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Abstract

In this work we consider the Landau-de Gennes model for liquid crystals with an exter-

nal magnetic �eld to model the occurrence of the Saturn ring e�ect under the assumption of

rotational equivariance. After a rescaling of the energy, a variational limit is derived. Our

analysis relies on precise estimates around the singularities and the study of a radial auxiliary

problem in regions, where a continuous director �eld exists. Studying the limit problem, we

explain the transition between the dipole and Saturn ring con�guration and the occurence of

a hysteresis phenomenon, giving a rigorous explanation of what was derived and simulated

previously by [H. Stark, Eur. Phys. J. B 10, 311�321 (1999)].
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Introduction

Liquid crystals represent a state of matter with properties intermediate between liquids and

crystalline solids. They are commonly referred to as rod like molecules (although there are other

e.g. disk shaped molecules) whose positional and orientational order may vary within space, time

and parameters such as temperature. For a general and complete introduction, we refer to [5, 24].

Depending on the alignment of the molecules and its symmetries, liquid crystals are generally

divided into nematic, smectic and cholesteric. Due to their unique properties, liquid crystals

exhibit remarkable structures and applications, see for example [36, 40, 44].

From a mathematical point of view, several models have been introduced to study the phe-

nomena arising from liquid crystals [9]. Roughly speaking, the Oseen-Frank model describes

liquid crystals by a unit vector �eld n, that represents the preferred direction of the molecules at
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a point, averaging the �uctuations of the molecules. A peculiarity is, that in practice we do not

distinguish between n and −n, so that n should rather take values in a projective space RP 2 to

avoid problems with orientability.

In order to represent local averages of the directions of the molecules, one gets an additional

degree of freedom. Models describing the liquid crystal with such a variable include e.g. the

Ericksen model [25],[50, Ch.6]. The Landau-de Gennes model goes one step further by using the

idea to describe the arrangement of a liquid crystal by a probability distribution ρ on the sphere

of directions, taking into account that opposite points have the same probability. Then the �rst

moment vanishes and the (shifted) second moment Q is a symmetric traceless tensor, which is

used to model ρ. This allows to incorporate both the Oseen-Frank and Ericksen model into the

Landau-de Gennes model. A more detailed introduction to the various models and even for more

re�ned generalizations of the Landau-de Gennes model, e.g. the Onsager model or Maier-Saupe

model, can be found in [8, 51]. For the challenges and a comparison of the mentioned descriptions,

see [10, 11, 12, 17, 46]. In general, it is di�cult to give precise descriptions of minimizers of the

energy functionals associated with one of the models explicitly, except in some very special cases

such as in [54] or for the radial hedgehog solution in [41].

Mathematically speaking, liquid crystal theory shares several techniques and results with

other subjects, for example the Ginzburg-Landau model in micromagnetics, [15, 31, 34]. Also

parts of the description, such as function spaces [7] and liftings [33, 42], Q−tensors [16, 43], the
formation of topological singularities [49] or similar energy functionals [22, 47] are of interest in

a more abstract setting.

One interesting pattern one can observe in liquid crystals is the so called "Saturn ring" e�ect.

Under certain circumstances the defect structure forming in order to balance a topological charge

on the surface of an immersed object in liquid crystals, takes the form of a ring around the particle,

see [1, 2, 32, 44]. Also more exotic structures such as knots are possible, we refer to [44] for an

overview. In addition, an electromagnetic �eld can be used to manipulate the occurrence of a

Saturn ring. While this is known in physics for several years [4, 26, 27, 28, 38, 39, 53], there are

only few mathematical results [3]. Starting from the Landau-de Gennes model, an equilibrium

con�guration is found by minimization of the dimensionless free energy

Eη,ξ(Q) =

∫
Ω

1

2
|∇Q|2 +

1

ξ2
f(Q) +

1

η2
g(Q) + C0(ξ, η) dx

under suitable anchoring boundary conditions. Here Ω is the region �lled with the liquid crystal,

in our case the complement of the unit ball, i.e. Ω = R3 \B1(0) and C0(ξ, η) is a renormalization

constant such that the energy is �nite. The �rst term is the density for the elastic energy, while

f is a potential inducing a force which tends to push the material into an ordered state. The

parameter ξ describes the ratio between elastic and bulk energy. We are going to consider the

limit of ξ converging to zero, which can be interpreted as the limit for large particle. The e�ect

of an external magnetic �eld is described by the function g, with the parameter η coupling the

�eld to the elastic and bulk energy densities. We will consider a regime where also η → 0, not

much slower than ξ. In our limit of ξ, η → 0, C0 converges to zero. To complete our model,

we impose a strong anchoring boundary condition on ∂Ω that corresponds to a radial director

�eld n = er. With ξ and η converging to zero, we can consider di�erent regimes regarding the

relative speed of convergence of both parameters.
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1. The case of strong �elds η| ln(ξ)| � 1, where we expect to observe a Saturn ring was treated

in [3].

2. The case η| ln(ξ)| ∼ 1, where the transition between dipole and Saturn ring takes place is

precisely the purpose of this paper.

3. In the case η| ln(ξ)| � 1 we expect only dipole con�gurations, see Remark 2.3.

Our work is organized as follows. In the �rst section we de�ne the di�erent parts of the free

energy carefully, establish fundamental properties and discuss their e�ects in the minimizing

process.

The second section contains the rescaling and states our main theorem, a sort of Γ−convergence
result in a sense that will be precised later. We will prove, that in the limit η, ξ → 0 in our regime

and under the assumption of rotational equivariance, the model reduces to a simple energy stated

on the surface of the sphere S2 = ∂Ω, of the form

E0(F ) = 2s∗c∗

∫
F

(1− cos(θ)) dω + 2s∗c∗

∫
F c

(1 + cos(θ)) dω +
π

2
s2
∗β|DχF |(S2) ,

where s∗, c∗ > 0 is a parameter depending on f and F ⊂ S2 is a set of �nite perimeter that can

be seen as the projection of the region, in which a lifting of Q from RP 2 to S2 exists and the

orientation at in�nity agrees with the outward normal of ∂B1. In the same spirit, F c stands for

the region, where the lifting has the opposite orientation and |DχF |(S2) denotes the perimeter

of F in S2. In the above expression, θ stands for the angle between a point ω on the sphere and

e3. We see the latter perimeter term as representation of a defect line. It tells us that switching

from one orientation to the other comes with a cost, depending on the balance between the forces

(modelled by β), s∗ which is related to the liquid crystal properties, c∗ which depends on the

interaction between magnetic �eld and liquid crystal and the length of the defect line. This is

the result we are going to prove in the next two sections.

Section 3 is divided into three parts: We �rst show that the energy bound implies the existence

of only a �nite number of singularities if we are at some distance from the e3−axis. The main

idea will be to replace our functions Qη,ξ by the minimizers of approximate problems and then

use the higher regularity to derive a lower bound on the energy cost of a singularity. The energy

bound then implies that in fact only �nitely many singularities can occur. Next, we provide

asymptotically exact lower bounds for the energy near those singularities. Then, the radial

auxiliary problem is introduced. Given a ray from the surface ∂Ω to in�nity such that Qη,ξ is close

to being uniaxial with prescribed scalar order parameter, we can explicitly calculate the energy

necessary to turn along the ray from our boundary conditions to the preferred con�guration

parallel to the external �eld in ±e3−direction. Combining the results, we are able to prove the

lower bound part of the main theorem.

The construction of a recovery sequence is made in section four. We use our knowledge about

the interplay of the three parts of the energy to de�ne approximate regions close to the particle

in which the energy of the �rst two terms of E0 is concentrated and Q is uniaxial. Here we pro�t

from the exact formula of the optimal pro�le from the radial auxiliary problem. Apart from

these regions, we construct the singularities that give rise to the perimeter term of E0.
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The remaining section deals with the limit energy. We calculate the minimizers (depending

on β) and compare their energy with that of a dipole and a Saturn ring at the same β−value. We

�nd that by varying β a hysteresis phenomenon occurs. Our �ndings rigorously explain known

numerical simulations and physical reasoning in [37, 48].

1 Scaling, de�nitions and preliminaries

Starting from the one constant approximation of the Landau-de Gennes free energy [45, Ch. 6,

Secs. 3-4 and Ch. 10, Sec. 2.3] (see also [23, Ch. 3, Secs. 1-2]) in Ωr0 = R3 \Br0(0) we �nd

E(Q) =

∫
Ωr0

L

2
|∇Q|2 − a

2
tr(Q2)− b

3
tr(Q3) +

c

4
(tr(Q2))2 − 1

2
χaH⊗H : Q dx , (1)

where the last term is added to the Landau-de Gennes model to incorporate the e�ect of the

external magnetic �eld H. The length r0 is the particle radius, the parameter L is the elastic

constant, a, b, c are the bulk constants depending on the liquid crystal material. They can be

temperature dependent, although it is usually assumed that only a has a linear dependence, i.e.

a = a0(T −T∗) for a reference temperature T∗ [43]. However, this case will not be discussed here.

As already noted, H is the magnetic �eld, which we choose to be parallel to e3, i.e. H = he3

and χa denotes the magnetic anisotropy. See [30] for more details on the modelling, in particular

how magnetic �elds di�er from electric and gravitational �elds.

In order to be able to work on a �xed domain, we apply the rescaling Ω := 1
r0

Ωr0 and

x̃ = x/r0. We introduce the new function Q̃(x̃) = Q(r0x̃) = Q(x) and ∇̃ = ∇x̃ = 1
r0
∇x.

Furthermore, we write ã = a
c and b̃ = b

c . Then

E(Q) =

∫
Ω

Lr3
0

2r2
0

|∇Q̃|2 + r3
0c

(
− ã

2
tr(Q̃2)− b̃

3
tr(Q̃3) +

1

4
(tr(Q̃2))2

)
− 1

2
χah

2r3
0Q̃33 dx̃ .

Dividing by Lr0, we can de�ne

Ẽ(Q̃) =

∫
Ω

1

2
|∇̃Q̃|2 +

1

ξ2

(
− ã

2
tr(Q̃2)− b̃

3
tr(Q̃3) +

1

4
(tr(Q̃2))2

)
− 1

η2
Q̃33 dx̃ , (2)

where we introduced the new dimensionless parameters ξ =
√

L
cr20

and η =
√

L
2χar20h

2 . We choose

the coe�cients ã, b̃ to be �xed from now on, which corresponds to choosing a material and keeping

the physical system at a constant temperature. For a common liquid crystal material such as

MBBA at a temperature of 25◦C we roughly �nd ã ≈ 2.4, b̃ ≈ 1.8 [45, p. 168]. The analysis and

particularly the constants in the estimates that appear in the following will generally depend on

f and thus on ã and b̃, even if we do not explicitly state this dependence.

We are interested in the limit η, ξ → 0. In the standard Landau-de Gennes model, ξ → 0 can

be interpreted as increasing the particle radius (see [29] for a detailed discussion). We impose

the asymptotic relation η| ln(ξ)| → β ∈ (0,∞) which can be seen as a coupling of the parameters

r0 and h, i.e. slowly decreasing the �eld strength h, while increasing the particle radius in a way

that keeps the system in a state where both Saturn ring and dipole con�gurations are likely to

appear.
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It is convenient to introduce a constant C0 in the integral of (1) to obtain a non-negative

energy density. In our case, this constant depends on ξ and η, but tends towards a constant

independent of those parameters as ξ, η → 0. We will discuss the issue later in this section.

From now on, we will only consider the rescaled model and thus drop all tildes in our notation.

We continue this section by giving precise de�nitions for the function f modelling the bulk term

and quantities mentioned in the introduction. We will furthermore introduce a more general

function g for the magnetic term in (1).

De�nition 1.1. We denote by Sym0 the space of symmetric matrices with vanishing trace

Sym0 := {Q ∈ R3×3 : Q> = Q , tr(Q) = 0} ,

equipped with the norm |Q| =
√

tr(Q2). Furthermore, for a, b, c ∈ R, b, c > 0 we de�ne

f(Q) = C − a

2
tr(Q2)− b

3
tr(Q3) +

c

4
(tr(Q2))2 . (3)

As we stated in the introduction, the de�nition of Sym0 is motivated by the second order

moment of a probability distribution ρ on a sphere. The symmetry between ±n reads ρ(n) =

ρ(−n) for all n ∈ S2, i.e. the expectation value of n vanishes,
∫
S2 n dρ = 0. The second moment∫

S2 n⊗n dρ is symmetric and has trace 1. From this we subtract the second moment of a uniform

distribution on S2, i.e. ρ = 1
4π to get the symmetric and traceless tensor Q.

The speci�c form of the function f comes from the requirement of being invariant under

rotations. Indeed, assuming a polynomial function f and demanding frame indi�erence for the

bulk energy (and of course for the elastic energy) we �nd that f has to satisfy f(Q) = f(R>QR)

for all R ∈ O(3). This implies that f is the linear combination of tr(Q2), tr(Q3), (tr(Q)2)2,

tr(Q2)tr(Q3), tr(Q2)2, tr(Q3)2, etc (see [8, Lemma 3]). It is convenient to consider only the �rst

three terms although one could in principle add more. The constant C in (3) is chosen such that

f is non-negative and vanishes on uniaxial Q−tensors of a prescribed scalar order parameter (the

set N in Proposition 1.2 below). This is the main property of f one should keep in mind during

our analysis.

Proposition 1.2 (Properties of f). There exists a constant C such that f given by (3) satis�es

1. f(Q) ≥ 0 for all Q ∈ Sym0 and minQ∈Sym0
f(Q) = 0. Let

N :=

{
s∗

(
n⊗ n− 1

3
Id

)
: n ∈ S2

}
,

where S2 ⊂ R3 is the unit sphere and s∗ = 1
4

(
b̃+

√
b̃2 + 24ã

)
. Then N = f−1(0) is a

smooth, compact, connected manifold without boundary di�eomorphic to RP 2. The constant

C can be explicitly be calculated as C = ã
3s

2
∗ + 2b̃

27s
3
∗ − 1

9s
4
∗.

2. Furthermore, there exist constants δ0, γ1 > 0 such that if Q ∈ Sym0 satis�es dist(Q,N ) ≤
δ0, then

f(Q) ≥ γ1 dist2(Q,N ) .

5



3. There exist constants C1, C2 > 0 such that for all Q ∈ Sym0

f(Q) ≥ C1

(
|Q|2 − 2

3
s2
∗

)2

, Df(Q) : Q ≥ C1 |Q|4 − C2 .

Note that all constants appearing in the above proposition are depending on ã and b̃.

Proof. A proof of the �rst statement can be found in [42, Proposition 15]. For the second result,

we refer to [20, Lemma 2.4 (F2)]. The last assertions follows by elementary calculations as in

[20, Lemma 2.4 (F0)].

The last two statements are of technical nature. The third property is used to establish

L∞−bounds in Remark 2.2 and Proposition 3.4 and to establish Proposition 1.4 and Proposition

1.6. The estimate in 2. simply states that one can think of f as being quadratic close to its

minimum which is attained on N . The �rst statement gives an interesting connection between

f and the space Sym0. In fact, N plays an important role in our analysis as it will allow us

to identify Q and ±n and thus give a intuitive meaning to Q. This is formalized in the next

proposition.

Proposition 1.3 (Structure of Sym0). 1. For all Q ∈ Sym0 there exist s ∈ [0,∞) and r ∈
[0, 1] such that

Q = s

((
n⊗ n− 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
, (4)

where n,m are normalized, orthogonal eigenvectors of Q. The values s and r are continuous

functions of Q.

2. Let C = {Q ∈ Sym0 : λ1(Q) = λ2(Q)}, where we denoted by λ1, λ2 the two leading

eigenvalues of Q. Then

C = {Q ∈ Sym0 \ {0} : r(Q) = 1} ∪ {0} and C \ {0} ∼= RP 2 × R .

3. There exists a continuous function R : Sym0 \ C → N such that R(Q) = Q for all Q ∈ N .

In particular, Sym0 \ C and N are homotopic. The map R can be chosen to be the nearest

point projection onto N . In this case, for all Q ∈ Sym0 \ C decomposed as in (4), R is

given by R(Q) = s∗(n⊗ n− 1
3 Id) .

Proof. The �rst part follows from [19, Lemma 1.3.1] for s = 2λ1 +λ2 and r = (λ1 +2λ2)/s, where

λ1 ≥ λ2 are the two leading eigenvalues of Q. The second part is a consequence of the de�nition

of s, r in terms of the eigenvalues and [19, Lemma 1.3.5]. The last part is a reformulation of

Lemma 1.3.6 and Lemma 1.3.7 in [19], together with Lemma 2.2.2.

The decomposition (4) provides us with a very useful tool to perform calculations, for example

in Proposition 3.16, Proposition A.1 or Proposition A.2. In the second statement we introduce

C, a subset of the uniaxial Q−tensor, sometimes referred to as "oblate uniaxial" [56, 57]. One

can think of C as a cone over RP 2. If a Q−tensor is not oblate uniaxial, there exists a retraction
onto N which coincides with the nearest point projection and is given by the element of N
corresponding to the dominating eigenvector of Q.
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In the remaining part of this chapter we are concerned with the magnetic energy term, which

will be modelled by a function g. We require g : Sym0 → R to be of class C2 away from 0 and

to satisfy the following properties:

1. The function g does not grow faster than f , i.e. there exists a constant C > 0 such that

for all Q ∈ Sym0

|g(Q)| ≤ C (1 + |Q|4) , (5)

|Dg(Q)| ≤ C (1 + |Q|3) . (6)

2. The preferred eigenvector of Q for g is e3 in the following sense: g is invariant by rotations

around the e3−axis and the function O(3) 3 R 7→ g(R>QR) is minimal if e3 is eigenvector

to the maximal eigenvalue of R>QR. Decomposing Q as in (4) with n = e3 and keeping s

andm �xed, then g(Q) is minimal for r = 0. For a uniaxial Q ∈ N , i.e. Q = s∗(n⊗n− 1
3 Id)

for s∗ ≥ 0 and n ∈ S2 we have

g(Q) = c2
∗(1− n2

3) . (7)

3. There exist constants δ1, C > 0 such that if Q ∈ Sym0 with dist(Q,N ) < δ for 0 < δ < δ1,

then

|g(Q)− g(R(Q))| ≤ C dist(Q,N ) . (8)

The �rst and last conditions are technical assumptions. The former allows us to dominate g

by f . This is necessary, since g may be negative. The latter states the Lipschitz continuity of g in

a neighbourhood of N in normal direction. The second requirement contains the mathematical

translation of the physical model. The homogeneous magnetic �eld parallel to e3 should favour

the alignment of the dominating eigenvector of Q parallel to e3. Equation (7) expresses the

compatibility of our Q−tensor analysis with the classical formulations for director �elds. From

a mathematical point of view, it is possible to replace (7) by (7')

g(Q) ≥ c2
∗(1− n2

3) , (7')

and to obtain a similar limit energy, see Remark 3.18.

We note that the functions g1 and g2, de�ned as

g1(Q) =
2

3
s∗ −Q33 and g2(Q) =


√

2
3 −

Q33

|Q| Q ∈ Sym0 \ {0}

0 Q = 0
, (9)

satisfy the above assumptions on g (see Appendix). The function g1 (with c2
∗ = s∗) is the natural

(physical) term to model a magnetic �eld [45, Ch. 10], we have used it to derive our scaling in (1),

the constant 2
3s∗ being part of C0. Another possible choice is g2, which is a useful approximation

to g1 introduced in [26] and used e.g. in [3]. In this case c2
∗ =

√
3
2 .

We �nish this section by two propositions. Note that if g ≥ 0 (e.g. in the case g = g2), then

both propositions are trivial. The �rst proposition shows that under the above assumptions on f
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and g there exists a unique minimizer Q∞,ξ,η of
1
ξ2
f(Q) + 1

η2
g(Q). This allows us to characterize

a constant C0(ξ, η) such that the bulk energy density becomes non-negative and vanishes only at

Q∞,ξ,η. The second proposition expresses that if Q is close to N but the dominating eigenvector

n far from e3, then g has to be strictly positive.

Proposition 1.4. For ξ, η > 0 with ξ � η, there exists a unique Q∞,ξ,η ∈ Sym0 such that

Q∞,ξ,η = argmin
Q∈Sym0

1

ξ2
f(Q) +

1

η2
g(Q) ,

given by s∗,ξ2/η2(e3⊗ e3− 1
3 Id), where |s∗,t− s∗| ≤ Ct with s∗ as in Proposition 1.2. Hence, for

C0(ξ, η) = − 1
ξ2
f(Q∞,ξ,η)− 1

η2
g(Q∞,ξ,η) ≥ 0 it also holds true that C0(ξ, η) ≤ Cξ2/η4.

Since s∗,ξ2/η2 → s∗,0 = s∗ for ξ, η → 0 in our regime, we denote Q∞ := s∗(e3 ⊗ e3 − 1
3 Id).

In the physically relevant case of g = g1, we have the expansion s∗,ξ2/η2 = s∗+(−2
3a−

4
9bs∗+

4
3cs

2
∗)
−1 ξ2

η2
+O( ξ

4

η4
).

Proof. Let Q ∈ Sym0 be of norm
√

2
3s∗ and let t ≥ 0. Then we can estimate

1

2 ξ2
f(tQ) +

1

η2
g(tQ) ≥ 1

2ξ2
Cf (t2 − 1)2 − Cg

η2
(1 + t4) .

So if we choose a |t − 1| ≥ t0 > 0 and ξ2

η2
≤ Cf

2Cg
max|t−1|≥t0

(t2−1)2

t4+1
, the above expression is

positive. Let ||Q| −
√

2
3s∗| ≤ δ and dist(Q,N ) > δ. Then f(Q) ≥ fmin := min{f(Q) : Q ∈

Sym0, dist(Q,N ) > δ} > 0 and

1

2 ξ2
f(Q) +

1

η2
g(Q) ≥ fmin

2ξ2
− C

η2
(1 + δ3) > 0 ,

for ξ2/η2 ≤ fmin

2C(1+δ3)
. By invariance of f under rotations and property 2. of g we know that a

minimizer Q has the dominating eigenvector e3 or −e3 and has to verify r = 0. This allows us

to write Qs = s(e3 ⊗ e3 − 1
3 Id) for s ∈ (−Cδ,Cδ) for a constant C > 0. Taking the derivative

with respect to s in the energy of Qs we get

d

ds

(
1

ξ2
f(Qs) +

1

η2
g(Qs)

)
=

1

ξ2

(
−2

3
as− 2

9
bs2 +

4

9
cs3

)
− 1

η2
Dg(Qs) :

(
e3 ⊗ e3 −

1

3
Id
)

= 0 .

We multiply by ξ2 and since |Dg(Qs)| is bounded and ξ � η this equation admits a unique

positive solution corresponding to a minimum in the energy density, which we call s∗,ξ2/η2 . This

gives the existence of a unique minimizer Q∞,ξ,η and the claimed representation. By a standard

perturbation theory argument we get the estimate |s∗,t − s∗| ≤ Ct.

Since |s∗,ξ2/η2−s∗| ≤ Cξ2/η2, we have the estimates f(Q∞,ξ,η) ≤ C(ξ2/η2)2 and |g(Q∞,ξ,η)| ≤
Cξ2/η2 from which we get

C0(ξ, η) ≤ C
1

ξ2

ξ4

η4
+ C

2

η2

ξ2

η2
≤ C

ξ2

η4
.
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Proposition 1.5. There exist a, δ0 > 0 such that if 0 < δ < δ0, then

min{g(Q) : Q ∈ Sym0 with dist(Q,N ) ≤ δ , |Q−Q∞| ≥ a
√
δ} > 0 .

Proof. Let 0 < δ < min δ1, 1, where δ1 is from (8). Let Q ∈ Sym0 such that dist(Q,N ) ≤ δ. We

can apply (8) to g(Q) to get

g(Q) ≥ g(R(Q))− C dist(Q,N ) ≥ c2
∗(1− n2

3)− Cδ ,

where n3 is the third component of the dominating unit eigenvector of Q, see Proposition 1.3.

Since |Q−R(Q)| = dist(Q,N ) ≤ δ and |n| = |e3| = 1 we can estimate

|Q−Q∞|2 ≤ 2|Q−R(Q)|2 + 2|R(Q)−Q∞|2 ≤ 2δ2 + 2s2
∗|n⊗ n− e3 ⊗ e3|2 ≤ 2δ2 + 4s2

∗(1− n2
3) ,

and thus

g(Q) ≥ c2
∗

4s2
∗
|Q−Q∞|2 − 4Cδ ≥

( c2
∗

4s2
∗
a− 4C

)
δ > 0 ,

if |Q−Q∞| ≥ a
√
δ for a > 0 large enough. In order to conclude, it remains to choose 0 < δ0 ≤

min{δ1, 1} in such a way that the set {Q ∈ Sym0 with dist(Q,N ) ≤ δ , |Q − Q∞| ≥ a
√
δ} is

non empty for all δ ∈ (0, δ0). Setting δ0 = min{1, δ1,
2
3s

2
∗a
−2}, we have a

√
δ ≤

√
2
3s∗ + δ for all

δ ∈ (0, δ0), i.e. the set is non-empty.

As we have seen in Proposition 1.4, the minimizer Q∞,ξ,η of the bulk term is not part of N
(which has order parameter s∗). We will introduce a slightly modi�ed manifold Nη,ξ such that

Q∞,ξ,η ∈ Nη,ξ and such that f(Q) + ξ2

η2
g(Q) + ξ2C0(ξ, η) controls the squared distance of Q to

this new manifold, in analogy to f(Q) ≥ γ1dist2(Q,N ) from Proposition 1.2.

Proposition 1.6. If ξ2/η2 � 1, then there exists a smooth manifold Nη,ξ ⊂ Sym0, di�eomorphic

to N such that

f(Q) +
ξ2

η2
g(Q) + ξ2C0(ξ, η) ≥ γ2 dist2(Q,Nη,ξ) (10)

for a constant γ2 > 0. In particular Q∞,ξ,η ∈ Nη,ξ. Furthermore, there exists a constant C > 0

such that

sup
Q∈Nη,ξ

dist(Q,N ) ≤ C ξ
2

η2
. (11)

Proof. We introduce the notation fη,ξ(Q) for the LHS of (10).

Step 1: De�nition of Nη,ξ. Let Q0 ∈ N and {P1, P2, P3} a orthonormal basis of (TQ0N )⊥.

For t ∈ R3 we de�ne F (Q0, t) := Dνfη,ξ(Q0+t1P1+t2P2+t3P3), where Dν denotes the derivative

normal to N . From perturbation theory it follows that there exists a t0 ∈ R3 with |t0| ≤ C ξ2

η2

such that F (Q0, t0) = 0. From Lemma 2.4 (F1) in [20] we get that if P ∈ Sym0 orthogonal to

TQ0N , then P · (D2f(Q0))P ≥ γ‖P‖2. Hence, for Qt = Q0 + t1P1 + t2P2 + t3P3 it holds that

DtF (Q0, t0) = D2
νf(Qt) +

ξ2

η2
D2
νg(Qt) ≥ D2

νf(Q0)− C|t0|Id +
ξ2

η2
D2
νg(Qt) ≥

γ

2
Id ,

9



since D2g is bounded in a compact neighbourhood of N , |t0| ≤ C ξ2

η2
and ξ2

η2
� 1. By the

Implicit Function Theorem we conclude that there exists a smooth function ψ : N → R3 such

that F (Q0, ψ(Q0)) = 0. Thus, Nη,ξ := {Qt0 : Q0 ∈ N and t0 = ψ(Q0)} is a smooth manifold,

di�eomorphic to N . Furthermore, since ψ is continuous and N is compact, we deduce that (11)

holds.

Step 2: Control of the distance. Since ξ2/η2 is small and fη,ξ grows faster than the RHS

of (10), we can use (11) and argue similar to Proposition 1.4 to deduce that (10) holds if

dist(Q,Nη,ξ) ≥ δ for some small but �xed δ > 0. Because of this, it is enough to show that (10)

holds for all Q ∈ Sym0 with dist(Q,Nη,ξ) < δ. For such Q, we �rst de�ne Q0 = R(Q). Let

Q1 ∈ Nη,ξ be the element corresponding to Q0 according to step 1. Then Q − Q1 ∈ (TQ0N )⊥

and by Taylor expansion it holds that

fη,ξ(Q) ≥ fη,ξ(Q1) +Dνfη,ξ(Q1) : (Q−Q1) +
1

2
(Q−Q1) ·D2fη,ξ(Q1)(Q−Q1)− Cδ|Q−Q1|2 .

Note that fη,ξ(Q) ≥ 0 and by construction Dνfη,ξ(Q1) : (Q − Q1) = 0. Evoking again Lemma

2.4 in [20], we get

fη,ξ(Q) ≥
(γ

4
− Cδ

)
|Q−Q1|2 .

Choosing δ > 0 small enough there exists a γ2 > 0 such that γ
4 − Cδ ≥ γ2 > 0 and since

dist(Q,Nη,ξ) ≤ |Q−Q1|, (10) follows.

From Proposition 1.4 we know that fη,ξ(Q∞,ξ,η) = 0 and hence by (10) it follows that

dist(Q∞,ξ,η,Nη,ξ) = 0, i.e. Q∞,ξ,η ∈ Nη,ξ.

2 Statement of result

From equation (2) and using the notation introduced in the last section, we write our energy

Eη,ξ(Q) =

∫
Ω

1

2
|∇Q|2 +

1

ξ2
f(Q) +

1

η2
g(Q) + C0(ξ, η) dx , (12)

which is the dimensionless free energy that was announced in the introduction. The natural

space for this energy to be well de�ned is H1(Ω, Sym0) + Q∞,ξ,η with Q∞,ξ,η as in Proposition

1.4. Minimizing the �rst term would lead to a harmonic map, the second term prefers Q to be

uniaxial with a certain scalar order parameter and hence norm, while the third term takes its

minimum when the director is aligned parallel to e3. So the (spatially) constant uniaxial map

Q∞,ξ,η = s∗,ξ2/η2(e3 ⊗ e3 − 1
3 Id) would be a minimizer of our free energy. However, this will

violate the strong anchoring conditions we are going to impose on the boundary, namely we want

Qη,ξ ∈ H1(Ω,Sym0) +Q∞,ξ,η to satisfy

Qη,ξ = Qb on S2 , (13)

where Qb(x) = s∗
(
x⊗ x− 1

3 Id
)
. The system is therefore frustrated and we expect the minimizer

to be close to s∗(e3 ⊗ e3 − 1
3 Id) everywhere, except for a transition zone near the boundary. In

this boundary layer, which will turn out to be of thickness η, we will �nd tubes of cross sectional

area ξ2 containing the regions where Qη,ξ is biaxial.
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Since the problem is equivariant with respect to rotations around the e3−axis, it is natural
to consider only rotationally equivariant maps. We say that a map Q is rotationally equivariant

if Q is equivariant with respect to rotations around the e3-axis. In other words, using cylindrical

coordinates, one has

Q(ρ, ϕ, z) = R>ϕQ(ρ, 0, z)Rϕ , where Rϕ =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 .

For uniaxial maps Q = s∗(n ⊗ n − 1
3 Id) this is equivalent to the usual notion of equivariance

for vectors n(Rϕx) = R>ϕn(x). We de�ne the set of admissible functions A to be the set of

rotationally equivariant functions Qη,ξ ∈ H1(Ω,Sym0)+Q∞,ξ,η satisfying the boundary condition

(13). This motivates the de�nition for Q ∈ H1(Ω,R3×3) +Q∞,ξ,η

EAη,ξ(Q) =

Eη,ξ(Q) if Q ∈ A ,

∞ otherwise.

We believe that minimizers of Eη,ξ are also rotationally equivariant, although this does not

follow from our work and remains an open issue. We will remove the hypothesis of rotational

equivariance in a work in preparation.

The following theorem is the main result of the paper.

Theorem 2.1. Suppose that

η| ln(ξ)| → β ∈ (0,∞) as η → 0 . (14)

Then η EAη,ξ → E0 in a variational sense, where the limiting energy E0 for a set F ⊂ S2 is given

by

E0(F ) = 2s∗c∗

∫
F

(1− cos(θ)) dω + 2s∗c∗

∫
F c

(1 + cos(θ)) dω +
π

2
s2
∗β|DχF |(S2) . (15)

More precisely, we have the following statements:

1. Compactness: For any sequence Qη,ξ ∈ A such that η Eη,ξ(Qη,ξ) ≤ C, there exists a mea-

surable set of �nite perimeter F ⊂ S2 that is invariant under rotations w.r.t. the e3−axis,
measurable functions nη : Ω → S2 and a set ωη ⊂ Ω with limη→0 |ωη| = 0, Ω \ ωη simply

connected, such that for all σ > 0 it holds nη ∈ C0(Ω \ (Zσ ∪ ωη), S2) and for all R > 0

lim
η→0

∥∥∥∥s∗(nη ⊗ nη − 1

3
Id

)
−Qη,ξ

∥∥∥∥
L2(BR(0)\Zσ)

= 0 , χFη → χF pointwise, (16)

where Zσ = {x ∈ R3 : x2
1 + x2

2 ≤ σ2} and Fη = {x ∈ ∂Ω : nη(x) · ν(x) = −1}.

2. Γ−liminf: For any sequence Qη,ξ ∈ A and any measurable set of �nite perimeter F ⊂ S2,

measurable functions nη : Ω→ S2 and a measurable set ωη ⊂ Ω that satisfy limη→0 |ωη| = 0,

Ω \ωη simply connected with nη ∈ C0(Ω \ (Zσ ∪ωη),S2) and (16) hold for all R, σ > 0, we

have

lim inf
η→0

η Eη,ξ(Qη,ξ) ≥ E0(F ) . (17)
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3. Γ−limsup: For any measurable set of �nite perimeter F ⊂ S2 that is invariant under

rotations w.r.t. the e3−axis there exists a sequence Qη,ξ ∈ A with ‖Qη,ξ‖L∞ ≤
√

2
3s∗ and

measurable functions nη : Ω→ S2 with nη ∈ C0(Ω \ωη,S2), limη→0 |ωη| = 0, Ω \ωη simply

connected, such that (16) holds for all R, σ > 0 and

lim sup
η→0

η Eη,ξ(Qη,ξ) ≤ E0(F ) . (18)

Remark 2.2. 1. In view of (14) we can replace the bound η Eη,ξ(Qη,ξ) ≤ C, by

Eη,ξ(Qη,ξ) ≤ C (1 + | ln(ξ)|) . (19)

2. The convergence we show is not a Γ−convergence in the classical sense since the limit

functional is de�ned on a di�erent functions space.

3. The compactness can also be formulated globally: It holds

lim
η→0

∫
Ω\Zσ

dist2(Qη,ξ,Nη,ξ) dx = 0

for the manifold Nη,ξ as in Proposition 1.6 which is a small perturbation (at distance at

most C ξ2

η2
) from the manifold N . In addition if g is non-negative (e.g. in the case g = g2),

Nη,ξ = N and we have the convergence

lim
η→0

∥∥∥∥s∗(nη ⊗ nη − 1

3
Id

)
−Qη,ξ

∥∥∥∥
L2(Ω\Zσ)

= 0 .

Remark 2.3. If β = ∞ in (14), then Theorem 2.1 holds for F = S2 or F = ∅, i.e. no Saturn

ring structure can occur in the limit. In the case of g being non-negative, this follows easily:

For Qη,ξ ∈ H1(Ω,Sym0) + Q∞ with ηEη,ξ(Qη,ξ) ≤ C we can introduce ξ̃ such that η| ln(ξ̃)| →
β ∈ (0,∞), i.e. this new sequence ξ̃ decreases more slowly than ξ. Hence Eη,ξ̃ ≤ Eη,ξ. Applying
Theorem 2.1 to this new energy we get the existence of a set Fβ ⊂ S2 such that

E0(Fβ) ≤ lim inf
η→0

η Eη,ξ(Qη,ξ) ≤ C .

Since the RHS is independent of β ∈ (0,∞), we �nd |DχFβ |(S2) → 0 as β → ∞. From this we

conclude F = S2 or F = ∅ which have the same energy E0. For the case of general g one cannot

apply this trick, but using (42) it is possible to show that the perimeter of Fη converges to zero

and that E0(S2) is indeed a lower bound.

3 Lower bound

In this section we prove the lower bound of Theorem 2.1. Our strategy to obtain the lower bound

is the following: First, we approximate the sequence Qη,ξ by a more regular one named Qε. We

use ε := ξ to meet the notation in [3, 18, 19] and let out η in our notation since η and ξ are

related via (14), i.e. η ∼ β
| ln(ε)| . We also write Eε instead of Eη,ξ. We �nd that away from the

e3-axis the sequence Qε has only �nitely many singularities in the neighbourhood of which Qε is

far from N . Then we can estimate the energy of Qε nearby these points from below by balancing

|∇Qε|2 and f(Qε). In the region where Qε is close to N , we will use the optimal radial pro�le

found in [3] by balancing |∇Qε|2 and g(Qε).
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3.1 Preliminaries

The construction of the approximation Qε of Qη,ξ follows several steps. First, we are going

to show that Qη,ξ can be approximated by another function Q̃η,ξ which veri�es an additional

L∞−bound.

Proposition 3.1. Let Qη,ξ ∈ H1(Ω,Sym0) + Q∞,ξ,η such that (19) holds. Then there exists a

constant C1 > 0 and Q̃η,ξ ∈ H1(Ω, Sym0) +Q∞,ξ,η which decreases the energy Eη,ξ, veri�es

‖Q̃η,ξ‖L∞(Ω) ≤ C1 (20)

and Q̃η,ξ −Qη,ξ → 0 in L2 as η, ξ → 0.

Proof. Let N >
√

2
3s∗ to be chosen later. We can de�ne Q̃η,ξ as

Q̃η,ξ :=

N
Qη,ξ
|Qη,ξ| if |Qη,ξ| > N ,

Qη,ξ otherwise.

This function is clearly admissible and has lower Dirichlet energy. Since we cannot conclude that

g(Q̃η,ξ) ≤ g(Qη,ξ), we need to show that the (possible) increase of the energy in g is compensated

by the decrease in f . So if Q ∈ Sym0 of norm 1 and t > N , we get by (6) and Proposition 1.2

d

dt

(
1

ξ2
f(tQ) +

1

η2
g(tQ)

)
≥ C

t3

ξ2
− C 1 + t3

η2
≥ 0

if N ≥ N1 with a certain N1 large enough, depending on f and g. Hence, the sum of bulk and

magnetic energy of Q̃η,ξ is smaller than the one of Qη,ξ and we conclude Eη,ξ(Q̃η,ξ) ≤ Eη,ξ(Qη,ξ).
The L∞− bound is obvious. So it remains to show that ‖Q̃η,ξ −Qη,ξ‖L2(Ω) converges to zero as

η, ξ → 0. We decompose Ω into two sets

Ω = {x : |Qη,ξ(x)| ≤ N} ∪ {x : |Qη,ξ(x)| > N}

and note that
∫
|Q̃η,ξ −Qη,ξ|2 = 0 if |Qη,ξ| ≤ N . Hence, we only need to estimate the di�erence

|Q̃η,ξ − Qη,ξ| on the second set. By Proposition 1.2 and (5) we get that there exists C,N2 > 0

(depending on f and g) such that if N ≥ N2, then for Q ∈ Sym0 with |Q| ≥ N it holds∣∣∣2
3
s2
∗ − |Q|2

∣∣∣2 ≤ 2

(∣∣∣2
3
s2
∗ − |Q|2

∣∣∣2 − ξ2

η2
|Q|4 + ξ2C0(ξ, η)

)
≤ C

(
f(Q) +

ξ2

η2
g(Q) + ξ2C0(ξ, η)

)
.

For |Q| ≥ max{N1, N2} we additionally have |Qη,ξ − Q̃η,ξ| = |N − |Qη,ξ||. Taking N even bigger

if necessary it holds that∫
|Qη,ξ|>N

|Qη,ξ − Q̃η,ξ|2 dx =

∫
|Qη,ξ|>N

|N − |Qη,ξ||2 dx ≤ C
∫
|Qη,ξ|>N

∣∣∣2
3
s2
∗ − |Qη,ξ|2

∣∣∣2 dx

≤ C
∫

Ω
f(Q) +

ξ2

η2
g(Q) + ξ2C0(ξ, η) dx ≤ C(1 + | ln ξ|)ξ2 ,

which converges to zero as ξ → 0. This proves our claim for C1 ≥ N .
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Since g may not be regular in Q = 0 (for example if g = g2), we will replace g by gφ, with a

cut-o� function φ such that gφ is smooth, but keeps the relevant information from g. In order to

replace g in the energy, we just need to show that
∫

(1− φ)g(Qη,ξ) dx tends to zero in the limit

ξ, η → 0. This is made precise in the next proposition.

Proposition 3.2. Let φ ∈ C∞([0,∞), [0, 1]) be a cut-o� function with φ = 1 on [q0,∞) and

φ = 0 on [0, 1
2q0], where q0 ∈ (0,

√
2
3s∗). Then the function Q 7→ g(Q)φ(|Q|) is smooth and there

exists a constant C > 0 such that∫
Ω

(1− φ(|Qη,ξ|))g(Qη,ξ) dx ≤ C ξ
2

η
.

Proof. The smoothness of gφ is obvious, since φ is smooth and we supposed g smooth away from

0. So it remains the energy estimate. First note that ifQ ∈ Sym0 with |Q| ≤ q0, then for ξ, η small

enough f(Q)+ ξ2

η2
g(Q)+ξ2C0(ξ, η) ≥ 1

2fmin > 0, where fmin = min{f(Q) : Q ∈ Sym0, |Q| ≤ q0}.
Indeed, by Proposition 1.2 fmin > 0 and by (5) we can choose ξ2

η2
small enough such that

ξ2

η2
g(Q) ≤ 1

4fmin. Since ξ2C0(ξ, η) converges to zero as ξ, η → 0, this can equally be bounded by
1
4fmin. Hence

C ≥ η

ξ2

∫
{x∈Ω : |Qη,ξ(x)|≤q0}

f(Qη,ξ) +
ξ2

η2
g(Qη,ξ) + ξ2C0(ξ, η) dx

≥ 1

2

η

ξ2
fmin|{x ∈ Ω : |Qη,ξ(x)| ≤ q0}| .

Now we use this estimate to bound∫
Ω

(1− φ(|Qη,ξ|))g(Qη,ξ) dx ≤ C|{x ∈ Ω : |Qη,ξ(x)| ≤ q0}| ≤ C
ξ2

η
.

From now on, we simply write g(Q) instead of g(Q)φ(|Q|). We will also replace η, ξ in

our notation by ε, i.e. Q̃ε := Q̃η,ξ. For the sake of readability, we introduce the notation

fε(Q) := f(Q) + ε2

η2
g(Q) + ε2C0(ε, η). The next step will be de�ning the more regular sequence

Qε replacing Q̃ε. In view of the lower bound for the claimed Γ−limit we still want Qε to be

rotationally equivariant and that it converges to the same limit as Q̃ε, while decreasing the

energy.

We thus de�ne the three dimensional approximate energy for 0 < γ < 2 and ω ⊂ Ω

E3D
ε (Q,ω) =

∫
ω

1

2
|∇Q|2 +

1

ε2
fε(Q) +

1

2εγ
|Q− Q̃ε|2 dx .

We seek Qε by minimizing E3D
ε (Q,Ω) among rotationally equivariant �elds Q. Because of the

equivariance, the problem can be stated as a two dimensional problem. Indeed, calculating |∂ϕQ|2

for a rotationally equivariant map Q ∈ H1(Ω, Sym0) + Q∞,ξ,η, and using the equivariance, we

can write Q(ρ, ϕ, z) = R>ϕQ(ρ, 0, z)Rϕ and thus

|∂ϕQ|2 =
∣∣∣(∂ϕRϕ)>QRϕ +R>ϕQ(∂ϕRϕ)

∣∣∣2 = |Q|2 + 6(Q2
12 −Q11Q22) .
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This expression does no longer depend on ϕ. In order to shorten notation, we introduce the

matrix

Q2×2 :=
1

2

(
∂

∂Qij
|∂ϕQ|2

)
ij

=

2(Q11 −Q22) 4Q12 Q13

4Q21 2(Q22 −Q11) Q23

Q31 Q32 0

 .

Note that, Q2×2 : Q = 1
2 |∂ϕQ|

2. So the whole energy does not depend on ϕ any more and using

cylindrical coordinates, it can be rewritten as

E3D
ε (Qε,Ω) =

∫ 2π

0
E2D
ε (Qε,Ω

′) dϕ = 2π E2D
ε (Qε,Ω

′) ,

where E2D
ε is the two dimensional energy given by

E2D
ε (Q,ω′) =

∫
ω′

ρ

2
|∇′Q|2 +

1

ρ
Q2×2 : Q+

ρ

ε2
fε(Q) +

ρ

2εγ
|Q− Q̃ε|2 dρ dz ,

where ∇′ = (∂ρ, ∂z) denotes the two dimensional gradient and ω′ ⊂ Ω′ = {(ρ, z) ∈ R2 :

ρ > 0 , ρ2 + z2 > 1}. In order to shorten notation, we are going to write 1
2 |∇Q|

2 instead of
1
2 |∇

′Q|2 + 1
ρ2
Q2×2 : Q whenever we make no use of this division of the gradient. Now we de�ne

Qε to be

Qε := argmin
Q∈A′

E2D
ε (Q,Ω′) , (21)

whereA′ = {Q ∈ H1(Ω′, Sym0)+Q∞,ξ,η : (13) holds for ρ2+z2 = 1}. We eventually extendQε to

a map inH1(Ω,Sym0)+Q∞,ξ,η which we will also callQε by de�ningQε(ρ, ϕ, z) := R>ϕQε(ρ, z)Rϕ.

Remark 3.3. 1. Note that Q̃ε|Ω′ is an admissible function in (21), so that Qε does exist.

2. The function Qε has lower energy than Q̃ε.

3. Thanks to the energy bound in (19) we know that

‖Qε − Q̃ε‖2L2(Ω) ≤ C(| ln ε|+ 1)εγ → 0 as ε→ 0 ,

i.e. the two sequences have the same limit for vanishing ε.

4. The minimizer Qε solves the two dimensional Euler-Lagrange equation

− ρ∆Qε +
1

ρ
Qε,2×2 − ∂ρQε +

ρ

ε2
Dfε(Q) +

ρ

εγ
(Qε − Q̃ε) = Λ Id . (22)

Note that the equation contains an additional term (RHS) due to the fact that Sym0 is a

subspace of the space of real matrices, i.e. a Lagrange multiplier Λ is needed to ensure the

tracelessness constraint.

5. The function Qε also solves the three dimensional Euler-Lagrange equation

−∆Qε +
1

ε2
Dfε(Qε) +

1

εγ
(Qε − Q̃ε) = Λ3D Id , (23)

15



despite the fact that it does not need to be a minimizer of E3D
ε . To see this, write

Λ3D Id = −∆Qε +
1

ε2
Dfε(Qε) +

1

εγ
(Qε − Q̃ε)

= −∂2
ρQε −

1

ρ
∂ρQε −

1

ρ2
∂2
ϕQε − ∂2

zQε +
1

ε2
Dfε(Q) +

1

εγ
(Qε − Q̃ε)

= R>ϕ

(
−∂2

ρQε −
1

ρ
∂ρQε − ∂2

zQε +
1

εγ
(Qε − Q̃ε)

)
Rϕ

− 1

ρ2
∂2
ϕ(R>ϕQεRϕ) +

1

ε2
Dfε(R

>
ϕQεRϕ) .

One can explicitly calculate that ∂2
ϕ(R>ϕQεRϕ) = R>ϕQ2×2,εRϕ and since fε is invariant

under the change Q↔ R>ϕQRϕ, for symmetric matrices Q, we also have Dfε(R>ϕQεRϕ) =

R>ϕDfε(Qε)Rϕ. This implies that a rotationally equivariant extended solution of (22) is

also solution of (23).

The last part of this subsection will be the following proposition which quanti�es the reg-

ularity we have gained by replacing Q̃ε with Qε. This result relies on the three dimensional

Euler-Lagrange equation. In fact, this is the only time we use (23) and cannot use (22) due to

its singular behaviour near ρ = 0.

Proposition 3.4. Let ‖Q̃ε‖L∞ ≤ C1 for a constant C1 ≥
√

2
3s∗ > 0 and let Qε be the rotationally

equivariant extended minimizer of (21). Then Qε ∈ C1(Ω, Sym0),

‖Qε‖L∞ ≤ C and ‖∇Qε‖L∞ ≤
C

ε
.

Proof. From equation (23) and by elliptic regularity we deduce that for Q̃ε ∈ H1 we have

Qε ∈ H3, i.e. Qε ∈ C1, 1
2 since we are in dimension 3. Note that the boundary of Ω is smooth. To

prove the L∞-bounds we take a constant C2 > C1 such that Dfε(Q) : Q ≥ 0 for all Q ∈ Sym0

with |Q| ≥ C2. This is possible due to Proposition 1.2 and (6). We de�ne a comparison map

Qε :=

C2
Qε
|Qε| if |Qε| > C2 ,

Qε otherwise.

Then |∇Qε| ≤ |∇Qε|, |Qε−Q̃ε| ≤ |Qε−Q̃ε| and fε(Q) ≤ fε(Qε) by Proposition 1.2 and our choice

of C2. Hence E3D
ε (Qε,Ω) ≤ E3D

ε (Qε,Ω) with strict inequality unless Qε = Qε. The estimate

‖∇Qε‖L∞ ≤ C
ε follows from [14, Lemma A.2], using (23), (20) and γ < 2.

3.2 Finite number of singularities away from ρ = 0

We introduce the notation Ωσ := {x ∈ Ω : x2
1 + x2

2 ≥ σ2} = Ω \ Zσ for σ > 0, with

Zσ de�ned as in Theorem 2.1. In the same spirit, we de�ne the two dimensional analogue

Ω′σ = {(ρ, z) ∈ Ω′ : ρ > σ}, i.e. Ωσ can be obtained from Ω′σ through rotation around the

e3−axis.

The main theorem we want to prove in this subsection is the following:
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Theorem 3.5. For all σ, δ > 0 there exists λ0, ε0 > 0 such that for ε ≤ ε0 there is a set Xε ⊂ Ω′

which satis�es:

1. The set Xε is �nite and its cardinality is bounded independently of ε.

2. If x ∈ Ω′σ and dist(x,Xε) > λ0ε, then dist(Qε(x),N ) ≤ δ.

The general idea behind this subsection is the same as in [18, 19], where the analysis has

been carried out for the case of minimizers of the energy
∫
|∇Qε|2 + 1

ε2
f(Qε) and uses ideas from

[13]. We will show that in our situation with the modi�ed bulk potential fε and the additional

term 1
εγ ‖Qε − Q̃ε‖2L2 the same results hold. There are two main ingredients for the proof of

Theorem 3.5: Proposition 3.11 that tells us that a singularity has an energy cost of order | ln ε|
and Proposition 3.7 that allows us to deduce that Qε is close to N (and hence being uniaxial)

provided 1
ε2

∫
fε(Qε) is su�ciently small. While the second ingredient uses only the regularity of

Qε, the �rst one makes use of equation (22) in the form of the following proposition.

Proposition 3.6 (Pohozaev identity). Let Qε be the minimizer of (21) and ω′ ⊂ Ω′ open with

Lipschitz boundary, x ∈ ω′. Then∫
∂ω′

ρ((x− x) · ν)

(
1

2
|∇′Qε|2 +

1

2ρ2
|∂ϕQε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
=

1

2

∫
ω′
ρ|∇′Qε|2 +

1

2

∫
ω′

1

ρ
|∂ϕQε|2 +

3

ε2

∫
ω′
ρfε(Qε) +

3

2εγ

∫
ω′
ρ|Qε − Q̃ε|2

+
1

εγ

∫
ω′
ρ(Qε − Q̃ε) : ((x− x) · ∇′Q̃) +

∫
∂ω′

ρ ((x− x) · ∇′Qε) : (ν · ∇′Qε) ,

where ν denotes the outward unit normal vector on ∂ω′.

Proof. To improve readability, we drop the subscripts ε in the proof. Our calculation only requires

that Q is solution of equation (22).

Let ω′ ⊂ Ω′ open with Lipschitz boundary and let x ∈ ω′ be an arbitrary point. By translation
and without loss of generality we may assume that x = 0. Testing the ij-component of equation

(22) with xk∂kQij and summing over i, j, k we �nd

0 =
∑
i,j,k

∫
ω′
−ρ∆Qijxk∂kQij +

1

ε2

∫
ω′
ρ
∂fε
∂Qij

xk∂kQij +
1

εγ

∫
ω′
ρ(Qij − Q̃ij)xk∂kQij

−
∫
ω′
∂ρQijxk∂kQij +

∫
ω′

1

ρ
Q2×2,ijxk∂kQij

=: I + II + III + IV + V.

(24)

Note, that the RHS of (22) vanishes since Qij is traceless, i.e.∑
i,j,k

∫
ω′

Λδijxk∂kQij =
∑
k

∫
ω′

Λxk∂k

∑
i,j

δijQij

 =
∑
k

∫
ω′

Λxk∂k(tr(Q)) = 0

For the �rst term (I) we calculate, using integration by parts∑
i,j,k,l

∫
ω′
−ρ ∂2

l Qijxk∂kQij =
∑
i,j,k,l

∫
ω′
ρ ∂lQijδlk∂kQij +

∫
ω′
ρ ∂lQijxk∂l∂kQij

−
∫
∂ω′

ρ ∂lQijxk∂kQijνl +

∫
ω′
δρl∂lQij∂kQijxk,

(25)
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where ν is the outward-pointing normal vector on ∂ω′. Note, that the last term reads
∫
ω′(∂ρQ) :

((x · ∇′)Q) and thus is cancelled by (IV). We apply another integration by parts to the second

term on the RHS of (25). This yields∑
i,j,k,l

∫
ω′
ρ ∂lQijxk∂l∂kQij =

∑
i,j,k,l

1

2

∫
ω′
ρ xk∂k(∂lQij∂lQij)

= −2

2

∑
i,j,l

∫
ω′
ρ ∂lQij∂lQij +

∑
i,j,k,l

1

2

∫
∂ω′

ρ ∂lQij∂lQijxkνk

− 1

2

∫
ω′
δρkxk∂lQij∂lQij .

Combined with (25) this gives

I + IV =

(
1− 2

2
− 1

2

)∫
ω′
ρ |∇′Q|2 +

1

2

∫
∂ω′

ρ |∇′Q|2(x · ν)−
∫
∂ω′

ρ (x · ∇′Q) : (ν · ∇′Q).

(26)

The second integral (II) simply gives

II =
∑
k

1

ε2

∫
ω′
ρ ∂k(fε(Q))xk = − 1

ε2

∫
ω′

3ρ fε(Q) +
1

ε2

∫
∂ω′

ρ fε(Q)(x · ν). (27)

For (III) we need to add (and subtract) the same integral with derivatives on Q̃ij . Then

III =
1

εγ

∫
ω′
ρ (Qij − Q̃ij)∂kQijxk

=
1

2εγ

∫
ω′
ρ ∂k(Qij − Q̃ij)2xk +

1

εγ

∫
ω′
ρ (Qij − Q̃ij)∂kQ̃ijxk

= − 3

2εγ

∫
ω′
ρ (Qij − Q̃ij)2 +

1

2εγ

∫
∂ω′

ρ (Qij − Q̃ij)2xkνk

+
1

εγ

∫
ω′
ρ (Qij − Q̃ij)∂kQ̃ijxk.

(28)

The �fth integral (V) simply gives∫
ω′

1

ρ
Q2×2 : ((x · ∇′)Q) =

∫
ω′

1

2ρ
(x · ∇′)(Q2×2 : Q)

= −1

2

∫
ω′

(
0 +

1

ρ

)
|∂ϕQ|2 +

1

2

∫
∂ω′

(ν · x)
1

ρ
|∂ϕQ|2.

(29)

Combining (26), (27), (28) and (29), the equality (24) reads∫
∂ω′

ρ(x · ν)

(
1

2
|∇′Q|2 +

1

2ρ2
|∂ϕQ|2 +

1

ε2
fε(Q) +

1

2εγ
|Q− Q̃|2

)
=

1

2

∫
ω′
ρ |∇′Q|2 +

1

ρ
|∂ϕQ|2 +

3

ε2

∫
ω′
ρ fε(Q) +

3

2εγ

∫
ω′
ρ |Q− Q̃|2

+
1

εγ

∫
ω′
ρ (Q− Q̃) : (x · ∇′Q̃) +

∫
∂ω′

ρ (x · ∇′Q) : (ν · ∇′Q),

which gives the result.
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Since almost all term in consideration contain a ρ factor due to the passage from Ω to Ω′σ, it

is natural to introduce

ρσmin(x0, l) := inf
{
ρ : (ρ, z) ∈ Bl(x0) ∩ Ω′σ

}
, (30)

for a point x0 ∈ Ω′σ and l > 0. Note that if we write x0 = (ρ0, z0), then ρσmin(x0, l) = max{ρ0 −
l, σ}. In particular, ρσmin(x0, l) ≥ σ.

The following proposition is a key ingredient in the proof of Theorem 3.5.

Proposition 3.7. For all δ > 0 there exist constants λ0, µ0 > 0 such that for all σ > 0, x0 ∈ Ω′σ,

ε small enough and l ∈ [λ0ε, 1] the following implication holds:

1

ε2

∫
B2l(x0)∩Ω′σ

ρ fε(Qε) ≤ µ0 ρ
σ
min(x0, 2l) ⇒ dist(Qε,N ) ≤ δ on Bl(x0) ∩ Ω′σ .

Proof. We claim that λ0, µ0 can be de�ned as

λ0 :=
δ

2C
, µ0 :=

π

8
λ2

0fmin ,

where C is a constant such that ε‖∇Qε‖L∞ ≤ C (see Proposition 3.4) and fmin is the minimum

of f on the set {Q ∈ Sym0 : |Q| ≤
√

2
3s∗,dist(Q,N ) ≥ δ/2}. Note that fmin > 0 since on this

compact set f is strictly positive. Furthermore, for ε small enough, we also have fε ≥ 1
2fmin on

this set.

In order to show that the de�nition indeed gives the desired implication, we argue by con-

tradiction. Therefore we assume that there exists x0 ∈ Ω and l ∈ [λ0ε, 1] such that there is an

x ∈ Bl(x0) ∩ Ω′σ with 1
ε2

∫
B2l(x0)∩Ω′σ

ρ fε(Qε) ≤ µ0ρ
σ
min(x0, 2l) and dist(Qε(x),N ) > δ.

This implies that Bλ0ε(x) ⊂ B2l(x0) ∩ (R2 \B1(0)). Indeed one can show that dist(x, ∂Ω) >

λ0ε. Otherwise one would have dist(Qε(x),N ) ≤ ‖∇Qε‖L∞dist(x, ∂Ω) ≤ Cλ0 = δ
2 by de�nition

of λ0. This clearly contradicts the assumption that dist(Qε(x),N ) > δ. Then, for all y ∈
Bλ0ε(x) ∩ Ω′σ by the triangle inequality

dist(Qε(y),N ) ≥ dist(Qε(x),N )− |Qε(x)−Qε(y)| > δ − λ0ε‖∇Qε‖L∞ ≥
δ

2
.

By de�nition of fmin this implies fε(Qε(y)) > 1
2fmin. Since Bλ0ε(x) ∩ Ω′σ ⊂ B2l(x0) ∩ Ω′σ and

|Bλ0ε(x) ∩ Ω′σ| ≥ 1
2π(λ0ε)

2 we know that

1

ε2

∫
B2l(x0)∩Ω′σ

ρ fε(Qε) ≥
1

ε2
ρσmin(x0, 2l)

∫
Bλ0ε(x)∩Ω′σ

fε(Qε)

≥ 1

ε2
ρσmin(x0, 2l)

π

2
(λ0ε)

2 1

2
fmin = 2µ0ρ

σ
min(x0, 2l) ,

which contradicts our assumption.

The next lemma basically tells us that for α ∈ (0, 1) there has to be some radius r ≤ εα/2 so

that we can control the energy on ∂Br in terms of the energy on Bεα/2 . It will become important

later on when we will use it to bound the energy contributions of the boundary terms from

Pohozaev identity (Proposition 3.6).
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Lemma 3.8. For all x0 ∈ Ω′ there exists r ∈ (εα, ε
α
2 ) (depending on x0 and ε) such that∫

∂Br(x0)∩Ω′
ρ

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
dx ≤ 4E2D

ε (Qε, Bεα/2(x0) ∩ Ω′)

αr| ln ε|
.

Proof. The proof consists of an averaging argument. Assume that no such r exists. With the

notation B′ = Bεα/2(x0) ∩ Ω′, this would imply

E2D
ε (Qε, B

′) =

∫ εα/2

0

∫
∂Br(x0)∩Ω′

ρ

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
dx dr

≥
∫ εα/2

εα

∫
∂Br(x0)∩Ω′

ρ

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
dx dr

≥ 4E2D
ε (Qε, B

′)

α| ln ε|

∫ εα/2

εα

1

r
dr

=
4E2D

ε (Qε, B
′)

α| ln ε|
α

2
| ln(ε)|

= 2E2D
ε (Qε, B

′) .

This gives that E2D
ε (Qε, B

′) = 0 and thus Qε is constant on B′ and Qε = Q̃ε ≡ Q∞,ε. But since
the constant map Q∞,ε satis�es the lemma, we get a contradiction.

The following two results (Lemma 3.10 and Proposition 3.11) are similar to [13], see also

[19, Lemma 1.4.8, Proposition 1.4.9]. Lemma 3.10 states that we can derive a better bound

(independent of ε) than (19) on balls Bεα for the energy contribution of fε. Then Proposition

3.11 tells us the cost in terms of energy for such a ball if Qε is not close to N . Both results rely

on the Pohozaev identity (Proposition 3.6) and Lemma 3.8. We start with a proposition that

will help us in the proof of Lemma 3.10 to obtain estimates at the boundary of ∂Ω′.

Proposition 3.9. There exist constants CΩ, ε1 > 0 such that for all 0 < ε ≤ ε1, r ∈ (εα, ε
α
2 ) and

y ∈ Ω′ there exists z ∈ Br(y) ∩ Ω′ such that

ν(x) · (x− z) ≥ CΩr ∀x ∈ ∂Ω′ ∩Br(y) ,

where ν is the outward unit normal on ∂Ω′.

Proof. Let us start by considering the domain R = {(x1, x2) ∈ R2 : x1, x2 > 0}. Let y ∈ R and

r > 0 such that Br(y) ∩ ∂R 6= ∅ (otherwise the result is trivial). Let L1 = |{x2 = 0} ∩ Br(y)|
and L2 = |{x1 = 0} ∩ Br(y)|. Then we de�ne z = y + r

2

(
R1/L(0, 1)> + L1/L(1, 0)>

)
, where

L2 = L2
1 + L2

2. We will show that this de�nition of z indeed satis�es our claim. Without loss of

generality we may assume that y1 ≥ y2. We consider the following cases:

1. (0, 0) ∈ Br(y). In this case, L1 = y1 +
√
r2 − y2

2 and L2 = y2 +
√
r2 − y2

1. Let x = (x1, 0).

Then ν(x) = (0,−1)> and

ν(x) · (x− z) = (y2 − x2) +
r

2

L1

L
≥ r

2

L1

L
.

Analogously, for x = (0, x2) we �nd ν · (x − z) ≥ r
2
L2
L . Since y1 ≥ y2 we have also the

inequality L1 ≥ L2. Minimizing L2/L subject to the constraint y1 ≥ y2 we get y1 = y2 and

thus L1 = L2, i.e. ν(x) · (x− z) ≥ r
2
√

2
.
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2. L2 6= 0 and (0, 0) /∈ Br(y). Then L1 = 2
√
r2 − y2

2 and L2 = 2
√
r2 − y2

1. A similar

calculation as in the �rst case shows that ν(x) · (x− z) ≥ r
2
√

2
.

3. L2 = 0. The lengths L1, L2 are given as in the second case, but since L2 = 0 we get directly

ν(x) · (x− z) ≥ r
2
L1
L = r

2 .

Now we consider the domain Ω′. For a radius 0 < r < 1
2 the angular di�erence between the

normal vectors of Ω′ and R is smaller than arccos(1− r). Thus, for ε1 small enough, 0 < ε ≤ ε1,
r ∈ (εα, ε

α
2 ), we can �nd CΩ > 0 such that

ν(x) · (x− z) ≥ r

2
cos
(π

4
+ arccos(1− r)

)
≥ r

2
cos
(π

4
+ arccos(1− εα/21 )

)
≥ CΩ r > 0 .

Lemma 3.10. Let x0 ∈ Ω′. Then there exists a constant Cα > 0 which depends only on α, γ,Ω,

the energy bound in (19) and the boundary data in (13) such that if ε is small enough

1

ε2

∫
Bεα (x0)∩Ω′

ρ fε(Qε) dx ≤ Cα .

Proof. By Lemma 3.8 there exists r ∈ (εα, ε
α
2 ) and a constant C > 0 such that for ε small enough∫

∂Br(x0)∩Ω′
ρ

(
1

2
|∇Qε|2+

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
≤ C

αr
, (31)

where we also used the energy bound (19).

Now assume in a �rst step that Br(x0) ⊂ Ω′. Using the Pohozaev identity from Proposition

3.6 with ω′ = Br(x0) and x = x0, we �nd

3

ε2

∫
Br(x0)

ρ fε(Qε) ≤
∫
∂Br(x0)

ρ ((x− x0) · ν)

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
+

1

εγ

∫
Br(x0)

ρ |Qε − Q̃ε||(x− x0) · ∇′Q̃ε|

−
∫
∂Br(x0)

ρ ((x− x0) · ∇′Qε) : (ν · ∇′Qε) .

(32)

Notice that since x ∈ ∂Br(x0) we have (x− x0) · ∇′Qε = rν · ∇′Qε, i.e.

((x− x0) · ∇′Qε) : (ν · ∇′Qε) = r
∣∣ν · ∇′Qε∣∣2 ≥ 0 ,

and (x− x0) · ν = r|ν|2 = r. Substituting this into (32), one gets

3

ε2

∫
Br(x0)

ρ fε(Qε) ≤ r
∫
∂Br(x0)

ρ

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
+

1

εγ

∫
Br(x0)

ρ |Qε − Q̃ε||(x− x0) · ∇′Q̃ε| .

By (31) and Cauchy-Schwarz inequality this entails

3

ε2

∫
Br(x0)

ρ fε(Qε) dx ≤ r C
αr

+
r

εγ

(∫
Br(x0)

ρ |Qε − Q̃ε|2
) 1

2
(∫

Br(x0)
ρ |∇′Q̃ε|2

) 1
2

≤ C

α
+ C

ε
α
2

εγ
(
(1 + | ln ε|)2εγ

) 1
2 ≤ C

α
+ Cε(α−γ)/4 ,
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provided α > γ and ε small enough. This proves the claim in the case where Br(x0) ⊂ Ω′.

In a second step we show that the result also holds if Br(x0) * Ω′. We de�ne Γ = Br(x0)∩∂Ω′

which is now non-empty. This enables us to write ∂(Br(x0)∩Ω′) = Γ∪ (∂Br(x0)∩Ω′). Again we

apply Proposition 3.6 with ω′ = Br(x0) ∩ Ω′ but this time we set x = z, where z ∈ Ω′ ∩ Br(x0)

is given by Proposition 3.9 for y = x0. By Proposition 3.6 we get

3

ε2

∫
Br(x0)∩Ω′

ρ fε(Qε) dx ≤
∫
∂Br(x0)∩Ω′

ρ ((x− x) · ν)

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
+

∫
Γ
ρ ((x− x) · ν)

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
− 3

2εγ

∫
Br(x0)∩Ω′

ρ |Qε − Q̃ε|2 −
1

εγ

∫
Br(x0)∩Ω′

ρ (Qε − Q̃ε) : ((x− x) · ∇′Q̃)

−
∫

Γ
ρ ((x− x) · ∇′Qε) : (ν · ∇′Qε)−

∫
∂Br(x0)∩Ω′

ρ ((x− x) · ∇′Qε) : (ν · ∇′Qε) ,

where we denoted ν the unit outward normal. For the integrals on ∂Br(x0)∩Ω′ and Br(x0)∩Ω′ we

proceed as before using |(x−x)·ν| ≤ 2r. Note, that this time (x−x)·τ does not necessarily vanish.
Nevertheless, the integral involving this term can be estimated from above by

∫
∂Br∩Ω′ 2rρ|∇

′Qε|2

and then be estimated using (31). Now we estimate the integrals involving Γ. First note that

Qε = Q̃ε = Qb on Γ ∩ ∂Ω with f(Qb) = 0, i.e.
∫

Γ∩∂Ω ρ f(Qε) = 0 ,
∫

Γ∩∂Ω ρ fε(Qε) ≤ CQbε
α/2/η2

and
∫

Γ∩∂Ω ρ |Qε − Q̃ε|
2 = 0. On Γ \ ∂Ω ⊂ {ρ = 0} we �nd that all integrals vanish because of

the bounds in Qε established in Proposition 3.4. We are left with the two integrals on Γ ∩ ∂Ω

with gradients. The idea is now to split the gradient into a tangential and a normal part. The

tangential part depends only on the boundary data Qb, the normal part needs to be estimated.

So let τ be the unit tangent vector on Γ. Decomposing ∇′Qε = (ν · ∇′Qε)ν + (τ · ∇′Qε)τ and

substituting this into
∫

Γ∩∂Ω ρ(x− x) · ν 1
2 |∇

′Qε|2 yields

3

ε2

∫
Br(x0)∩Ω′

ρ fε(Qε) dx ≤ 4
C

α
+ Cε(α−γ)/4 + CQbε

α/4 −
∫

Γ∩∂Ω
ρ ((x− x) · ∇′Qε) : (ν · ∇′Qε)

+
1

2

∫
Γ∩∂Ω

ρ ((x− x) · ν)|ν · ∇′Qε|2 +
1

2

∫
Γ∩∂Ω

ρ ((x− x) · ν)|τ · ∇′Qε|2

≤ 4
C

α
+ Cε(α−γ)/4 + CQbε

α/4 − 1

2

∫
Γ∩∂Ω

ρ ((x− x) · ν)|ν · ∇′Qε|2

−
∫

Γ∩∂Ω
ρ ((x− x) · τ)(τ · ∇′Qb) : (ν · ∇′Qε) ,

where we used that (x− x) = ((x− x) · ν)ν + ((x− x) · τ) · τ and that τ · ∇′Qε = τ · ∇′Qb only
depends on the given boundary values. We apply the inequality ab ≤ a2/(2C2) + C2b2/2 with

C =
√
CΩ/2 from Proposition 3.9 to get

3

ε2

∫
Br(Qε)∩Ω′

ρ fε(Qε) dx ≤ 4
C

α
+ Cε(α−γ)/4 + CQbε

α/4 − 1

2

∫
Γ∩∂Ω

ρ ((x− x) · ν)|ν · ∇′Qε|2

+
1

CΩ

∫
Γ∩∂Ω

ρ |(x− x) · τ ||τ · ∇′Qb|2 +
CΩ

4

∫
Γ∩∂Ω

ρ |(x− x) · τ ||ν · ∇′Qε|2 .
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Then we apply Proposition 3.9 to get

1

ε2

∫
Br(Qε)∩Ω′

ρ fε(Qε) dx ≤ 4
C

α
+ Cε(α−γ)/4 + CQbε

α/4 − 1

2

∫
Γ∩∂Ω

CΩrρ |ν · ∇′Qε|2

+
CΩ

4

∫
Γ∩∂Ω

2rρ |ν · ∇′Qε|2

= 4
C

α
+ Cε(α−γ)/4 + CQbε

α/4 .

We have now all the necessary tools to prove the second important ingredient for the proof

of Theorem 3.5.

Proposition 3.11. For all δ, σ > 0 there exist ε2, ζα > 0 such that for 0 < ε ≤ ε2 and x0 ∈ Ω′σ
the following implication holds:

dist(Qε(x0),N ) > δ ⇒ E2D
ε (Qε, Bεα(x0) ∩ Ω′) ≥ ζα(| ln ε|+ 1)ρσmin(x0, ε

α) ,

with ρσmin ≥ σ de�ned as in (30). The constant ζα can be chosen to be dependent only on α and

δ, while ε2 depends on δ, σ, α, γ.

Proof. Let's assume that the conclusion does not hold at x0 ∈ Ω′σ, i.e. E
2D
ε (Qε, Bεα(x0) ∩ Ω′) ≤

ζα(| ln ε|+ 1)ρσmin(x0, ε
α). Then there exists a radius r ∈ (ε2α, εα) such that∫

∂Br(x0)∩Ω′
ρ

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2

)
dx ≤ 2ζαρ

σ
min(x0, ε

α)

αr
. (33)

Indeed, otherwise

E2D
ε (Qε, Bεα(x0) ∩ Ω′) ≥

∫ εα

ε2α

2ζαρ
σ
min(x0, ε

α)

αr
dr = 2ζαρ

σ
min(x0, ε

α)| ln(ε)| ,

which clearly contradicts our assumption for ε < 1
e .

Replacing (31) by (33) in the proof of Lemma 3.10, i.e. C = 2ζαρ
σ
min(x0, ε

α), we �nd

1

ε2

∫
Br(x0)∩Ω′

ρ fε(Qε) ≤
8ζαρ

σ
min(x0, ε

α)

α
+ Cε

(α−γ)/4
2 ,

where the constant C can be chosen to be independent of α and ε. We choose ε2 small enough

such that it satis�es the estimate λ0ε2 <
1
2ε
α
2 . Now choose ζα ≤ α µ0

16 and ε2 ≤ (µ0σ2C )
4

α−γ , where µ0

is the constant from Proposition 3.7. These bounds imply that µ0ρ
σ
min(x0, ε

α) ≥ 8ζαρσmin(x0,εα)
α +

Cε
(α−γ)/4
2 , i.e. we can apply Proposition 3.7 with l = 1

2ε
α. This implies dist(Qε(x0),N ) ≤ δ,

which proves the claim.

Now we can �nally prove Theorem 3.5 and de�ne the set of singularities Xε. To do this, one

can proceed as follows: In a �rst step we cover Ω with balls of size εα and look for balls where

the energy is large. The number of such balls has to be �nite because of the energy bound. In

view of Proposition 3.11, Qε will be almost uniaxial outside of these balls. In the second step

we improve our estimates to the scale ε. We cover the balls with high energy from step one with
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balls of size ε and determine balls where f is large. By Lemma 3.10 this number will be �nite

too and Proposition 3.7 implies that Qε is indeed close to N on all other balls. We can then take

Xε to be the set of all centers of balls with large energy.

y3 ∈ Jε

y1 ∈ Iε \ Jε y2 ∈ Iε \ Jε
dist(Qε,N ) ≤ δ

E2D
ε (Qε, B2εα) ≥ ζα(| ln ε|+ 1)σ

Figure 1: First covering argument: Find balls Bεα , where the energy is large

Proof of Theorem 3.5. Let δ, σ > 0 be given and choose α ∈ (0, 1). Let {Bεα(y) : y ∈ Ω′} be a
covering of Ω′. By Vitali Covering Lemma there exists a countable family of points {yi}i∈Iε such
that

Ω′ ⊂
⋃
i∈Iε

Bεα(yi) , B 1
5
εα(yi) ∩B 1

5
εα(yj) = ∅ if i 6= j .

Let ζα > 0 be given as in Proposition 3.11. We de�ne

Jε :=
{
i ∈ Iε : E2D

ε (Qε, B2εα(yi) ∩ Ω′) > ζα(1 + | ln ε|)σ
}
.

Then by the energy bound (19),

ζα(1 + | ln ε|)σ#Jε ≤
∑
i∈Jε

E2D
ε (Qε, B2εα(yi) ∩ Ω′) ≤ CE2D

ε (Qε,Ω
′) ≤ C(1 + | ln ε|) . (34)

Indeed, note that there is a constant C depending only on the space dimension such that each

point in Ω′ is covered by at most C balls. This implies the second inequality in (34). From

(34) we directly infer that the cardinality of Jε is bounded by a constant dependent on δ, σ, α

as well as the space dimension and the energy bound, but independent of ε. Let i ∈ Iε \ Jε and
x0 ∈ Bεα(yi)∩Ω′σ. If dist(Qε(x0),N ) > δ we deduce by Proposition 3.11 that E2D

ε (Qε, B2εα(yi)∩
Ω′) ≥ E2D

ε (Qε, Bεα(x0) ∩ Ω′) > ζα(| ln(ε)|+ 1)σ, a contradiction to i ∈ Iε \ Jε. Hence

dist(Qε(x),N ) ≤ δ ∀x ∈ Bεα(yi) ∩ Ω′σ, i ∈ Iε \ Jε .

See also Figure 1. Note, that this estimate is not good enough since we announced the radius

around points in Xε to be of order ε instead of εα.
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Now �x i ∈ Jε. Again by Vitali Covering Lemma we can consider a covering of Bεα(yi) ∩Ω′σ
of the form

Bεα(yi) ∩ Ω′σ ⊂
⋃
j∈Iε,i

Bλ0ε(zj) , B 1
5
λ0ε

(zj) ∩B 1
5
λ0ε

(zk) = ∅ if j 6= k ,

with all zj ∈ Bεα(yi) and where λ0 is given by Proposition 3.7. Furthermore, we de�ne

Jε,i :=

{
j ∈ Iε,i :

1

ε2

∫
B2λ0ε

(zj)∩Ω′σ

ρ fε(Qε) ≥ µ0 σ

}
,

with µ0 again from Proposition 3.7. By Lemma 3.10, recalling that 2λ0ε < εα

µ0 σ #Jε,i ≤
∑
j∈Jε,i

1

ε2

∫
B2λ0ε

(zj)∩Ω′σ

ρ fε(Qε) ≤
C

ε2

∫
Bεα (yi)∩Ω′

ρ fε(Qε) ≤ Cα , (35)

so that #Jε,i is also bounded independently of ε. Applying Proposition 3.7 to the sets B2λ0ε(zj)

for j ∈ Iε,i \ Jε,i we get that dist(Qε(x),N ) ≤ δ for all x ∈ Bλ0ε(zj) ∩ Ω′σ, see Figure 2. Thus,

setting Xε :=
⋃
{zj : j ∈

⋃
i∈Jε Jε,i} yields the result.

z1 /∈ Jε,3

z2
z3 ∈ Jε,3

z4

z5 ∈ Jε,3

z6

dist(Qε,N ) ≤ δ

dist(Qε,N ) ≤ δ

1
ε2

∫
B2λ0ε

ρfε(Qε) > µ0

Figure 2: Second covering argument: Find balls, where 1
ε2

∫
ρfε(Qε) is large

3.3 Lower bound near singularities

The goal of this subsection is to precisely determine the cost of a singularity. The plan is to

use estimates as in [21, Chapter 6] which generalize the idea of [34, 47]. The general idea is to
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decompose the gradient of a function into a derivative of its norm and of its phase as for example

|∇u|2 = |∇|u||2 + |u|2
∣∣∣∇ u

|u|

∣∣∣2
for any vectorial function u that does not vanish. Following [19], we replace the phase u/|u| by
the projection of Qε onto N . As a substitute for the norm, we introduce the auxiliary function

φ.

De�nition 3.12. We de�ne the function φ : Sym0 → R by

φ(Q) =

 1
s∗
s(Q) (1− r(Q)) Q ∈ Sym0 \ {0} ,

0 Q = 0 ,

where s∗ is given as in Proposition 1.2 and s, r are the parameters from the decomposition of Q

in Proposition 1.3.

Proposition 3.13. The function φ is Lipschitz continuous on Sym0 and C1 on Sym0 \ C with

φ(Q) = 1 for all Q ∈ N . Furthermore, for a domain ω ⊂ Ω and Q ∈ C1(ω,Sym0), the function

R ◦Q is C1 on the open set Q−1(Sym0 \ C) and the following estimate holds:

|∇Q|2 ≥ s2
∗
3
|∇(φ ◦Q)|2 + (φ ◦Q)2|∇(R ◦Q)|2 in ω ,

where we use the convention that (φ ◦Q)2|∇(R ◦Q)|2 := 0 if Q(x) ∈ C.

Proof. The proposition follows directly from Lemma 2.2.3 and Lemma 2.2.7 in [19].

The next theorem gives the desired lower bound close to a singularity on a two dimensional

unit disk. A proof of this can be found in [20, Proposition 2.5].Observe that we work here with

the function f , not fε.

Theorem 3.14. There exist constants κ∗, C > 0 such that for Q ∈ H1(B1, Sym0) satisfying

Q(x) /∈ C for all x ∈ B1 \ B 1
2
and (R ◦ Q)|∂B1 is non-trivial, seen as element of π1(N ) the

following inequality holds∫
B1

1

2
|∇′Q|2 +

1

ε2
f(Q) dx ≥ κ∗φ2

0(Q,B1 \B 1
2
)| ln ε| − C , (36)

for a number φ0(Q,B1 \B 1
2
) := essinfB1\B 1

2

φ(Q) > 0. Furthermore, κ∗ = s2
∗
π
2 .

The constant κ∗ can be calculated as in [20, Lemma 2.9] or [19, Lemma 1.3.4] and is speci�c

for N ∼= RP 2. For other manifolds, there are analogous results with di�erent constants, see [21].

For our purposes, we will use the following version of Theorem 3.14.

Corollary 3.15. Let x0 ∈ Ω′ such that Bη(x0) ⊂ Ω′. Let Q ∈ H1(Bη(x0), Sym0) satisfying

Q(x) /∈ C for all x ∈ Bη \B 1
2
η and (R ◦Q)|∂Bη is non-trivial, seen as element of π1(N ). Then,

with the same constant C > 0 as in Theorem 3.14∫
Bη(x0)

1

2
|∇′Q|2 +

1

ε2
f(Q) dx ≥ κ∗φ2

0(Q,Bη \B 1
2
η)
(
| ln ε| − | ln η|

)
− C , (37)

where κ∗ = s2
∗
π
2 .
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Proof. By translating Ω′ we can assume that x0 = 0. In order to apply Theorem 3.14, we de�ne

x = 1
ηx and Q(x) = Q(ηx) = Q(x). Therefore Q ∈ H1(B1(0), Sym0) and veri�es the hypothesis

of Theorem 3.14 with ε̃ = εη, i.e.∫
Bη(x0)

1

2
|∇′Q|2 +

1

ε2
f(Q) dx =

∫
B1(x0)

1

2
|∇′Q|2 +

1

η2ε2
f(Q) dx

≥ κ∗φ2
0(Q,B1 \B 1

2
)| ln ε̃| − C

≥ κ∗φ2
0(Q,Bη \B 1

2
η)
(
| ln ε| − | ln η|

)
− C .

3.4 Lower bound away from singularities

The following proposition shows that we can uniformly bound the functions φ and φ0 from the

previous section if Q is close to N .

Proposition 3.16. Let dist(Q,N ) ≤ δ on ω ⊂ Ω. Then

1−
√

3

s∗
δ ≤ (φ ◦Q)(x) ≤ 1 +

√
3

s∗
δ .

Proof. Let Q ∈ Sym0 with dist(Q,N ) ≤ δ. In other words, |Q − R(Q)| ≤ δ, since R is the

nearest-point projection onto N . We use Proposition 1.3 to write

Q = s

((
n⊗ n− 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
and R(Q) = s∗

(
n⊗ n− 1

3
Id

)
,

for n,m orthonormal eigenvectors of Q, s > 0 and r ∈ [0, 1). We can estimate

|Q−R(Q)|2 =

∣∣∣∣(s− s∗)(n⊗ n− 1

3
Id) + sr(m⊗m− 1

3
Id)

∣∣∣∣2
=

2

3
|s− s∗|2 +

2

3
|sr|2 − 2

3
sr(s− s∗)

≥ 1

3
|s− s∗|2 +

1

3
|sr|2 +

1

3
|s− s∗ − sr|2 ,

(38)

i.e. δ2 ≥ 1
3 |s(1− r)− s∗|

2 = s2∗
3 |φ(Q)− 1|2. Hence |φ(Q)− 1| ≤

√
3
s∗
δ.

Away from singularities the main contribution to the energy comes from the Dirichlet term

and the external �eld since Qε is close to N . More precisely, we only need the energy in ra-

dial direction, i.e. |∇Qε|2 can be replaced by |∂rQε|2 and the problem becomes essentially one

dimensional. We formalize this thoughts by introducing the following auxiliary problem as in [3]

I(r1, r2, a, b) := inf
n3∈H1([r1,r2],[0,1])
n3(r1)=a, n3(r2)=b

∫ r2

r1

s2
∗|n′3|2

1− n2
3

+ c2
∗(1− n2

3) dr (39)

for 0 ≤ r1 ≤ r2 ≤ ∞, a, b ∈ [−1, 1]. Note, that this is equivalent to minimizing
∫ (

1
2 |∂rQ|

2 + g(Q)
)

dr

for a function Q taking values in N subject to suitable boundary conditions. For the in�mum

we have the following result.

27



Lemma 3.17. Let 0 ≤ r1 ≤ r2 ≤ r3 ≤ ∞ and a, b, c ∈ [−1, 1]. Then

1. I(r1, r2, a, b) + I(r2, r3, b, c) ≥ I(r1, r3, a, c).

2. I(r1, r2,−1, 1) ≥ 4s∗c∗.

3. Let θ ∈ [0, π]. Then

I(0,∞, cos(θ),±1) = 2s∗c∗(1∓ cos(θ)) .

Furthermore, the minimizer n(r, θ) of I(0,∞, cos(θ), 1) is C1 and |∂θn|2, |∂rn|2, |n − e3|
decay exponentially as r →∞. The minimizer can be explicitly expressed as

n(r, θ) =


√

1− n2
3

0

n3

 , n3(r, θ) =
A(θ)− exp(−2c∗/s∗r)

A(θ) + exp(−2c∗/s∗r)
, A(θ) =

1 + cos(θ)

1− cos(θ)
.

Proof. The �rst part follows directly from de�nition, since any function that is admissible for

I(r1, r2, a, b) combined with one for I(r2, r3, b, c) is admissible for I(r1, r3, a, c). For the second

claim, we use the inequality X2 + Y 2 ≥ 2XY with X = s∗|n′3|/
√

1− n2
3 and Y = c∗

√
1− n2

3 to

get

I(r1, r2,−1, 1) ≥ 2s∗c∗

∫ r2

r1

|n′3| dr ≥ 2s∗c∗

∣∣∣∣∫ r2

r1

n′3 dr

∣∣∣∣ = 2s∗c∗|n3(r2)− n3(r1)| = 4s∗c∗ .

The third part follows from Lemma 3.4 and Remark 3.5 in [3].

Remark 3.18. 1. A close look at Lemma 3.17 reveals that it is enough to consider a rotationally

symmetric function g which has a strict minimum on N at Q = s∗(e3⊗ e3− 1
3 Id). Indeed,

then for Q = s∗(n ⊗ n − 1
3 Id) we can write g̃(n3) = g(Q) and I becomes I(r1, r2, a, b) =

inf
∫ r2
r1

s2∗|n′3|2
1−n2

3
+ g̃(n3) dr. Taking a minimizer n3(r) for n3(0) = 0 and limr→∞ n3(r) = t we

can de�ne G(t) = 2s∗
∫ √ g̃(n3)

1−n2
3
|n′3| dr. One can then derive estimates analogous to Lemma

3.17, e.g. I(r1, r2,−1, 1) ≥ 2G(1).

2. Lemma 3.17 and (39) only uses the form of g on N . As we have seen in Proposition 3.2, we

can neglect the behaviour of g far from N for smaller norms of Q due to the dominating

character of f in our asymptotic regime. With the same argument one could also introduce

a cut-o� for higher norms as long as the growth assumption (5) is satis�ed. So the essential

information about how g contributes to the energy is g|N , i.e. (7).

Now we can combine all our previous results to prove the lower bound of Theorem 2.1. The

idea consists in replacing Q̃ε by its approximation Qε and use the equivariance to write the energy

as a two dimensional integral. By Theorem 3.5 we can exclude regions in Ω′σ where Qε is far from

N . Extending the sets if necessary, we can assure that the union has vanishing measure in the

limit η, ε→ 0 and that the complement Ω0 is simply connected. The scaling of η and ε allows to

apply Corollary 3.15 to each of these extended sets where the boundary datum is nontrivial. The

expression we calculate here can later be identi�ed as the perimeter term in E0. In the simply

connected complement Ω0 there exists a lifting nε of Qε which ful�ls the compactness (16). We

then want to apply Lemma 3.17 to the rays in Ω0 for the lower bound. We consider the rays
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with high energy (that we can estimate easily) and those with low energy where we need to be

more precise about their behaviour far from the boundary ∂Ω. Using a diagonal sequence, we

can pass to the limit σ → 0.

Proof of the lower bound (17) of Theorem 2.1. Let δ, σ > 0 be arbitrary. We de�ne Qε as in (21)

and extend it rotationally equivariant. From Theorem 3.5 for ε ≤ ε0 we know that there exists a

�nite set Xε of singular points xε1, ..., x
ε
Nε

in Ω′σ. In a �rst step, we suppose that all these points

are included in the set Ω′R = Ω′σ ∩BR(0).

Since Ω′R is bounded, there exists another �nite set X, such that each sequence xεj converges

(up to a subsequence) to a point in X as ε, η → 0. Note that there may be more than one

sequence converging to the same point in X and we a priori only know that X ⊂ Ω′ ∩BR.

We �rst assume that the set X is contained in Ω′σ \ ∂Ω. Since η| ln ε| → β ∈ (0,∞) we know

that ε ≤ C exp(− 1
η ). Assume that η is small enough such that 2λ0ε ≤ 1

2η.

For xi ∈ X we de�ne Ω̃ε
i
′ = conv{Bη(xi)∪{0}}∩Ω′. If xi is the only point of the set X that

lies on the ray from 0 through xi we de�ne Ωε
i
′ := Ω̃ε

i
′. If xj for j ∈ J ⊂ I de�ne the same ray,

i.e. lie on a common line through 0, then we set Ωε
j
′ :=

⋃
k∈J Ω̃ε

k
′. After relabelling, we end up

with a �nite number N of sets Ωε
k
′, k = 1, ..., N . We de�ne Ωε

0
′ := Ω′σ \

⋃N
k=1 Ωε

k
′ (see Figure 3).

Since all points in Xε converge to some point in X, we may assume that ε is small enough such

that ⋃
x∈Xε

Bλ0ε(x) ⊂
⋃
x∈X

B2λ0ε(x) ⊂
N⋃
k=1

Ωε
k
′ ⊂ Ω′σ . (40)

We drop the ε in the notation of Ωε
k
′ for simplicity and call Ωk the three dimensional set de�ned

by rotating Ω′k around the e3−axis.

Using (21) and Remark 3.3 we can write

η Eε(Q̃ε) ≥ η
∫

Ω

1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2 dx

≥ η
∫

Ω0

1

2
|∇Qε|2 +

1

ε2
fε(Qε) +

1

2εγ
|Qε − Q̃ε|2 dx

+ η
N∑
k=1

∫ 2π

0

∫
Ω′k

ρ

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε)

)
dρ dz dϕ .

(41)

For x ∈ Ω0 we know by Theorem 3.5 that dist(Qε(x),N ) ≤ δ. Since Ω′0 and thus Ω0 is simply

connected there exist liftings ±nε : Ω0 → S2 such that

s∗

(
nε ⊗ nε − 1

3
Id

)
= R ◦Qε and

∥∥∥∥s∗(nε ⊗ nε − 1

3
Id

)
−Qε

∥∥∥∥
∞
≤ δ on Ω0 .

In particular, Qε(x) ∈ Sym0\C for all x ∈ ∂Ω′k for all k = 1, ..., N . LetM⊂ {1, ..., N} be the set
of elements k ∈ {1, ..., N} such that (R◦Qε)|∂Ω′k

is non-trivial as an element of π1(N ). On Bη(xk)

we apply Corollary 3.15 to
∫
Bη(xk)

1
2 |∇Qε|

2 + 1
ε2
f(Qε). The term η

∫
Bη(xk)

1
η2
|g(Qε)| + C0(ε, η)

is seen to be bounded by Cη. On the remaining Ω′k \ Bη(xk) we use that the energy density
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1
2 |∇Qε|

2 + 1
ε2
fε(Qε) ≥ 0 is non-negative. Hence we get

η

N∑
k=1

∫
Ω′k

ρ

(
1

2
|∇Qε|2 +

1

ε2
fε(Qε)

)
dρ dz ≥ η

N∑
k=1

inf
Ω′k

ρ

∫
Ω′k

(
1

2
|∇Qε|2 +

1

ε2
f(Qε)

)
dρ dz − Cη

≥ η
∑
k∈M

κ∗φ
2
0(Qε, Bη(xk) \B 1

2
η(xk))

ρεk − η
|xεk|

| ln ε|η

− Cφ2
0(Qε, Bη(xk) \B 1

2
η(xk)) η| ln η| − Cη

≥

(
1−
√

3

s∗
δ

)2 ∑
k∈M

ρεk − η
|xεk|

π

2
s2
∗η| ln(ε)|

− C

(
1 +

√
3

s∗
δ

)2

η| ln η| − Cη ,

(42)

where we also applied Proposition 3.16 to estimate φ0 from below.

Before estimating the energy coming from Ω0, we need an additional information, namely

we want to show that nε(rω) approaches +e3 and −nε(rω) approximates −e3 (or vice versa) as

r →∞ for a.e. ω ∈ S2. However, it will be enough for our analysis to just show that nε is close

to either +e3 or −e3 up to some factor times
√
δ. To start with, we show that the vector nε(rω)

for r → ∞ is close to +e3 or −e3 almost everywhere. By (21) and the energy bound we know,

that for a.e. ω ∈ S2 the integral∫ ∞
R

η

ε2
f(Qε) +

1

η
g(Qε(rω)) + ηC0(ε, η) dr <∞ . (43)

We argue by contradiction, i.e. assume that there exists some ω ∈ S2 satisfying (43) such that

lim supr→∞ ||nε3(rω)| − 1| > 2Ca
√
δ for a C > 0 to be speci�ed later and a is the constant from

Proposition 1.5. This implies that there exists a sequence r` such that r` → ∞ as ` → ∞ and

|nε3(r`ω)| < 1 − 2Ca
√
δ for all ` ∈ N or in other words |Qε − s∗(e3 ⊗ e3 − 1

3 Id)| > 2a
√
δ for a

suitably chosen C (A calculation shows that C ≥ 5
4
√

2s∗
is su�cient). By Lipschitz continuity

of Qε this implies |Qε − s∗(e3 ⊗ e3 − 1
3 Id)| > a

√
δ for all r ∈ I` := (r` − εCa

√
δ

C , r` + εCa
√
δ

C ).

This implies that g(Qε) ≥ gmin > 0 for such points in I`, where we used gmin = min
{
g(Q) :

Q ∈ Sym0 ,dist(Q,N ) ≤ δ , |Q − s∗(e3 ⊗ e3 − 1
3 Id)| ≥ a

√
δ
}
> 0 by Proposition 1.5. With this

estimate in mind it becomes clear that we have the lower bound

1

η

∫
I`

η

ε2
f(Qε) +

1

η
g(Qε(rω)) + ηC0(ε, η) dr ≥ 1

η
gmin|I`| =

1

η
gmin

2εCa
√
δ

C
> 0 .

Summing over disjoint intervals yields a contradiction to (43).

This implies that either lim supr→∞ nε3(rω) ≥ 1−2Ca
√
δ or lim infr→∞ nε3(rω) ≤ −1+2Ca

√
δ.

Indeed, nε3(rω) cannot alternate between ±1 since by continuity this yields a contradiction for

δ small enough such that 2Ca
√
δ � 1

2 . Next, consider the lifting nε and suppose that there

exist directions ω+, ω− ∈ S2 such that nε(rω+) is close to +e3 (resp. nε(rω−) close to −e3) as

r → ∞. Since our previous analysis holds a.e., we can assume that the angle between ω+ and

ω− is smaller than π and that ω± are not parallel to e3. Let v = ω+−ω− and w = ω+ +ω−. We
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estimate the energy in new coordinates (r, s) in the segment between the rays de�ned through

ω+ and ω− to get

C ≥
∫ R̃

R+1

∫ r|v|/2

−r|v|/2
ρ

(
η

2

∣∣∣∇′Qε(r v|v| + s
w

|w|

)∣∣∣2 +
1

η
g
(
Qε

(
r
v

|v|
+ s

w

|w|

)))
ds dr

≥ C(1− Cδ)2

∫ R̃

(R+1)

∫ r|v|/2

r|v|/2
ρ

(
ηs2
∗

∣∣∣ v|v| · ∇′nε∣∣∣2 +
1

η
c2
∗(1− nε3)− Cδ

)
ds dr .

Lemma 3.17 gives the lower bound
∫ r|v|/2
−r|v|/2

(
ηs2
∗| v|v| · ∇

′nε|2 + 1
η c

2
∗(1− nε3)

)
ds ≥ 4c∗s∗ − C

√
δ.

Using ρ ≥ rmin{sin(θ+), sin(θ−)} for θ± being the angular coordinate of ω±, we end up with

C ≥ C(1− Cδ)2

∫ R̃

R+1
r(4c∗s∗ − C

√
δ) dr ≥ CR(1−

√
δ)R̃

3
2 > 0 ,

provided δ > 0 small enough. Sending R̃ to in�nity, we get a contradiction. Hence, nε has to

approach either +e3 or −e3 a.e. and thus we can distinguish the two liftings by their asymptotics

far from ∂Ω.

We now introduce sets Fσ,ε, F̃σ,ε which we use later to prove the compactness result. First

choose one of the two possible liftings nε ∈ C0(Ω0,S2). Without loss of generality we choose

the lifting such that nε(rω) is close to +e3 as r → ∞. The boundary conditions (13) imply

that nε(ω) = ±ν(ω), where ν is the outward normal on S2 for all ω ∈ ∂Ω0 ∩ S2. We de�ne

Fσ,ε := {ω ∈ S2 ∩ ∂Ω0 : nε(ω) · ν(ω) = 1}. Conversely, F̃σ,ε is then given by F̃σ,ε = {ω ∈
S2 ∩ ∂Ω0 : nε(ω) · ν(ω) = −1}. The remaining part of S2 ∩ Ωσ is denoted Sσ,ε = (S2 ∩ Ωσ) \
(Fσ,ε ∪ F̃σ,ε) =

⋃
k≥1(S2 ∩ ∂Ωk). Note that the sets Fσ,ε, F̃σ,ε and Sσ,ε are rotationally symmetric

with respect to the ϕ coordinate. Since the θ−angular size of all Ωk converges to zero (i.e.

|Sσ,ε| → 0 as ε → 0) and S2 ∩ Ωσ is compact, we get that (up to extracting a subsequence)

χFσ,ε (resp. χF̃σ,ε) converges pointwise to a characteristic function χFσ (resp. χ
F̃σ
). By triangle

inequality we get dist(Q̃ε,Nε) ≤ dist(Qε,Nε)+|Qε−Q̃ε|, whereNε is the manifoldNη,ξ introduced
in Proposition 1.6. By Remark 3.3, Proposition 1.6 and the energy bound (19) we get that∫

Ω0
dist2(Q̃ε,Nε) dx → 0 as ε, η → 0. On bounded sets additionally use (11) to get the claimed

L2−convergence in (16).

As a last step, it remains the energy estimate on Ω0. We split the integral over Ω0 in (41)

in several parts: For ω ∈ Fσ,ε such that the energy on the ray in direction ω is large, i.e.∫∞
1

η
2 |∇Qε|

2 + η
ε2
f(Qε) + 1

ηg(Qε) + ηC0(ε, η) + η
2εγ |Qε− Q̃ε|

2 dr ≥ 4s∗c∗, we can use Lemma 3.17

that implies∫ ∞
1

η

2
|∇Qε|2 +

η

ε2
f(Qε) +

1

η
g(Qε) + ηC0(ε, η) +

η

2εγ
|Qε− Q̃ε|2 dr ≥ 4s∗c∗ ≥ I(1,∞, ν3(ω),+1) .

(44)

Analogously, for points ω ∈ F̃σ,ε with energy greater than 4s∗c∗ we use I(1,∞, ν3(ω),−1) as a

lower bound. Let's consider the set of points ω ∈ S2∩∂Ω0 such that the energy on the ray through

ω is smaller than 4s∗c∗. We claim that there exists a constant C > 0 independent of ω and a

radius Rη,ω ∈ (R−Cη,R] such that ||nε3(Rη,ωω)|−1| ≤ 2Ca
√
δ � 1. Indeed, if ||nε3(Rη,ωω)|−1| >

2Ca
√
δ on (R − Cη,R] then on this set |Qε − s∗(e3 ⊗ e3 − 1

3 Id)| ≥ 2a
√
δ. Hence for C large

enough this contradicts 4s∗c∗ ≥
∫ η
ε2
f(Qε) + 1

ηg(Qε) + ηC0(ε, η) dr ≥ (R − (R − Cη))Ca
√
δ

η . In
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order to conclude that the energy from 1 to Rη,ω is (up to some small contributions of size
√
δ)

close to I(1,∞, ν3(ω),±1) we need to show that for ω ∈ Fσ,ε the vector nε(Rη,ω) is close to +e3

and not −e3 (and vice versa for ω ∈ ˜Fσ,ε). Again we argue by contradiction, i.e. we assume that

|nε(Rη,ω) + e3| ≤ 2Ca
√
δ. We subdivide the ray in direction ω from R to in�nity into segments

of length 1, identi�ed with the intervals J` = [`, `+ 1] for the radial variable, for integers ` ≥ R.
On every segment, the energy bound on the ray implies the existence of two points a`, b` ∈ J`
with |a` − `| ≤ Cη, |b` − (`+ 1)| ≤ Cη such that ||nε3(a`)| − 1| ≤ 2Ca

√
δ, ||nε3(b`)| − 1| ≤ 2Ca

√
δ.

Since we assumed nε(Rω,η) close to −e3 and nε approaches +e3 for ` → ∞, there exists some

integer ` ≥ R such that |nε3(a`) + 1| ≤ 2Ca
√
δ, |nε3(b`) − 1| ≤ 2Ca

√
δ. Together with (8) this

implies∫
J`

η

2
|∇Qε|2 +

1

η
g(Qε) dr ≥ I(`, `+ 1,nε3(a`),n

ε
3(b`))− C(Ca + 1)

√
δ ≥ 4s∗c∗ − C

√
δ .

In order to show that for δ and ε small enough this contradicts the assumption of the ray having

energy smaller than 4s∗c∗, we prove that the energy coming from the segment [0, R] has to be

positive with a uniform lower bound. Since ω ∈ Fσ,ε ⊂ ∂Ωσ one can show as in 2. in Lemma 3.17

that on such a ray
∫ R

1
η
2 |∇Qε|

2 + 1
ηg(Qε) dr ≥ 4s∗c∗(

1
2σ

2 − 8Ca
√
δ). So combining this result

and the estimate for Jk we get

4s∗c∗ ≥ 4s∗c∗ − C
√
δ + 2s∗c∗

(1

2
σ2 − 8Ca

√
δ
)
,

which yields a contradiction for δ, ε small enough. For ω ∈ Fσ,ε we then use the change of

variables r = 1 + ηr̃, (8), Proposition 3.13 and Proposition 3.16 to get∫ R

1

η

2
|∇Qε|2 +

1

η
g(Qε) dr ≥

∫ (R−1)/η

0

1

2
|∇Qε|2 + g(R ◦Qε)− C dist(Qε,N ) dr̃

≥ (1− Cδ)2

∫ (R−1)/η

0

1

2
|∇(R ◦Qε)|2 + g(R ◦Qε) dr̃ − Cδ

≥ I(0, (Rη,ω − 1)/η, ν3(ω),nε3((Rη,ω − 1)/η))− Cδ
≥ I(0, (Rη,ω − 1/η, ν3(ω),+1)− Cδ ,

(45)

where we also used Proposition 1.6 to get

dist(Qε,N ) ≤ dist
(
Qε,Nε

)
+ C

ε2

η2
≤ C

(
f(Qε) +

ε2

η2
g(Qε) + ε2C0(ε, η)

) 1
2

+ C
ε2

η2

and thus by Cauchy-Schwarz inequality and the energy bound on the ray
∫ (R−1)/η

0 dist(Qε,N ) dr̃ ≤
C
√
R ε√

η + CR ε2

η3
. So by (44) and (45) we get that for ω ∈ Fσ,ε we have∫ ∞

1

η

2
|∇Qε|2 +

1

η
g(Qε) dr ≥ min{I(0,∞, ν3(ω),+1), I(0, (Rη,ω − 1/η, ν3(ω),+1)− Cδ} .

Furthermore, by compactness, χFσ,ε converges point wise a.e. to χFσ . Since (Rη,ω − 1)/η → ∞
as η → ∞ we can apply Fatou's Lemma to get the energy contribution from Ω0 related to Fσ,ε
by

lim inf
ε,η→0

∫
Fσ,ε

∫ ∞
1

η

2
|∇Qε|2 +

η

ε2
f(Qε) +

1

η
g(Qε) + ηC0(ε, η) dr dω

≥
∫
S2∩∂Ω0

lim inf
ε,η→0

min{I(0,∞, ν3(ω),+1), I(0, (Rη,ω − 1/η, ν3(ω),+1)− Cδ}χFσ,ε(ω) dω

≥
∫
Fσ

I (0,∞, ν3(ω),+1) dω − Cδ .
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Now combine this estimate, the analogous result for F̃σ,ε, the formulae for I(0,∞, ν3(ω),±1)

from Lemma 3.17 and (42) to get

lim inf
ε,η→0

ηEη,ξ(Qη,ξ) ≥
∫
Fσ

2s∗c∗(1− cos(θ)) dω +

∫
F̃σ

2s∗c∗(1 + cos(θ)) dω

+ (1− Cδ)2
∑
k∈M

ρk − η
|xk|

π2s2
∗β − Cδ ,

for the points xk = (ρk, θk) ∈ X.

It remains to show that for all k ∈ M, the point xk/|xk| corresponds to a jump between

Fσ and F̃σ. For this it is enough to show that the orientation of nε relative to the normal on

∂Ω changes when following ∂Ω′k ∩ Ω′ for all k ∈ M. So let k ∈ M and consider the curve

Γ : ∂Ω′k → S2 de�ned by nε|∂Ω′k
. By de�nition of M, the curve is non-trivial in π1(N ), i.e. Γ

jumps an odd number of times from one vector to its antipodal vector on the sphere. Hence, the

orientation has to change. In the limit ε, η → 0, this implies that

2π
∑
k∈M

ρk
|xk|

= |DχFσ |(S2 ∩ {ρ > σ}) .

This implies our result in the case Xε, X ⊂ (Ω′ ∩BR(0)) \ ∂Ω.

We now explain the changes in our construction if there are some xi ∈ X ∩ S2. Basically, we

use the same construction as before, but we need to take care that the lower bound involving

Corollary 3.15 stays applicable. To see this, we extend the map Qε outside of Ω using the

boundary values. We de�ne

Qε(x) =

Qε(x) x ∈ Bη(xi) ∩ Ω ,

s∗

(
x
|x| ⊗

x
|x| −

1
3 Id
)

x ∈ Bη(xi) ∩B1(0) .

Then f(Qε) = 0 and |∇Qε|2, |g(Qε)| ≤ C on Bη(xi) ∩B1(0), i.e.∫
Bη(xi)∩B1(0)

1

2
|∇Qε|2 +

1

ε2
f(Qε) +

1

η2
g(Qε) + C0(ε, η) dx ≤ C1 .

So if (R◦Qε)|∂Ω′i
is non-trivial as element of π1(N ), we can apply Corollary 3.15 to the extension

Qε, i.e.

η

∫
Bη(xi)∩Ω′

1

2
|∇Qε|2 +

1

ε2
f(Qε) dx ≥ η

∫
Bη(xi)∩R2

|∇′Qε|2 +
1

ε2
f(Qε) dx− η C1

≥

(
1−
√

3

s∗
δ

)2
π

2
s2
∗η| ln ε| − C η| ln η| − C η .

If (R ◦Qε)|∂Ω′i
is trivial, then we just estimate as before, using that the energy is non-negative.

It remains one last case. Assume that there is a point xεk ∈ Xε such that |xεk| → ∞ as

ε → 0. This causes two modi�cations to our previous results: This time, we de�ne Ω̃ε
k
′ =

conv{Bη(xεk) ∪ {0}} ∩ Ω′. Doing so, we risk to exclude a region from Ω0 that is too large for

proving the compactness, namely when we de�ne the set ωη afterwards. But in fact this is not

really a di�culty for two reasons: First, it is possible to extend nε continuously in Ω̃ε
k
′ \ Ω̂ε

k
′,
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with Ω̂ε
k
′ = (Bη(x

ε
k)∪ [0, xεk])∩Ω′, where [0, xεk] is the line segment between the points 0 and xεk.

Second, in order to conclude that also the measure of Ω̂ε
k is bounded, we need to show that ρεk

cannot grow to in�nity. To see this, note that xεk ∈ Ωσ and by applying Proposition 3.11 one gets

from the energy bound that ρσmin(xεk, ε
α) is indeed bounded. All estimates for the lower bound

that we have done before stay valid in this setting.

So far, we have established the inequality

lim inf
η,ξ→0

ηEη,ξ(Qη,ξ) ≥ (1− Cδ)2π

2
s2
∗β|DχFσ |(S2 ∩ {ρ ≥ σ})

+

∫
Fσ

2s∗c∗(1− cos(θ)) dω +

∫
F̃σ

2s∗c∗(1 + cos(θ)) dω − C
√
δ .

(46)

We now de�ne the set ωσ,ε as proxy for the set ωη from Theorem 2.1. Let ω′σ,ε :=
⋃
k≥1 Ω̂ε

k
′,

where the sets Ω̂ε
k
′ = Ωε

k
′ for bounded sequences |xεk|, and given as in the second construction if

|xεk| diverges. This is well de�ned for ε (and therefore η) small, depending on σ and δ. Recall that

since η| ln ε| → β ∈ (0,∞), we have the asymptotic η ∼ | ln ε|−1. Let ωσ,ε be the corresponding

rotational symmetric extended set. Then |ω′σ,ε| ≤ C|
⋃
x∈Xε Bη(x)| ≤ Cη2|Xε| ≤ C η2

δ4σ2 , i.e.

choosing η small we can force the measure of ω′σ,ε to vanish in the limit. Note that this also

implies that the measure of ωσ,ε vanishes because we have an upper bound on the ρ−component

of points in Xε.

We now want to send σ → 0 and choose a diagonal sequence with the properties announced

in the theorem. From our previous construction, for a sequence σk ↘ 0 there exist corresponding

sequences δk ↘ 0, ηk ↘ 0 and εk ↘ 0 such that from (46)

ηEη,ξ(Qη,ξ) ≥
π

2
s2
∗β|DχFσk,ε |(S

2 ∩ {ρ ≥ σk})

+

∫
Fσk,ε

2s∗c∗(1− cos(θ)) dω +

∫
F̃σk,ε

2s∗c∗(1 + cos(θ)) dω − 1

k
,

and furthermore |ωσk,ε| ≤ 1
k , |S

2 \ (Fσk,ε ∪ F̃σk,ε)| ≤ 1
k and

∫
Ωσk\ωσ,ε

dist2(Q̃ε,Nε) dx ≤ 1
k2

for

ε ≤ εk and η ≤ ηk. The sequences εk and ηk depend on σk and δk and are related via ηk| ln εk| → β

as k →∞.

So we can de�ne the function nη : Ω→ S2 announced in the theorem as nη := nε on Ωσk \ωη
for η ∈ (ηk+1, ηk), ωη := ωσk,ε and extend it measurably to a map Ω → S2. This de�nition

assures that nη ∈ C0(Ωσk \ ωη,S2) and the convergence in (16) holds. Furthermore, we de�ne

the set Fη := Fσk,ε for η ∈ (ηk+1, ηk). Then our analysis shows that the sequence χFη has the

point wise a.e. limit χF , for F =
⋃
k>1 Fσk since |χF − χFη | ≤ |χF − χFσk |+ |χFσk − χFσk,ε | and

the measure of the set on which these two terms are nonzero is smaller than Cσ2
k + 1

k .

This �nishes the proof of the �rst part of Theorem 2.1 and (17).
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x1 ∈ X

y1 ∈ Xε

Ω1

x2 ∈ X
y2 ∈ Xε y3 ∈ Xε

Ω2

Ω0

σ

Zσ

Fσ,ε

F̃σ,ε

Figure 3: Construction made in the proof of Theorem 2.1. The arrows show a lifting nε. In the

region Ω1 the director �eld nε has non-trivial homotopy class, around the region Ω2, nε has a

trivial one.

4 Upper bound

In this section we are going to prove the upper bound from Theorem 2.1, namely (18). Since all

functions are rotationally equivariant, it is useful to introduce the two dimensional energy for

sets ω′ ⊂ Ω′

E2D
ε (Q,ω′) =

∫
ω′
ρ

(
1

2
|∇′Q|2 +

1

ρ2
Q2×2 : Q+

1

ε2
f(Q) +

1

η2
g(Q) + C0(ξ, η)

)
dρ dθ .

First, we show the following lemma, which gives the upper bound in the case where there are no

singularities near the axis ρ = 0.

Remark 4.1. 1. The energetically relevant part of the construction in Lemma 4.2 away from

defects is carried out with uniaxial Q−tensors of scalar order parameter s∗. One could

also carry this out by using the physically motivated order parameter s∗,ξ2/η2 to obtain a

sharper upper bound for ξ, η > 0. In our regime of the limit ξ, η → 0, both constructions

yield the same upper bound.

2. In the construction of the singularities in (55), we use an isotropic core Q = 0. Other

choices, such as a oblate uniaxial state surrounded by a biaxial region, are possible and

would yield a sharper upper bound for ξ, η > 0 for certain parameters. However, our upper

bound for ξ, η → 0 is independent of this choice.

Lemma 4.2. Let σ > 0 and F ⊂ S2 be a rotationally symmetric set of �nite perimeter such that

S2 ∩ {ρ ≤ σ, z > 0},S2 ∩ {ρ ≤ σ, z < 0} are contained in one of the sets F, F c. Then there exists
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a rotationally equivariant sequence of functions Qε ∈ H1(Ω, Sym0) such that the compactness

claim (16) holds, ‖Qε‖L∞ ≤
√

2
3s∗ and

lim sup
ε→0

η Eη,ξ(Qε) ≤ E0(F ) .

Proof. The proof consists in providing an explicit de�nition for Qε, generalizing the construction

made in [3]. The idea is the following: Let F ⊂ S2 ∩ {ρ ≥ σ} be rotationally symmetric. Since

we assume F to be of �nite perimeter, |DχF |(S2∩{ρ ≥ σ}) <∞. Let F ∩F c∩Ω′σ = {θ0, ..., θM}
for some M ∈ N and θi < θi+1 for all i = 0, ...,M − 1. We now de�ne the map Qε on the two

dimensional domain Ω′. We divide Ω′ into several regions and de�ne Qε on each region separately

(see Figure 4). After that, we derive the estimates that are needed to ensure that the rotated

map R>ϕQεRϕ satis�es the energy estimate.

Let Ω′ be parametrized by polar coordinates (r, θ). As usual, we denote by F ′ = F ∩Ω′ and

F c′ = F c ∩ Ω′. Note that ρ = r sin θ. Let R > 2 be �xed.

Step 1 (Construction on F ′η and (F c)′η): We de�ne F ′η = F ′ \
⋃M
i=0B2η(θi) ⊂ S1 ⊂ Ω′ and

(F c)′η = F c′ \
⋃M
i=0B2η(θi) ⊂ S1 ⊂ Ω′. For (r, θ) ∈ [1,R]× F ′η we de�ne

Qε(r, θ) := s∗

(
n⊗ n− 1

3
Id

)
with n(r, θ) =


√

1− n2
3((r − 1)/η, θ)

0

n3((r − 1)/η, θ)

 , (47)

where n3 is given by Lemma 3.17. Analogously, for (r, θ) ∈ [1,R]× (F c)η we de�ne

Qε(r, θ) := s∗

(
n⊗ n− 1

3
Id

)
with n(r, θ) =

−
√

1− n2
3((r − 1)/η, π − θ)

0

n3((r − 1)/η, π − θ)

 . (48)

Since the de�ned Qε is uniaxial of scalar order parameter s∗, we have f(Qε) = 0 and by (7) we

can estimate the energy on ΩF ′η = {(r, θ) : θ ∈ F ′η, r ∈ [1,R]}

ηE2D
ε (Qε,ΩF ′η)

= η

∫
F ′η

∫ R

1
ρ

(
s2
∗|∂rn|2 +

s2
∗
r2
|∂θn|2 +

1

ρ2
Q2×2,ε : Qε +

c2
∗
η2

(1− n2
3) + C0(ξ, η)

)
r dr dθ

=

∫
F ′η

∫ (R−1)/η

0

(
s2
∗|∂tn|2 + c2

∗(1− n2
3) + C0(ξ, η)

)
(1 + ηt)2 sin θ dt dθ

+

∫
F ′η

∫ (R−1)/η

0

η2s2
∗

(1 + ηt)2

[
|∂θn|2 +

2

sin2 θ
(1− n2

3)

]
(1 + ηt)2 sin θ dt dθ ,

where we set r = 1 + ηt and used that Q2×2,ε : Q = |Qε|2 − 6s∗(1 − n2
3)s∗n

2
3 = 2s2

∗(1 − n2
3).

Estimating C0 by Proposition 1.4 and using Lemma 3.17 we get

η E2D
ε (Qε,ΩF ′η) ≤

∫
F ′
I(0, (R− 1)/η, cos θ, 1) sin θ dθ+C η ≤ 2s∗c∗

∫
F ′

(1− cos θ) sin θ dθ+C η .

(49)

Applying the same steps to (F c)′η, we get

η E2D
ε (Qε,Ω(F c)′η

) ≤ 2s∗c∗

∫
F c′

(1 + cos θ) sin θ dθ + C η . (50)
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Step 2 (Construction on (Ω+
θi,η

)′ and (Ω−θi,η)
′): Next, we construct Qε for (r, θ) ∈ [1+4η,R]×⋃M

i=0B2η(θi). Without loss of generality, we assume θ ∈ B2η(θ0) and that smaller angles belong to

F ′, while larger values lie in F c′. We de�ne (Ω+
θ0,η

)′ = {(r, θ) : θ0− 2η ≤ θ ≤ θ0, r ∈ [1 + 4η,R]}
and (Ω−θ0,η)

′ = {(r, θ) : θ0 ≤ θ ≤ θ0 + 2η, r ∈ [1 + 4η,R]}.

Since we want Qε to have H1-regularity, we need to respect the values of Qε that we already

constructed at θ = θ0 − 2η and θ = θ0 + 2η. We do this by interpolating between these given

values and s∗(e3 ⊗ e3 − 1
3 Id) at θ = θ0. More precisely, for (r, θ) ∈ (Ω+

θ0,η
)′ we de�ne

Qε(r, θ) = s∗

(
n⊗ n− 1

3
Id

)
with n(r, θ) =

sin(φ(r, θ))

0

cos(φ(r, θ))

 ,

where the phase φ is given by

φ(r, θ) =
θ0 − θ

2η
arccos (n3 (r, θ0 − 2η)) . (51)

Similarly, the phase for (r, θ) ∈ (Ω−θ0,η)
′ is given by

φ(r, θ) = −θ − θ0

2η
arccos (n3 (r, π − (θ0 + 2η))) . (52)

Note that Qε is indeed continuous for θ = θ0 and that Qε coincides with our previous de�nition

at θ = θ0 − 2η and θ = θ0 + 2η.

Now we calculate the energy coming from the two regions. We assume that (r, θ) ∈ (Ω+
θ0,η

)′,

the estimates for (Ω−θ0,η)
′ are similar. Since Qε is takes values in N , f(Qε) = 0 and furthermore

by (7)

g(Qε) = c2
∗(1− cos2(φ(r, θ))) = c2

∗ sin2(φ(r, θ)) ≤ c2
∗ sin2(φ(r, θ0 − 2η)) .

For the gradient, we note that

1

2
|∇′Qε(r, θ)|2 = s2

∗|∂rn(r, θ)|2 +
s2
∗
r2
|∂θn(r, θ)|2 = s2

∗|∂rφ(r, θ)|2 +
s2
∗
r2
|∂θφ(r, θ)|2

=

(
θ − θ0

2η

)2

s2
∗|∂rφ(r, θ0 − 2η)|2 +

s2
∗

4r2η2
|φ(r, θ0 − 2η)|2

≤ s2
∗|∂rn(r, θ0 − 2η)|2 +

s2
∗

4r2η2
|φ(r, θ0 − 2η)|2 .

Note, that for η → 0 the phase φ stays bounded. Furthermore, all terms decrease exponentially

in r by Lemma 3.17 and are thus integrable. Since 1
2 |∂ϕQε|

2 = Q2×2 : Q = 2s2
∗ sin2(φ(r, θ)), this

term converges to zero exponentially and is bounded for η → 0. So �nally we use the estimates

on C0(ξ, η), the above calculations and the usual change of variables t = 1 + ηt to get

η E2D
ε (Qε, (Ω

+
θi,η

)′) ≤ C η . (53)

Analogously,

η E2D
ε (Qε, (Ω

−
θi,η

)′) ≤ C η . (54)
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Step 3 (Construction on B′ and D′): Throughout this construction, we assume that we are

in the same situation as in Step 2, namely that we are switching from F ′ to F c′ as the angle θ

increases. In this situation, we are going to construct a defect of degree −1/2. Otherwise, one

would need to de�ne a defect of degree 1/2, i.e. one needs to switch the sign of the angle in the

de�nition of Q(α).

� We �rst de�ne a map QB on the two dimensional ball B1(0) using polar coordinates as

follows

QB(r, α) =


0 r ∈ [0, ε)(
r
ε − 1

)
Q(α) r ∈ [ε, 2ε)

Q(α) r ∈ [2ε, 1) ,

(55)

where

Q(α) = s∗

(
n(α)⊗ n(α)− 1

3
Id

)
with n(α) =

sin(α/2)

0

cos(α/2)

 .

� On B1 \B2ε we calculate∫
B1\B2ε

1

2
|∇′QB|2 dx =

1

2

∫ 2π

0

∫ 1

2ε

(
|∂rQB|2 +

1

r2
|∂αQB|2

)
r dα dr

=
1

2

∫ 1

2ε

1

r
dr

∫ 2π

0
|∂αQB|2 dα

= − ln(2ε)

∫ 2π

0
s2
∗
1

4
(cos2(α/2) + sin2(α/2)) dα

=
π

2
s2
∗| ln(ε)| − ln(2)π

2
s2
∗ .

Furthermore, f(QB) = 0 on B1 \B2ε and
∫
B1\B2ε

|g(QB)| dx ≤ C|B1 \B2ε|. This implies∫
B1\B2ε

1

2
|∇′QB|2 +

1

ε2
f(QB) +

1

η2
g(QB) dx ≤ π

2
s2
∗| ln(ε)|+ C1

η2
|B1 \B2ε| . (56)

� On B2ε \Bε we �nd∫
B2ε\Bε

1

2
|∇′QB|2 dx =

1

2

∫ 2π

0

∫ 2ε

ε

(
|∂rQB|2 +

1

r2
|∂αQB|2

)
r dα dr

=
1

2

∫ 2π

0

∫ 2ε

ε

(
1

ε
− 1

)2

|Q(α)|2r +
1

r

(r
ε
− 1
)2
|∂αQ(α)|2 dr dα

=
2

3
πs2
∗

(
1

ε
− 1

)2 ∫ 2ε

ε
r dr +

1

2
πs2
∗

∫ 2ε

ε

1

r

(r
ε
− 1
)2

dr

= πs2
∗

(
1

ε
− 1

)2

ε2 +
π

2
s2
∗

(
ln(2)− 1

2

)
≤ C .

In addition, f(QB) = 0 and
∫
B2ε\Bε |g(QB)| dx ≤ C|B2ε \Bε|. Together, we get∫

B2ε\Bε

1

2
|∇′QB|2 +

1

ε2
f(QB) +

1

η2
g(QB) dx ≤ C2

(
1 +

1

η2

)
|B2ε \Bε| . (57)
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Finally, the gradient of QB on Bε(0) is zero. The contributions from f and g are easily

seen to be bounded by C|Bε|, so that∫
Bε

1

2
|∇′QB|2 +

1

ε2
f(QB) +

1

η2
g(QB) dx ≤ C3

(
1

ε2
+

1

η2

)
|Bε| . (58)

Combining (56), (57) and (58) we get∫
B1(0)

1

2
|∇′QB|2 +

1

ε2
f(QB) +

1

η2
g(QB) dx ≤ π

2
s2
∗| ln(ε)|+ C

(
1 +

1

η2

)
|B1(0)|+ C . (59)

Note that we have the same bound for QBr̃(r, α) = QB(r/r̃, α) on Br̃(0), where r̃ ≤ 1. In

addition, this bound is invariant under rotations and translations of the domain. Again we assume

that θ ∈ Bη(θ0). We use the construction of QB to de�ne Qε on the set B := Bη(1 + 2η, θ0) ⊂
[1, 1 + 4η]× [θ0 − 2η, θ0 + 2η] via

Qε(r, θ) = Rθ0QB(r/η, α) , (60)

where Rθ0 is the rotation matrix around the ρ−axis with angle θ0, r2 = (r−1−2η)2+(θ−θ0)2 and

α being the angle between the vectors (0, 1)> and (θ0−θ, r−1−2η)>. Note, that the term |B1(0)|
in (59) transforms to |B|, which can be estimated by Cη2. For the remaining term of E2D

ε we

notice that Q2×2,ε : Qε is bounded on B and that ρ ≥ σ−η, thus
∫
B ρ
−1Q2×2,ε : Qε ≤ C(σ−η)−1.

Then, using ρ ≤ (1+2η) sin(θ0)+η we get from (59) together with the estimate on C0(ξ, η) from

Proposition 1.4 that

η E2D
ε (Qε, B) ≤ ((1 + 2η) sin(θ0) + η)

π

2
s2
∗η| ln(ε)|+ Cη +

C

σ − η
η . (61)

We now want to construct the map Qε on the setD = {(r, θ) ∈ [1, 1+4η]×[θ0−2η, θ0+2η]}\B
by interpolating between the values given by Steps 1 and 2 on the one hand, and the values on

∂B on the other hand. We use the same polar coordinates (r, α) as for the de�nition of Qε on

B to parametrize D. Let Φα/2(α) be the phase associated to the director of Qε(η, α) and Φ(α)

the phase of the boundary values on ∂(D ∪B). We set

φ(r, α) =
R(α)− r
R(α)− η

Φα/2 +
r − η

R(α)− η
Φ(α) ,

where

R(α) =


2η

| cos(α)| if α ∈ [−π/4, π/4] ∪ [3π/4, 5π/4] ,

2η
| sin(α)| otherwise .

In particular, |R(α)| ≤ 2
√

2η and |∂αR(α)| ≤ 2
√

2η. Then we de�ne

QD(r, α) = s∗

(
n(r, α)⊗ n(r, α)− 1

3
Id

)
with n(r, α) =

sin(φ(r, α))

0

cos(φ(r, α))

 .
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Then f(Qε|D) = 0 since Qε|D is uniaxial and of scalar order parameter s∗ and |g(Qε|D)| is
bounded. We can estimate the gradient∫

D

1

2
|∇′Qε|2 dx =

∫
D

1

2

(
|∂rQε|2 +

1

r2
|∂θQε|2

)
r dr dθ

≤ (1 + 4η)

∫ 2π

0

∫ R(α)

η

1

2

(
|∂rQε|2 +

1

r2 |∂αQε|
2

)
r dr dα

≤ (1 + 4η)s2
∗

∫ 2π

0

∫ R(α)

η

(
|∂rφ|2 +

1

r2 |∂αφ|
2

)
r dr dα .

(62)

Since Φα/2 and Φ(α) are bounded and ∂rφ = −1
R(α)−ηΦα/2 + 1

R(α)−ηΦ(α), we can easily infer

that |∂rφ|2 ≤ C
η2
. Furthermore it is clear by de�nition that |∂αΦα/2|2 ≤ C. So it remains to derive

bounds on ∂αΦ(α). For α ∈ [0, π/4] we have Φ(α) = arccos(n3(1 + 4η, θ0 − 2η))

√
R(α)2−4η2

2η , i.e.

|∂αΦ(α)|2 ≤ C. Similarly, ∂αΦ is bounded for α ∈ [−π/4, 0]. For α ∈ [π/4, 3π/4] and r(α) = 1 +√
R2(α) + 8η2 − 4

√
2R(α)η cos(3π/4− α) one can show that Φ(α) = arccos(n3(r(α), θ0 − 2η)).

An explicit calculation yields |∂αΦ(α)|2 ≤ C. By the same argument, ∂αΦ is also bounded for

α ∈ [−3π/4,−π/4] For α ∈ [3π/4, π] we have Φ(α) = −2η tan(π−α) + θ0− π
2 , so that |∂αΦ(α)|2

is also bounded by a constant. We plug this result into (62) and use the fact that Q2×2,ε : Qε is

also bounded, σ ≤ 1 + 4η and C0 ≤ Cξ2/η2 to get

E2D
ε (Qε, D) ≤ 2(1 + 4η)s2

∗

∫ 2π

0

∫ R(α)

η

(
C +

C

σ2

)
σ dσ dα+

C

σ − cη
≤ C +

C

σ − cη
. (63)

Hence by (61) and (63)

η E2D
ε (Qε, B ∪D) ≤ ((1 + 2η) sin(θ0) + 2η)

π

2
s2
∗η| ln ε|+ Cη +

C

σ − Cη
η . (64)

This �nishes our construction of Qε(ρ, θ).

Step 4 (Transition to Q∞(ξ, η)): So far, we have constructed the sequence Qε inside a ball of

radius R around 0. Because of the exponential convergence of the optimal pro�le from Lemma

3.17 , the function Qε is close to Q∞ on ∂BR. We will now construct a transition zone from

Qε to Q∞ for r ∈ (R,R + η) and then from Q∞ to Q∞(ξ, η) for r ∈ (R + η,R + 2η). Since

Qε(R, θ) ∈ N for all θ ∈ [0, π] we can linearly interpolate the phase between Qε(R, θ) and Q∞
as in Step 2. We estimate as in Step 2 and thus the cost of this interpolation in terms of energy

is given by

η E2D
ε (Qε, BR+η \BR) ≤ C η . (65)

For r ∈ (R + η,R + 2η) we linearly interpolate between Q∞ and Q∞(ξ, η), i.e. we de�ne

Qε(r, θ) =
1

η
((R + 2η − r)s∗ + (r −R− η)s∗,ξ2/η2)

(
e3 ⊗ e3 −

1

3
Id

)
.

Since |s∗,ξ2/η2 − s∗| ≤ Cξ2/η2 and by Proposition 1.4 we get

η E2D
ε (Qε, BR+2η \BR+η) ≤ C η2(

ξ4

η6
+
ξ2

η4
+
ξ2

η4
+
ξ2

η2
) . (66)
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Finally, if r ≥ R + 2η we set Qε = Q∞(ξ, η), which has energy 0.

If we now extend Qε to Ω by using the rotated function Qε(ρ, ϕ, θ) = R>ϕQε(ρ, θ)Rϕ and

integrate E2D
ε in ϕ-direction, we get from (49), (50), (53), (54), (64), (65) and (66)

ηEε(Qε,Ω) ≤ 2s∗c∗

∫ 2π

0

∫
F ′

(1− cos(θ)) sin(θ) dθ dϕ+ 2s∗c∗

∫ 2π

0

∫
F c′

(1 + cos(θ)) sin(θ) dθ dϕ

+
π

2
s2
∗η| ln ε|

M−1∑
i=0

∫ 2π

0
((1 + 2η) sin(θi) + 2η) dϕ+ Cη +

Cη

σ − cη
.

(67)

Taking the limsup η, ε→ 0 in (67) yields the inequality

lim sup
η,ε→0

Eη,ξ(Qε) ≤ 2s∗c∗

∫
F

(1− cos(θ)) dω + 2s∗c∗

∫
F c

(1 + cos(θ)) dω +
π

2
s2
∗β|DχF |(S2)

= E0(F ) .

It remains to show the claimed convergence. It is clear by de�nition of Qε that
⋃
η>0 Fη = F

and
⋃
η>0(F c)η = F c which implies the convergence for χF . The continuity of nε as a function

with values in S2 outside a set ωη is clear by construction if we choose ωη to contain all balls B,

we used in step 3. Taking ωη as the union of all sets B and D from step 3. we can also achieve

that Ω \ ωη is simply connected. Extending nε inside B measurably, yields the compactness

claim.

Proof of the upper bound (18) of Theorem 2.1. We choose a sequence σk > 0 which converges to

zero as k →∞. We approximate the set F by sets Fk such that the domains S2∩{ρ ≤ σk, z > 0}
and S2 ∩ {ρ ≤ σk, z < 0} are fully contained in Fk or F ck . By Lemma 4.2 there exist sequences

Qε,k such that lim supη,ε→0 Eη,ξ(Qε,k) ≤ E0(Fk) and (16) holds. We observe that

|DχFk |(S
2) = |DχFk |(S

2 ∩ {ρ ≥ σk}) = |DχF |(S2 ∩ {ρ ≥ σk})

and∣∣∣∣∫
F

(
1− cos(θ)

)
dω −

∫
Fk

(
1− cos(θ)

)
dω

∣∣∣∣ ,
∣∣∣∣∣
∫
F c

(
1 + cos(θ)

)
dω −

∫
F ck

(
1 + cos(θ)

)
dω

∣∣∣∣∣ ≤ Cσ2
k .

Hence lim supη,ε→0 Eη,ξ(Qε,k) ≤ E0(Fk) ≤ E0(F ) + Cσ2
k and taking a diagonal sequence Qε =

Qε,k(ε) we get

lim sup
η,ε→0

Eη,ξ(Qε) ≤ E0(F ) .

The compactness (16) follows by triangle inequality.
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BR+η \BR BR+2η \BR+η

B
D

ΩFη

Ω(F c)η

Fη

(F c)η

Ω+
θi,η

Ω−θi,η

σ

Figure 4: Partition of Ω′ into regions for the construction of Qε (arrows show nε)

5 Limit problem, transition and hysteresis

Physicists have successfully manipulated the Saturn ring con�guration by using electric �elds [32]

and observed a transition between dipole and Saturn ring by changing the strength of the �eld

(see [6, p. 190�] and [38, 39]) or the radius of the particle [52]. In [39, Fig. 1] a series of images

shows the accelerated shrinking of a Saturn ring defect loop around a spherical particle towards

a dipole defect, once the applied electric �eld is switched o�. The con�gurations intermediate

between dipole and Saturn ring are observed to be unstable. Similar transitions from Saturn

ring to dipole have been observed by accelerating a droplet inside a liquid crystal [35, 55].

In [48] physical reasoning, scaling arguments and numerical simulations are conducted to

explain this type of transition and the occurrence of a hysteresis phenomenon. To our knowledge

the hysteresis has not yet been observed, but cannot be excluded [52]. Our limit model provides

an analytical setting, in which we are able to reproduce the �ndings derived by H. Stark from

physical arguments and numerical simulations. The reduced magnetic coherence length ξH in-

troduced in [48] corresponds to our parameter η in the one constant approximation. As pointed

out in the �rst section, our limit ξ, η → 0 corresponds to an increasing particle radius r0 → ∞
and a simultaneously decreasing �eld strength h → 0 since ξ ∼ r−1

0 and η ∼ h−1ξ. The slower

the decrease of h, the stronger is the in�uence of the magnetic �eld in η| ln(ξ)| and thus in β. It

is therefore reasonable to say that small values of β correspond to strong magnetic �eld, relative

to the size of ξ| ln(ξ)|. This translates the assumption of high magnetic �elds ξH � 1 (while

keeping r0 �xed) in [48] to smaller values of β in our limit. Although the calculations in [48]

are based on the Oseen-Frank model rather than the Landau-de Gennes that we are using, we
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are able to reproduce the behaviour of the energy E0 as a function of θd, compare Figure 5 and

[48, Fig. 11]. From our calculation, we also �nd the hysteresis for changing values of βs∗. For

β � 1, i.e. small external �elds, the dipole is the only stable con�guration. Increasing the �eld,

the system will maintain the dipole, until we reach β = 0, where a transition to the Saturn ring

takes place. Decreasing the �eld while starting from a Saturn ring, we will retain the structure

until we reach s∗
c∗
β = 8

π ≈ 2.546 and the Saturn ring closes to a dipole.

The rest of this section is devoted to the calculation of the minimal energy con�gurations of

the limiting model which we have explained above.

In a �rst step, we claim that if F is a minimizer of E0, then F and F c are connected. Indeed,

assume that one of the two sets, say F , is not connected. Then there are two possibilities: If

F c is connected, then F also contains the point θ = π and we can decrease the energy E0 by

handing over this set to F c. If F c is also not connected, then we can similarly exchange points

between F and F c while decreasing the energy until both sets are connected.

Now that we know that F and F c are connected, we deduce that there can only be one angle

under which the defect line separating F and F c occurs. Let us name this angle θd ∈ [0, π] and

let F ⊂ S2 be the set corresponding to 0 ≤ θ ≤ θd. Then we can express the limit energy as

E0(F ) = 2s∗c∗

∫
F

(1− cos(θ)) dω + 2s∗c∗

∫
F c

(1 + cos(θ)) dω +
π

2
s2
∗β|DχF |(S2)

= 2s∗c∗

∫ 2π

0

∫ θd

0
(1− cos(θ)) sin(θ) dθ dϕ+ 2s∗c∗

∫ 2π

0

∫ π

θd

(1 + cos(θ)) sin(θ) dθ dϕ

+
π

2
s2
∗β(2π sin(θd))

= 8πs∗c∗

(
sin4(θd/2) + cos4(θd/2)

)
+ π2βs2

∗ sin(θd) .

Setting the derivative of this expression to zero gives the equation

πs∗ cos(θd)
(
πβs∗ − 8c∗ sin(θd)

)
= 0 ,

which yields the two families of solutions θ1 = π/2 + πZ and θ2 = arcsin(πβs∗8c∗
) + 2πZ. We note:

1. For s∗
c∗
β = 8

π ≈ 2.546, the two families are equal. We conclude that for s∗
c∗
β ≥ 8

π the only

stable con�guration is a dipole at θd = 0, π (see Figure 5).

2. The energy of the Saturn ring θd = π/2 and the dipole θd = 0 are equal for s∗
c∗
β = 4

π ≈
1.273, which means for greater values of s∗c∗β the dipole is the globally energy minimizing

con�guration, while for smaller values the Saturn ring is optimal.

3. The case where θd = π/2 is the only (local) minimizer corresponds to β = 0, i.e. θ2 = 0.

In particular, we see that the only stable energy minimizing con�gurations are the dipole (which

corresponds to F = ∅ or F = S2) and the Saturn ring (where F is the upper half-sphere).
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Figure 5: Plot of the energy E0 for di�erent values of βs∗ as a function of the angle θd
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Figure 6: Left: Plot of the energy of the dipole and Saturn ring as a function of s∗
c∗
β. Right:

Hysteresis induced by changing s∗
c∗
β

The available experimental and theoretical results are in agreement with these �ndings. Nev-

ertheless, the conducted experiments mostly use an electric �eld to manipulate the orientation

of the liquid crystals and were not yet able to observe the hysteresis phenomenon, described in

[48] and in this work.

We hope that our analysis stimulates further research into this direction.

6 Conclusion

The goal of this article was to derive an e�ective energy of the Landau-de Gennes model for a

spherical particle immersed into a nematic liquid crystals under the in�uence of a homogeneous
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external magnetic �eld, stated in the framework of variational convergence. We imposed strong

anchoring conditions at the boundary of the particle and investigated the interplay of elastic, bulk

and magnetic free energy in an intermediate regime parametrized by β that exhibits singularities

of both dipole and Saturn ring type. Studying the limit energy, we show that there are no stable

minimizers other than the dipole or the Saturn ring and we determine ranges for β in which

either of the two is energy minimizing. We calculate values of β where a transition between the

two takes place, �nding a hysteresis phenomenon.

A Appendix

In this section we check that the two functions g1 and g2 as de�ned in (9) verify the assumptions

on g, in particular (5), (6), (7) and (8). All calculations are straightforward.

Proposition A.1 (Properties of g1). Let g1 be given as in (9).

1. If Q ∈ N is given by Q = s∗(n⊗ n− 1
3 Id) with n ∈ S2, then

g1(Q) = s∗
(
1− n2

3

)
,

i.e. c2
∗ = s∗.

2. There exists a constant C > 0 such that for all Q ∈ Sym0

|g1(Q)− g1(R(Q))| ≤ C dist(Q,N ) . (68)

3. The function g1 satis�es the growth assumptions (5),(6) and is invariant by rotations

around the e3−axis. For �xed |Q|, g1(Q) is minimal if e3 is the eigenvector corresponding

to the maximal eigenvalue of Q. For Q = s((e3 ⊗ e3 − 1
3 Id) + r(m⊗m− 1

3 Id)) (using the

notation of (4)), g1(Q) is minimized for r = 0.

Proof. For Q = s∗(n⊗ n− 1
3 Id) with n ∈ S2 and s∗ ≥ 0 one easily checks that

g1(Q) =
2

3
s∗ − s∗

(
n2

3 −
1

3

)
= s∗ − s∗n2

3 .

For the second assertion, we take a Q ∈ Sym0 and use Proposition 1.3 to write

Q = s

((
n⊗ n− 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
,

with s > 0, 0 ≤ r < 1 and n,m orthonormal eigenvectors of Q and R(Q) = s∗
(
n⊗ n− 1

3 Id
)
.

Then we can estimate

|g1(Q)− g1(R(Q))| =
∣∣∣s(n2

3 −
1

3

)
+ sr

(
m2

3 −
1

3

)
− s∗

(
n2

3 −
1

3

)∣∣∣
≤ |s− s∗|

∣∣∣n2
3 −

1

3

∣∣∣+ |sr|
∣∣∣m2

3 −
1

3

∣∣∣ .
On the other hand, as in (38)

dist2(Q,N ) = |Q−R(Q)|2 ≥ 1

3
|s− s∗|2 +

1

3
|sr|2 .
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Combining these two expressions, we �nd

|g1(Q)− g1(R(Q))| ≤ 4√
3

dist(Q,N ) ,

which completes the proof of the second assertion for the choice C = 4√
3
.

The function g1 is smooth and obviously satis�es (5) and (6). Furthermore, since g1 only

depends on Q33, it is invariant under rotations around the e3−axis. Writing once again Q ∈ Sym0

in the form of Proposition 1.3, we get

g1(Q) =
2

3
s∗ − s

((
n2

3 −
1

3

)
+ r
(
m2

3 −
1

3

))
.

For �xed s, r,m this is minimized by n2
3 = 1, which corresponds to the principal eigenvector

n equal to e3. We also see that for n = e3 and s �xed, g becomes minimal if r = 0, since

m ⊥ n.

Proposition A.2 (Properties of g2). Let g2 be given as in (9).

1. g2(Q) ≥ 0 for all Q ∈ Sym0 with equality of and only if Q = t(e3 ⊗ e3 − 1
3 Id) for some

t ≥ 0.

2. If Q ∈ N is given by Q = s∗(n⊗ n− 1
3 Id) with n ∈ S2, then

g2(Q) =

√
3

2

(
1− n2

3

)
,

i.e. c2
∗ =

√
3
2 .

3. There exist constants δ1, C > 0 such that if Q ∈ Sym0 with dist(Q,N ) ≤ δ for 0 < δ < δ1,

then

|g2(Q)− g2(R(Q))| ≤ C dist(Q,N ) . (69)

4. The function g2 satis�es the growth assumptions (5),(6) and is invariant by rotations

around the e3−axis. For �xed |Q|, g2(Q) is minimal if e3 is the eigenvector corresponding

to the maximal eigenvalue of Q. For Q = s((e3⊗e3− 1
3 Id)+r(m⊗m− 1

3 Id)) (using again

the notation of (4)), g2(Q) is minimized for r = 0.

Proof. Minimizing g2 under the tracelessness constraint, we get the necessary conditions

− 1

|Q|
+
Q2

33

|Q|3
− λ = 0 ,

Q33Qjj
|Q|3

− λ = 0 for j = 1, 2 ,
Q33Qij
|Q|3

= 0 for i 6= j

for a Lagrange multiplier λ. For Q = 0 the claim is clear by de�nition. So let Q ∈ Sym0 \ {0}.
If Q33 = 0 we get a contradiction. Hence we can assume Q33 6= 0. Then the third equation from

above implies Qij = 0 for i 6= j and the second Q11 = Q22. By tr(Q) = 0, we have Q33 = −2Q11.

Then the �rst equation reads 0 = 3
2Q

2
33 − |Q|2, i.e. Q33 =

√
2/3|Q|. Inserting this into g2 we

get minSym0
g2 = 0. Our conditions also imply the claimed representation Q = t(e3 ⊗ e3 − 1

3 Id).

Reversely, it is obvious that g2 = 0 for such Q.
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For the second claim, it is straightforward to check that for Q = s∗(n ⊗ n − 1
3 Id) ∈ N we

have |Q|2 = 2
3s

2
∗. Thus

g2(Q) =

√
2

3
−
s∗(n

2
3 − 1

3)√
2
3s∗

=

√
2

3
+

1

3

√
3

2
−
√

3

2
n2

3 =

√
3

2

(
1− n2

3

)
.

For the next property we use the same notation as before (from Proposition 1.3) to write

Q = s

((
n⊗ n− 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
,

with s > 0, 0 ≤ r < 1 and n,m orthonormal eigenvectors of Q. From the second part of this

proposition, we infer that g2(R(Q)) =
√

3
2(1− n2

3). In order to calculate g2(Q), we note that

|Q|2 = s2

∣∣∣∣n⊗ n− 1

3
Id

∣∣∣∣2 + (sr)2

∣∣∣∣m⊗m− 1

3
Id

∣∣∣∣2 + 2s2r

(
n⊗ n− 1

3
Id

)
:

(
m⊗m− 1

3
Id

)
=

2

3
s2
(
r2 − r + 1

)
.

This implies

|g2(Q)− g2(R(Q))| =

∣∣∣∣∣∣
√

2

3
−
s(n2

3 − 1
3) + sr(m2

3 − 1
3)√

2
3s
√

1− r + r2
−
√

2

3
+
s∗(n

2
3 − 1

3)

s∗

√
2
3

∣∣∣∣∣∣
≤
n2

3 − 1
3√

2
3

(
1√

1− r + r2
− 1

)
+
m2

3 − 1
3√

2
3

r√
1− r + r2

.

Note, that the Taylor expansion at r = 0 is given by
1√

1− r + r2
− 1 =

r

2
+ O(r2) and

r√
1− r + r2

= r +O(r2). Hence

|g2(Q)− g2(R(Q))| ≤ 3

2
r +O(r2) . (70)

As in Proposition A.1 we get that dist2(Q,N ) ≥ 1
3 |s − s∗|2 + 1

3 |sr
2| and hence |s − s∗| ≤

√
3 dist(Q,N ) and |r| ≤

√
3 dist(Q,N )

|s|
. We de�ne δ1 =

1

2
√

3
s∗ and together with (70) we get

|g2(Q)− g2(R(Q))| ≤ Cr ≤
√

3dist(Q,N )

|s|
≤ C 2

√
3

s∗
dist(Q,N ) .

It remains to prove the last assertion. Again the growth assumptions (5) and (6) are trivially

satis�ed. With the same arguments as in Proposition A.1 (since |Q| is �xed), we get that g2(Q)

is minimal for n = e3. Finally, we can compute

g2(s((e3 ⊗ e3 −
1

3
Id) + r(m⊗m− 1

3
Id))) =

√
2

3
−

2
3s+ sr(m2

3 − 1
3)√

2
3s
√

1− r + r2

and see that this is indeed minimal if r = 0.
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