B. Basrak and J. Segers, Regularly varying multivariate time series. Stochastic processes and their applications, vol.119, pp.1055-1080, 2009.

D. Buraczewski, J. F. Collamore, E. Damek, and J. Zienkiewicz, Large deviation estimates for exceedance times of perpetuity sequences and their dual processes, Ann. Probab, vol.44, issue.6, pp.3688-3739, 2016.

D. Buraczewski, E. Damek, Y. Guivarc´h, A. Hulanicki, and R. Urban, Tailhomogeneity of stationary measures for some multidimensional stochastic recursions, Probability theory and related fields, vol.145, p.385, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00434957

D. Buraczewski, E. Damek, and T. Mikosch, Stochastic Models with Power-Law Tails. The Equation X=AX+B. Springer Series in Operations Research and Financial Engineering, 2016.

D. Buraczewski, E. Damek, and J. Zienkiewicz, Pointwise estimates for first passage times of perpetuity sequences, Stochastic Processes and their Applications, vol.128, pp.2923-2951, 2018.

J. H. Curtiss, On the distribution of the quotient of two chance variables, Ann. Math. Statistics, vol.12, pp.409-421, 1941.

E. Damek, M. Matsui, and W. Swiatkowski, Componentwise different tail solutions for bivariate stochastic recurrence equations -with application to GARCH(1,1) processes, Colloquium Mathematicum, vol.155, issue.2, pp.227-254, 2019.

L. De-haan and S. I. Resnick, Limit theory for multivariate sample extremes, vol.40, pp.317-337, 1977.

L. De-haan, S. Resnick, H. Rootzén, and C. De-vries, Extremal behavior of solutions to a stochastic difference equation, with applications to ARCH processes, Stochastic Processes and their Applications, pp.213-224, 1989.

C. M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab, vol.1, issue.1, pp.126-166, 1991.

A. Janssen and J. Segers, Markov tail chains, Journal of Applied Probability, vol.51, issue.4, pp.1133-1153, 2014.

H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math, vol.131, pp.207-248, 1973.

G. Letac, A contraction principle for certain markov chains and its applications, Contemp. Math, vol.50, pp.263-273, 1986.

A. W. Ledford and J. A. Tawn, Statistics for near independence in multivariate extreme values, Biometrika, vol.83, issue.1, pp.169-187, 1996.

M. Matsui and R. S. Pedersen, Characterization of the tail behavior of a class of BEKK processes: A stochastic recurrence equation approach, 2019.

M. Matsui and W. Swiatkowski, Tail indices for AX+B recursion with triangular matrices, 2018.

D. B. Nelson, Stationarity and persistence in the GARCH(1,1) model, Econometric Theory, vol.6, pp.318-334, 1990.

R. S. Pedersen and O. Wintenberger, On the tail behavior of a class of multivariate conditionally heteroskedastic processes, Extremes, vol.21, pp.261-284, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01436267

R. Perfekt, Extreme value theory for a class of markov chains with values in R d, Advances in Applied Probability, vol.29, issue.1, pp.138-164, 1997.

S. I. Resnick, Heavy-tail phenomena: probabilistic and statistical modeling, 2007.

A. W. Van-der-vaart, Asymptotic statistics, of Cambridge Series in Statistical and Probabilistic Mathematics, vol.3, 1998.