑧) (with G = diag(1,-1,-1,-1)) takes the following expressions: 

 
If 𝑪𝑝𝑝 is real: 

𝐷𝐵(𝑧1, 𝑧2) = −𝐵𝐷(𝑧1, 𝑧2) gives : 
 

  𝑀𝐴𝑃(𝒎2(𝑧)) = [

 0        0
 0        0

  0    0
   𝐶𝐵    𝐿𝐵′

    0 −𝐶𝐵
    0 −𝐿𝐵′

 
 0 −𝐿𝐵

  𝐿𝐵    0

]                                                                  (23) 

 
With: 
 

𝐶𝐵 =  
𝑑1𝑑2 − 𝑑2𝑑1 + 𝑏2𝑏1 − 𝑏1𝑏2

2
 

𝐿𝐵 =  
𝑑3𝑑2 − 𝑑2𝑑3 + 𝑏2𝑏3 − 𝑏3𝑏2

2
 



𝐿𝐵′ =
𝑑1𝑑3 − 𝑑3𝑑1 + 𝑏3𝑏1 − 𝑏1𝑏3

2
 

(24) 
 
A non-depolarizing contribution is generated by the second order cumulant with birefringence terms related to the 

existence of correlations between the different components of dichroism vector or birefringence vector respectively. 
 
 
If 𝑪𝑝𝑝 is purely imaginary:  

𝐷𝐷(𝑧1, 𝑧2) = 𝐵𝐵(𝑧1, 𝑧2) gives: 
 

𝑀𝐴𝑃(𝒎2(𝑧)) = [

     0 −𝐿𝐷
  −𝐿𝐷    0

−𝐿𝐷′ 𝐶𝐷
  0 0

−𝐿𝐷′     0
 𝐶𝐷     0

  
 0        0
 0        0

]                                                         (25) 

 
with: 

𝐿𝐷 =
𝑑2𝑏3 − 𝑏3𝑑2 + 𝑏2𝑑3 − 𝑑3𝑏2

2
 

𝐿𝐷′ =
𝑑3𝑏1 − 𝑏1𝑑3 + 𝑏3𝑑1 − 𝑑1𝑏3

2
 

𝐶𝐷 =
𝑑2𝑏1 − 𝑏1𝑑2 + 𝑏2𝑑1 − 𝑑1𝑏2

2
 

(26) 
 
A non-depolarizing contribution is generated by the second order cumulant with dichroism terms related to the 

existence of correlations between the different components of dichroism vector and birefringence vector. 
 
These effects of correlation are very similar to artifacts reported by Jansen [4] with the modulation techniques in 

polarization spectroscopy.  With this method of measurement, the artifacts result from coupling of instrumental 
birefringence or dichroism with birefringence or dichroism of the sample.  This combined effect on light from artifact 
and sample is given through a matrix product between the Mueller matrix corresponding to the artefacts and the Mueller 
matrix of the sample. Jansen noted for instance that circular dichroism of the sample may thereby couple with linear 
birefringence of the instrument to give a signal interpreted as linear dichroism.  

Similarly, as a second order terms, the considered cumulants (or correlation terms) lead to matrix products between 
matrices associated to the dichroism vector and the birefringence vector. 

Eq. (26) and Eq. (24) show how the non-depolarizing contributions are generated by the second order cumulants and 
how ultimately the existence of a depolarization effect can affect the knowledge of the non-depolarizing part of the 
Mueller matrix of such a medium. 

 
 
If 𝑪𝑝𝑝=0  𝑀𝐴𝑃(𝒎2(𝑧)) = 0 and no supplementary contribution from the second-order terms is added to the non-

depolarizing term coming from the mean values of the processes. 
 
Obviously in the case where 𝑪𝑝𝑝 is complex, we find both the previous contributions of birefringence and dichroism. 

 
 
It is therefore straightforward to decompose the non-depolarizing (mND) and depolarizing (mD) contribution of the 

differential Mueller matrix [19] into complex conjugate matrices: 
 

{
𝒎𝑁𝐷(𝑧) = ∫ 𝑑𝑧1[𝑁𝐷(𝑧) + 𝑁𝐷

∗ (𝑧)]
𝑧

0
 

𝒎𝐷(𝑧) =  ∫ 𝑑𝑧2 ∫ 𝑑𝑧1[ (𝐷(𝑧) + 𝐷
∗ (𝑧))]

𝑧2

0

𝑧

0

                                                               (27) 

 
With: 



 

{
𝑁𝐷(𝑧) = 1(𝑧) + 𝑀𝐴𝑃[2(𝑧)]

𝐷(𝑧) = 𝑀𝑆𝑃[2(𝑧)]
                                                                              (28) 

 
 

Where 𝑀𝑆𝑃(𝑿) =
1

2
 [𝑿 + 𝑮 . 𝑿𝑻. 𝑮] stands for the Minkowski  Symmetric Part of  X. 

 
The decomposition of 𝒎𝐷(𝑧)can be regarded as the corresponding Z matrix or state-generating matrix for the 

depolarizing term of the differential Mueller matrix. 
It is worth noticing that 𝑁𝐷(𝑧) and 𝑁𝐷

∗ (𝑧) do not commute now without supplementary hypothesis. Upon 
substituting Eq. (18), Eq. (19) and Eq. (21) into the computation of Eq. (29), it is also possible to verify that the matrices  
𝐷(𝑧) and 𝑫

∗ (𝑧) do not commute.  

2.4. Stationnarity and parity hypothesis. 

 
With a second order stationary hypothesis for the processes – meaning that 𝑋𝑌(𝑧1, 𝑧2) = 𝑋𝑌(𝑧2 − 𝑧1) = 𝑋𝑌( )– 

Eq. (18) and Eq. (19) become: 
 
 

{
𝑝𝑝() =

1

2
{𝐷𝐷() + 𝐵𝐵() + 𝑖. [𝐵𝐷

𝑻 (−) − 𝐵𝐷()]}

𝑪𝑝𝑝() =
1

2
{𝐷𝐷() − 𝐵𝐵() − 𝑖. [𝐵𝐷

𝑻 (−) + 𝐵𝐷()]}
                                                      (29) 

 
Under a stationnarity hypothesis and a parity hypothesis (being even) for the correlation functions, it is 

straightforward to demonstrate (see Eq. (24) and Eq. (2628) ) that the supplementary contribution from the second-
order terms to the non-depolarizing term vanishes and we have: 

 
𝑀𝐴𝑃[2(𝑧)] = 0 

𝐷(𝑧) = 2(𝑧) = 𝑵𝑝𝑝𝑴𝑻 + 𝑵𝑪𝑝𝑝𝑵𝑻 

(30) 
 
It is worth noticing that in this case 𝑵𝑪𝑝𝑝𝑵𝑻 the complex cumulant of  order (2,0) (its symmetric (𝑵𝑪𝑝𝑝𝑵𝑻)∗ the 

cumulant of order (0,2) respectively) has a very simple expression (complex conjugate expression respectively) given 
by: 

 
[𝒅𝟏𝒅𝟏 + 𝒅𝟐𝒅𝟐 + 𝒅𝟑𝒅𝟑 − 𝑰(𝒃𝟏𝒅𝟏 + 𝒃𝟐𝒅𝟐 + 𝒃𝟑𝒅𝟑)]. 𝑰𝟒                                                 (31) 

 
Where I4 stands for the identity matrix of order 4. So, on one hand, all the correlation terms contribute as an isotropic 

absorption, and the orher hand, the cross-correlations contribute as a global phase but this global phase information is 
not allowed in m(z). Both these terms evolve as z-functions. 

 
An example of such hypothesis (stationnarity and parity hypothesis) is found for instance in [13] for homogeneous 

medium where a zero order approximation of the correlation functions is made. This zero order approximation means 
that the correlation is assumed to be locally constant and is valid on a much greater length than the amplitude of the 

fluctuations is low since a sufficient decay has to be ensured by the condition α. ζ ≪ 1 (where α formally denotes the 

amplitude of the fluctuations and ζ the correlation distance) to have vanishing higher orders of the correlation function 
(see [12] for details). 

 
Such hypothesis are then valid for very thin samples or for thicker samples but with smaller fluctuations (thus a lower 

depolarization since the level of depolarization is obviously a function of the amplitude of the fluctuations but in a non-
trivial way) and as long as it can be considered that the correlation is constant. 

 
We then have the following relations between the covariance matrices: 



 

𝐷𝐵() =  𝐵𝐷
𝑻 (−) = 𝐵𝐷

𝑻 () = 𝐵𝐷
𝑻 (0)                                                                    (32)              

 
Which leads to a general expression of 𝐷(𝑧) given in Appendix B. 
 

In the rest of this article 𝐷𝐵() and  𝐵𝐷()  respectively, will be denoted by 𝐷𝐵 and 𝐵𝐷 respectively since in this 
case the covariance matrices no longer depend on the   variable. This result leads to a z-quadratic solution (z is the 
thickness of the medium) for the depolarizing part of the differential matrix obtained as double integration of constant 
terms (see Eq.(16)).  

 
In the same way, stationarity imposes constant mean values. This result leads to a z-linear solution for the non-

depolarizing part of the differential matrix. It is worth noticing that this z-linear solution for the non-depolarizing 
differential Mueller matrix is not necessarily valid if the processes are not stationary since a contribution of second order 
is added to the first order cumulant contribution. 

 
Eventually, if an approximation to the zero order of the correlation functions of the processes - that are then stationary 

-  is assumed, it is possible to verify that the matrices 𝑁𝐷(𝑧) = 1(𝑧) and 𝑁𝐷
∗ (𝑧) commute and it is also possible to 

verify that the matrices  𝐷(𝑧) = 2(𝑧) and 𝑫
∗ (𝑧) commute.  

On the other hand, it is not possible to hope that 𝑁𝐷(𝑧) + 𝐷(𝑧)and its conjugate commute in the general case 
because it would require that 𝒎𝑁𝐷(𝑧) and 𝒎𝐷(𝑧) commute what is wrong most of the time. 

 
Decomposing the differential Mueller matrix according to the Z matrix recently introduced by Kuntman [11] is 

therefore possible for depolarizing medium at least in the second order approximation with some hypothesis on the 
statistical properties of the processes. We then have 𝒁𝐷(𝑧) = 𝑒𝑥𝑝[𝐷(𝑧)] with the expression of  𝐷(𝑧) = 2(𝑧) given 
by Eq. (21). 

 

3. SCALAR COMPLEX VARIABLE CASE. 

 

Let us considering the case where only one of the three components of the spectroscopic complex vector ( L , L’ , C ) is 
operative. For example, let L be this component (this choice is obviously not restrictive). We then have  a scalar complex 
variable that we assume Gaussian for example.                         Fig. 1 shows an example of probability density 
contour when L component is the operative one.  It is usual to introduce the circularity quotient [20] as a complex 
coefficient defined by: 

 

 =
𝐶𝐿𝐿

𝐿𝐿
=

𝑉𝑎𝑟(𝐿𝐷)−𝑉𝑎𝑟(𝐿𝐵)+2.𝑖.𝐶𝑜𝑣(𝐿𝐷,𝐿𝐵)

𝑉𝑎𝑟(𝐿𝐷)+𝑉𝑎𝑟(𝐿𝐵)
                                                            (33) 

 
Where Var(X) - Cov(X,Y) respectively - stands for the variance of X - the covariance of X and Y respectively -. We will also 
use classical notation 𝑉𝑎𝑟(𝑋) = 𝜎𝑋

2 
 
This circularity quotient with a polar representation is given by  = 𝑟. exp (𝑗) where the quantity   is termed the 

circularity angle of L and r is the square of the ellipse eccentricity. 
 
 
 
 
 
 
 
 
 
 

LB 



2
 

LD 



 
 
                        Fig. 1. Probability density contours of the scalar complex Gaussian variable L. 
 
 
 
From equations (33) the case  = 0 corresponds to d1b1=0, meaning no correlation between the LB and LD 

components.  
 
But it is obvious that the value of  depends on the position adopted for the axes LB and LD. A rotation of the axes of 

an angle  /2 thus makes it possible to cancel  , i.e. to de-correlate the components. It is therefore the adopted system 
of representation that creates this "apparent" correlation between the physical quantities concerned. 

 
Nevertheless this is of no consequence for the depolarization measurement. Indeed when L is the only operative 

component, it is possible [12] [15] to show that: 
 

𝑚𝐷 = 𝑑𝑖𝑎𝑔(1, 0 , −𝜎𝐿
2, −𝜎𝐿

2)                                                                            (34) 
 
where 𝜎𝐿

2 = 𝐸(|𝐿|2) = 𝜎𝐿𝐷
2 + 𝜎𝐿𝐵

2 . 
 

The LD and LB variances can be expressed [20] as:  
 

{
𝑑1𝑑1 = 𝜎𝐿𝐷

2 = 𝜆1𝑐𝑜𝑠2(𝛼) + 𝜆2𝑠𝑖𝑛2(𝛼)

𝑏1𝑏1 = 𝜎𝐿𝐵
2 = 𝜆1𝑠𝑖𝑛2(𝛼) + 𝜆2𝑐𝑜𝑠2(𝛼)

                                                              (35) 

 

with  𝛼 =
𝜓

2
 and 1 , 2 stand for the eigenvalues of the 2x2 real covariance matrix associated to [LD LB]T random real 

vector. From Eq. (35) it is obvious to see that: 
 

𝜎𝐿
2 = 𝜆1 + 𝜆2                                                                                         (36) 

                         
 
This result shows that  (this "apparent" correlation) is of no consequence for the depolarization measurement in an 
incoherent wave configuration. 

 
On the other hand, the global phase - see Eq. (31) - related to the d1b1 term (correlation between LB and LD terms) 

evolves as quadratic function of z – see Eq. (27) - and is related to the   value, meaning the laboratory x-y axes definition 
of the measure. The existence of this global phase must be taken into account when processing coherent waves. 

 

4. CONCLUSION 

 
In this work, we have shown how the information contained in differentiel Mueller matrix related to a depolarizing 

medium can be expressed in terms of a state-generating matrix.  The formulation of the problem using complex random 
vectors makes it possible to directly introduce the formalism of state-generating matrix in the case of differential 
depolarizing matrices.  

Under a second order approximation hypothesis, this depolarizing state-generating matrix is directly related not only 
to the classical covariance matrix of the associated complex vector but also to the  complementary covariance matrix. 
The different configurations (null, imaginary, real) for this complementary covariance matrix can be straightforwardly 
associated to physical consequences. 

The commuting property of these state-generating matrices  obtained in the case of homogeneous non-depolarizing 
media is preserved in the case where these media become depolarizing if an approximation to the zero order of the 
correlation functions of the processes are made.  Such hypothesis are then valid only for very thin samples or for thicker 
samples but with very low depolarization.   



Eventually,  examples of physical interpretations that can be obtained have been presented specifically for 
homogeneous medium. Illustrations are given when the complex vector degenerates into a complex scalar and when a  
Gaussian random processes hypothesis is made. 

 

APPENDIX A 

 
From Eq. (18)-(19) and the definition of M and N, it is straightforward to show that: 
 
 

𝑵𝑝𝑝𝑴𝑻 + 𝑵𝑪𝑝𝑝𝑵𝑻 =
𝟏

𝟐
(𝜹𝒊𝒋)                                                                                  (A1)                      

 
with: 
 

𝜹𝟏𝟏 =  𝒅𝟏𝒅𝟏 + 𝒅𝟐𝒅𝟐 + 𝒅𝟑𝒅𝟑 − 𝑰(𝒃𝟏𝒅𝟏 + 𝒃𝟐𝒅𝟐 + 𝒃𝟑𝒅𝟑) 
𝜹𝟏𝟐 = 𝒅𝟑𝒃𝟐 − 𝒅𝟐𝒃𝟑 + 𝑰(𝒃𝟐𝒃𝟑 − 𝒃𝟑𝒃𝟐) 
𝜹𝟏𝟑 = 𝒅𝟏𝒃𝟑 − 𝒅𝟑𝒃𝟏 + 𝑰(𝒃𝟑𝒃𝟏 − 𝒃𝟏𝒃𝟑) 
𝜹𝟏𝟒 = 𝒅𝟐𝒃𝟏 − 𝒅𝟏𝒃𝟐 + 𝑰(𝒃𝟏𝒃𝟐 − 𝒃𝟐𝒃𝟏) 

 
𝜹𝟐𝟐 =  𝒅𝟏𝒅𝟏 − 𝒃𝟐𝒃𝟐 − 𝒃𝟑𝒃𝟑 − 𝑰(𝒃𝟏𝒅𝟏 + 𝒅𝟐𝒃𝟐 + 𝒅𝟑𝒃𝟑) 

𝜹𝟐𝟏 = 𝒃𝟑𝒅𝟐 − 𝒃𝟐𝒅𝟑 + 𝑰(𝒅𝟑𝒅𝟐 − 𝒅𝟐𝒅𝟑) 
𝜹𝟐𝟑 = 𝒅𝟏𝒅𝟐 + 𝒃𝟐𝒃𝟏 + 𝑰(𝒅𝟐𝒃𝟏 − 𝒃𝟏𝒅𝟐) 
𝜹𝟐𝟒 =  𝒅𝟏𝒅𝟑 + 𝒃𝟑𝒃𝟏 + 𝑰(𝒅𝟑𝒃𝟏 − 𝒃𝟏𝒅𝟑) 

 
𝜹𝟑𝟑 =  𝒅𝟐𝒅𝟐 − 𝒃𝟏𝒃𝟏 − 𝒃𝟑𝒃𝟑 − 𝑰(𝒅𝟏𝒃𝟏 + 𝒃𝟐𝒅𝟐 + 𝒅𝟑𝒃𝟑) 

𝜹𝟑𝟏 = 𝒃𝟏𝒅𝟑 − 𝒃𝟑𝒅𝟏 + 𝑰(𝒅𝟏𝒅𝟑 − 𝒅𝟑𝒅𝟏) 
𝜹𝟑𝟐 = 𝒅𝟐𝒅𝟏 + 𝒃𝟏𝒃𝟐 + 𝑰(𝒅𝟏𝒃𝟐 − 𝒃𝟐𝒅𝟏) 
𝜹𝟑𝟒 =  𝒅𝟐𝒅𝟑 + 𝒃𝟑𝒃𝟐 + 𝑰(𝒅𝟑𝒃𝟐 − 𝒃𝟐𝒅𝟑) 

 
𝜹𝟒𝟒 =  𝒅𝟑𝒅𝟑 − 𝒃𝟏𝒃𝟏 − 𝒃𝟐𝒃𝟐 − 𝑰(𝒅𝟏𝒃𝟏 + 𝒅𝟐𝒃𝟐 + 𝒃𝟑𝒅𝟑) 

𝜹𝟒𝟏 = 𝒃𝟐𝒅𝟏 − 𝒃𝟏𝒅𝟐 + 𝑰(𝒅𝟐𝒅𝟏 − 𝒅𝟏𝒅𝟐) 
𝜹𝟒𝟐 = 𝒅𝟑𝒅𝟏 + 𝒃𝟏𝒃𝟑 + 𝑰(𝒅𝟏𝒃𝟑 − 𝒃𝟑𝒅𝟏) 
𝜹𝟒𝟑 = 𝒅𝟑𝒅𝟐 + 𝒃𝟐𝒃𝟑 + 𝑰(𝒅𝟐𝒃𝟑 − 𝒃𝟑𝒅𝟐) 

 

APPENDIX B 

 
Expression og 𝐷(𝑧) for homogeneous medium where a zero order approximation of the correlation functions is 

assumed.: 
 

𝐷(𝑧) =
𝟏

𝟐
(𝜹𝒊𝒋)                                                                                                (B1) 

 
𝜹𝟏𝟏 =  𝒅𝟏𝒅𝟏 + 𝒅𝟐𝒅𝟐 + 𝒅𝟑𝒅𝟑 − 𝑰(𝒃𝟏𝒅𝟏 + 𝒃𝟐𝒅𝟐 + 𝒃𝟑𝒅𝟑) 

𝜹𝟏𝟐 = 𝒅𝟑𝒃𝟐 − 𝒅𝟐𝒃𝟑 
𝜹𝟏𝟑 = 𝒅𝟏𝒃𝟑 − 𝒅𝟑𝒃𝟏 
𝜹𝟏𝟒 = 𝒅𝟐𝒃𝟏 − 𝒅𝟏𝒃𝟐 

 
𝜹𝟐𝟐 =  𝒅𝟏𝒅𝟏 − 𝒃𝟐𝒃𝟐 − 𝒃𝟑𝒃𝟑 − 𝑰(𝒃𝟏𝒅𝟏 + 𝒅𝟐𝒃𝟐 + 𝒅𝟑𝒃𝟑) 

𝜹𝟐𝟏 = 𝒃𝟑𝒅𝟐 − 𝒃𝟐𝒅𝟑 
𝜹𝟐𝟑 = 𝒅𝟏𝒅𝟐 + 𝒃𝟐𝒃𝟏 
𝜹𝟐𝟒 =  𝒅𝟏𝒅𝟑 + 𝒃𝟑𝒃𝟏 

 
𝜹𝟑𝟑 =  𝒅𝟐𝒅𝟐 − 𝒃𝟏𝒃𝟏 − 𝒃𝟑𝒃𝟑 − 𝑰(𝒅𝟏𝒃𝟏 + 𝒃𝟐𝒅𝟐 + 𝒅𝟑𝒃𝟑) 

𝜹𝟑𝟏 = 𝒃𝟏𝒅𝟑 − 𝒃𝟑𝒅𝟏 



𝜹𝟑𝟐 = 𝒅𝟐𝒅𝟏 + 𝒃𝟏𝒃𝟐 
𝜹𝟑𝟒 =  𝒅𝟐𝒅𝟑 + 𝒃𝟑𝒃𝟐 

 
𝜹𝟒𝟒 =  𝒅𝟑𝒅𝟑 − 𝒃𝟏𝒃𝟏 − 𝒃𝟐𝒃𝟐 − 𝑰(𝒅𝟏𝒃𝟏 + 𝒅𝟐𝒃𝟐 + 𝒃𝟑𝒅𝟑) 

𝜹𝟒𝟏 = 𝒃𝟐𝒅𝟏 − 𝒃𝟏𝒅𝟐 
𝜹𝟒𝟐 = 𝒅𝟑𝒅𝟏 + 𝒃𝟏𝒃𝟑 
𝜹𝟒𝟑 = 𝒅𝟑𝒅𝟐 + 𝒃𝟐𝒃𝟑 
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