HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Contrast estimation of time-varying infinite memory processes

Abstract : This paper aims at providing statistical guarantees for a kernel-based estimation of time-varying parameters driving the dynamic of infinite memory processes introduced by Doukhan and Wintenberger \cite{DW}. We then extend the results of Dahlhaus {\it et al.} \cite{DRW} on local stationary Markov processes to other important models such as the GARCH model. The estimators are computed as localized M-estimators of any contrast satisfying appropriate regularity conditions. % as in Bardet and Wintenberger \cite{BW}. We prove the uniform consistency and the pointwise asymptotic normality of such kernel-based estimators. We apply our results to usual contrasts such as least-square, least absolute value, or quasi-maximum likelihood contrasts. Various time-varying models such as AR$(\infty$), ARCH$(\infty)$ and LARCH$(\infty)$ are considered. We discuss their approximation of locally stationary ARMA and GARCH models under contraction conditions. Numerical experiments demonstrate the efficiency of the estimators on both simulated and real data sets.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Contributor : Jean-Marc Bardet Connect in order to contact the contributor
Submitted on : Tuesday, June 15, 2021 - 10:09:30 AM
Last modification on : Friday, May 6, 2022 - 4:50:07 PM


SPA-S-21-00269 (2).pdf
Files produced by the author(s)


  • HAL Id : hal-02586009, version 3


Jean-Marc Bardet, Paul Doukhan, Olivier Wintenberger. Contrast estimation of time-varying infinite memory processes. 2021. ⟨hal-02586009v3⟩



Record views


Files downloads