T. Fujino, A. Suzuki, Y. Ito, K. Ohyashiki, Y. Hatano et al., Single-translocation 1 and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or 2 HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15), Blood, vol.99, issue.4, pp.1428-1433, 2002.

J. Borrow, A. M. Shearman, V. P. Stanton, J. Becher, R. Collins et al., The t(7;11)(p15;p15) 5 translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I 6 homeoprotein HOXA9, Nat Genet, vol.12, issue.2, pp.159-167, 1996.

M. T. Esposito, L. Zhao, T. K. Fung, J. K. Rane, A. Wilson et al., Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP 9 inhibitors, Nat Med, vol.8, issue.12, pp.1481-1490, 2015.

M. Cantile, G. Pettinato, A. Procino, I. Feliciello, L. Cindolo et al., In vivo expression of the 11 whole HOX gene network in human breast cancer, Eur J Cancer, vol.39, issue.2, pp.257-264, 2003.

X. J. Ma, S. Dahiya, E. Richardson, M. Erlander, and D. C. Sgroi, Gene expression profiling of the 13 tumor microenvironment during breast cancer progression, Breast Cancer Res, vol.11, issue.1, 2009.

M. A. Unger, J. Lakins, H. X. Zhang, W. Foster, B. J. Baxter et al., , p.16, 2002.

, HoxA9 is a novel breast cancer progression gene identified by microarray analysis, Am J Hum Genet, vol.17, issue.4, pp.181-181

B. M. Costa, J. S. Smith, Y. Chen, J. Chen, H. S. Phillips et al., Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic 20 mechanism and prognostic significance in human glioblastoma, Cancer Res, vol.70, issue.2, pp.453-462, 2010.

N. Gaspar, L. Marshall, L. Perryman, D. A. Bax, S. E. Little et al., , p.23

A. D. Pearson, R. M. Reis, D. Hargrave, P. Workman, and C. Jones, MGMT-independent temozolomide 24 resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene 25 signature, Cancer Res, vol.70, issue.22, pp.9243-9252, 2010.

A. Murat, E. Migliavacca, T. Gorlia, W. L. Lambiv, T. Shay et al., , p.27

M. C. Kouwenhoven, J. A. Hainfellner, F. L. Heppner, P. Y. Dietrich, Y. Zimmer et al., , p.28

E. Domany, M. Delorenzi, R. Stupp, M. E. Hegi, R. Abdel-fattah et al., Stem cell-related "self-renewal" signature and high 29 epidermal growth factor receptor expression associated with resistance to concomitant 30 chemoradiotherapy in glioblastoma, J Clin Oncol, vol.26, issue.18, pp.15-24, 2006.

M. Tabuse, S. Ohta, Y. Ohashi, R. Fukaya, A. Misawa et al., , p.35

H. Chneiweiss, Y. Matsuzaki, H. Okano, Y. Kawakami, and M. Toda, Functional analysis of HOXD9 in 36 human gliomas and glioma cancer stem cells, Mol Cancer, vol.10, issue.1, p.60, 2011.

B. Bodey, B. Bodey, J. Siegel, S. E. Kaiser, and H. E. , Immunocytochemical detection of the 38 homeobox B3, B4, and C6 gene products in childhood medulloblastomas/primitive 39 neuroectodermal tumors, Anticancer Res, vol.20, issue.3A, pp.1769-1780, 2000.

C. Tiberio, P. Barba, M. C. Magli, F. Arvelo, L. Chevalier et al., HOX gene 41 expression in human small-cell lung cancers xenografted into nude mice, Int J Cancer, vol.58, issue.4, p.42, 1994.

R. Calvo, J. West, W. Franklin, P. Erickson, L. Bemis et al., , p.43

R. Rosell, R. M. Gemmill, and H. A. Drabkin, Altered HOX and WNT7A expression in human lung cancer, 2000.

, Proc Natl Acad Sci U S A, vol.97, issue.23, pp.12776-12781

D. Vita, G. Barba, P. Odartchenko, N. Givel, J. C. Freschi et al., , p.46

C. Cillo, Expression of homeobox-containing genes in primary and metastatic colorectal 47 cancer, Eur J Cancer, vol.29, issue.6, pp.887-893, 1993.

B. Chen, T. Liang, P. Yang, H. Wang, Y. Liu et al., Classifying lower grade glioma 1 cases according to whole genome gene expression, Oncotarget, vol.7, issue.45, p.74031, 2016.

Y. B. Guo, Y. M. Shao, J. Chen, S. B. Xu, X. D. Zhang et al., Effect of overexpression 3 of HOX genes on its invasive tendency in cerebral glioma, Oncol Lett, vol.11, issue.1, pp.75-80, 2016.

Z. Tan, K. Chen, W. Wu, Y. Zhou, J. Zhu et al., , p.5, 2018.

, Overexpression of HOXC10 promotes angiogenesis in human glioma via interaction with PRMT5 and 6 upregulation of VEGFA expression, Theranostics, vol.8, issue.18, p.5143

J. W. Kim, J. Y. Kim, J. E. Kim, S. Kim, H. Chung et al., HOXA10 is associated with 8 temozolomide resistance through regulation of the homologous recombinant DNA repair pathway 9 in glioblastoma cell lines, Genes Cancer, vol.5, p.165, 2014.

J. Lin, S. Teo, D. H. Lam, K. Jeyaseelan, and S. Wang, MicroRNA-10b pleiotropically regulates 11 invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of 12 glioblastoma multiforme, Cell Death Dis, vol.3, issue.10, p.398, 2012.

K. Yachi, M. Tsuda, S. Kohsaka, L. Wang, Y. Oda et al., miR-23a 14 promotes invasion of glioblastoma via HOXD10-regulated glial-mesenchymal transition, Signal 15 transduction and targeted therapy, vol.3, issue.1, p.33, 2018.

F. Court, L. Boiteux, E. Fogli, A. Müller-barthélémy, M. Vaurs-barriére et al., , vol.17

J. Biau, J. Kemeny, T. Khalil, L. Karayan-tapon, P. Verelle et al., Transcriptional alterations 18 in glioma result primarily from DNA methylation-independent mechanisms, Genome Res, vol.29, issue.10, pp.1605-1621, 2019.

C. G. Dong, W. K. Wu, S. Y. Feng, X. J. Wang, J. F. Shao et al., Co-inhibition of microRNA-10b and 21 microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells, 2012.

, Int J Oncol, vol.41, issue.3, pp.1005-1012

R. Martinez, J. I. Martin-subero, V. Rohde, M. Kirsch, M. Alaminos et al., , p.24

G. Schackert and M. Esteller, A microarray-based DNA methylation study of glioblastoma 25 multiforme, Epigenetics, vol.4, issue.4, pp.255-264, 2009.

S. Kurscheid, P. Bady, D. Sciuscio, I. Samarzija, T. Shay et al., , p.27

M. J. Bent and C. Marosi, Chromosome 7 gain and DNA hypermethylation at the HOXA10 locus are 28 associated with expression of a stem cell related HOX-signature in glioblastoma, Genome Biol, vol.16, issue.1, p.16, 2015.

F. Court and P. Arnaud, An annotated list of bivalent chromatin regions in human ES cells: a 31 new tool for cancer epigenetic research, Oncotarget, vol.8, issue.3, p.4110, 2017.

D. Vinci, A. Casciano, I. Marasco, E. Banelli, B. Ravetti et al., Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: 34 association with tumor WHO grade and clinical outcome, J Cancer Res Clin Oncol, vol.138, issue.1, p.35, 2012.

W. A. Flavahan, Y. Drier, B. B. Liau, S. M. Gillespie, A. S. Venteicher et al., Suvà 36 ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas, Nature, vol.37, issue.7584, p.110

A. B. Brinkman, H. Gu, S. J. Bartels, Y. Zhang, F. Matarese et al., , p.39

A. Meissner, Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation 40 of chromatin and DNA methylation cross-talk, Genome Res, vol.22, issue.6, pp.1128-1138, 2012.

J. P. Reddington, S. M. Perricone, C. E. Nestor, J. Reichmann, N. A. Youngson et al., , p.42

D. S. Dunican, J. G. Prendergast, H. Mjoseng, C. S. Goncalves, A. Xavier-magalhaes et al., Redistribution of H3K27me3 upon DNA 43 hypomethylation results in de-repression of Polycomb target genes, Genome Biol, vol.14, issue.3, p.45, 2013.

B. M. Costa, Transcriptional profiling of HOXA9-regulated genes in human glioblastoma cell 46 models, Genom Data, vol.5, pp.54-58, 2015.

A. Xavier-magalhães, C. S. Gonçalves, A. Fogli, T. Lourenço, M. Pojo et al., , p.1

I. Crespo and O. Rebelo, The long non-coding RNA HOTAIR is transcriptionally activated by HOXA9 2 and is an independent prognostic marker in patients with malignant glioma, Oncotarget, vol.9, issue.21, pp.15740-15756, 2018.

C. S. Gonçalves, A. Xavier-magalhães, E. P. Martins, A. A. Pinto, M. M. Pires et al., A novel molecular link between HOXA9 and WNT6 in glioblastoma identifies a 6 subgroup of patients with particular poor prognosis, Mol Oncol, vol.8, 2020.

A. A. Pinto, F. Pardal, C. Custódia, C. C. Faria, C. Clara et al., WNT6 is a Novel 9, 2018.

, Oncogenic Prognostic Biomarker in Human Glioblastoma. Theranostics, vol.8, issue.17, pp.4805-4823

U. Herrlinger, N. Schäfer, J. P. Steinbach, A. Weyerbrock, P. Hau et al., Bevacizumab Plus Irinotecan Versus Temozolomide in Newly 13 Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma, p.14, 2016.

G. Randomized and . Trial, J Clin Oncol, vol.34, issue.14, pp.1611-1619

O. L. Chinot, W. Wick, W. Mason, R. Henriksson, F. Saran et al.,

K. , K. P. Cernea, and D. , Bevacizumab plus radiotherapy-temozolomide for newly diagnosed 17 glioblastoma, N Engl J Med, vol.370, issue.8, pp.709-722, 2014.

C. Sánchez-higueras, C. Rastogi, R. Voutev, H. J. Bussemaker, R. S. Mann et al., , p.19, 2019.

, Hox binding specificity revealed by systematic changes to a single cis regulatory module, communications, vol.20, issue.1, pp.3597-3597

R. S. Mann and M. Affolter, Hox proteins meet more partners, Curr Opin Genet Dev, vol.8, issue.4, pp.423-445, 1998.

A. Dard, Y. Jia, J. Reboulet, F. Bleicher, C. Lavau et al., The human HOXA9 protein uses 24 paralog-specific residues of the homeodomain to interact with TALE-class cofactors, Sci Rep, vol.9, issue.1, pp.5664-5664, 2019.

D. Porcelli, B. Fischer, S. Russell, and R. White, Chromatin accessibility plays a key role in 27 selective targeting of Hox proteins, Genome Biol, vol.20, issue.1, pp.115-115, 2019.

T. Shinawi, V. K. Hill, D. Krex, G. Schackert, D. Gentle et al., , p.29

F. Latif, DNA methylation profiles of long-and short-term glioblastoma survivors, Epigenetics, vol.30, issue.2, pp.149-156, 2013.

A. A. Khan, S. Ham, L. N. Yen, H. L. Lee, J. Huh et al., A novel role of metal 32 response element binding transcription factor 2 at the Hox gene cluster in the regulation of 33 H3K27me3 by polycomb repressive complex 2, Oncotarget, vol.9, issue.41, pp.26572-26585, 2018.

Y. Li, Y. Ren, Y. Wang, Y. Tan, Q. Wang et al., , p.36

J. Yang, M. Li, and C. Kang, A Compound AC1Q3QWB Selectively Disrupts HOTAIR-Mediated 37 Recruitment of PRC2 and Enhances Cancer Therapy of DZNep, Theranostics, vol.9, issue.16, pp.4608-4623, 2019.

T. B. Miranda, C. C. Cortez, C. B. Yoo, G. Liang, M. Abe et al., DZNep 40 is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA 41 methylation, Mol Cancer Ther, vol.8, issue.6, pp.1579-1588, 2009.

S. Y. Ko, A. Ladanyi, E. Lengyel, and H. Naora, Expression of the homeobox gene HOXA9 in ovarian 43 cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype, Am J Pathol, vol.44, issue.1, pp.271-281, 2014.

V. Pirrotta and H. B. Li, A view of nuclear Polycomb bodies, Curr Opin Genet Dev, vol.22, issue.2, pp.101-110, 2012.

A. Casaca, G. M. Hauswirth, H. Bildsoe, M. Mallo, and E. Mcglinn, Regulatory landscape of the Hox 4 transcriptome, Int J Dev Biol, vol.62, pp.693-704, 2018.

D. P. Bartel, Metazoan MicroRNAs, Cell, vol.173, issue.1, pp.20-51, 2018.

S. Yekta, C. J. Tabin, and D. Bartel, MicroRNAs in the Hox network: an apparent link to posterior 9 prevalence, Nat Rev Genet, vol.9, issue.10, pp.789-96, 2008.

J. H. Mansfield and E. Mcglinn, Evolution, expression, and developmental function of Hox-12 embedded miRNAs, Curr Top Dev Biol, vol.99, pp.31-57, 2012.

E. Hornstein, J. H. Mansfield, S. Yekta, J. K. Hu, B. D. Harfe et al., The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development, Nature, vol.15, issue.7068, pp.671-675, 2005.

N. S. Asli and M. Kessel, Spatiotemporally restricted regulation of generic motor neuron programs 19 by miR-196-mediated repression of Hoxb8, Dev Biol, vol.344, issue.2, pp.857-68, 2010.

F. Gofflot and B. Lizen, Emerging roles for HOX proteins in synaptogenesis, Int J Dev Biol, vol.62, pp.807-818, 2018.

B. Hutlet, N. Theys, C. Coste, M. T. Ahn, K. Doshishti-agolli et al., Systematic 26 expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system, 2016.

, Brain Struct Funct, vol.221, issue.3, pp.1223-1266

J. E. Ohm, K. M. Mcgarvey, X. Yu, L. Cheng, K. E. Schuebel et al., A stem 31 cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and 32 heritable silencing, Nat Genet, vol.39, issue.2, pp.237-279, 2007.

S. Deneberg, P. Guardiola, A. Lennartsson, Y. Qu, V. Gaidzik et al., , p.35

B. Uggla, U. Tidefelt, M. Höglund, C. Paul, K. Ekwall et al., Prognostic DNA 36 methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell 37 chromatin marks, Blood, vol.118, issue.20, pp.5573-82, 2011.

M. J. Johnston, A. Nikolic, N. Ninkovic, P. Guilhamon, F. Cavalli et al., , p.41

A. Abdelkareem, K. Ellestad, A. Murison, M. M. Kushida, F. J. Coutinho et al., , p.43, 2019.

, High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma

, Genome Res, vol.29, issue.8, pp.1211-1222