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Abstract

We present and analyze a model aiming at recovering as dynamical outcomes of tree-grass
interactions the wide range of vegetation physiognomies observable in the savanna biome along
rainfall gradients at regional/continental scales. The model is based on two ordinary differential
equations (ODE), for woody and grass biomass. It is parameterized from literature and retains
mathematical tractability, since we restricted it to the main processes, notably tree-grass asym-
metric interactions (either facilitative or competitive) and the grass-fire feedback. We used a
fully qualitative analysis to derive all possible long term dynamics and express them in a bifur-
cation diagram in relation to mean annual rainfall and fire frequency. We delineated domains of
monostability (forest, grassland, savanna), of bistability (e.g. forest-grassland or forest-savanna)
and even tristability. Notably, we highlighted regions in which two savanna equilibria may be
jointly stable (possibly in addition to forest or grassland). We verified that common knowl-
edge about decreasing woody biomass with increasing fire frequency is recovered for all levels of
rainfall, contrary to previous attempts using analogous ODE frameworks. Thus, this framework
appears able to render more realistic and diversified outcomes than often thought of. Our model
can help figure out the ongoing dynamics of savanna vegetation in large territories for which
local data are sparse or absent. To explore the bifurcation diagram with different combinations
of the model parameters, we have developed a user-friendly R-Shiny application freely available
at : https://gitlab.com/cirad-apps/tree-grass.

Key words: Forest, Savanna, Grassland, Mean annual rainfall, Fires, Ordinary differential
equations, Alternative stable states, Qualitative analysis, Sensitivity analysis, Bifurcation diagram,
R-shiny app.

1 Introduction

Savannas, as broadly defined as systems where tree and grass coexist (Scholes and Archer [1997]),
occupy about 20% of the Earth land surface and are observed in a large range of Mean An-
nual Precipitation (MAP). In Africa, they particularly occur between 100 mm and 1500 mm (and
sometimes more) of total mean annual precipitation (Lehmann et al. [2011], Baudena and Rietkerk
[2013]), that is along a precipitation gradient leading from dense tropical forest to desert. There is
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widespread evidence that fire and water availability are variables which can exert determinant roles
in mixed tree-grass systems (Scholes and Archer [1997], Yatat et al. [2018b] and references therein).
Empirical studies showed that vegetation properties such as biomass, leaf area, net primary pro-
duction, maximal tree height and annual maximum standing crop of grasses vary along gradients
of precipitation (Penning de Vries and Djitèye [1982], Abbadie et al. [2006]). It is widely accepted
that water availability directly limits woody vegetation in the driest part of the rainfall gradient, see
e.g. Sankaran et al. [2005]. Along the rest of this gradient, rainfall is known to influence indirectly
the fire regime through what can be referred to as the grass-fire feedback (Yatat et al. [2018b],
Scholes [2003] and references therein): grass biomass that grows during rainfall periods is fuel for
fires occurring in the dry months. Sufficiently frequent and intense fires are known to prevent or
at least delay the development of woody vegetation (Yatat et al. [2018b], Govender et al. [2006]),
thereby preventing trees and shrubs to depress grass production through competition for light and
nutrients. The grass-fire feedback is widely acknowledged in literature as a force able to counteract
the asymmetric competition of trees onto grasses, at least for climatic conditions within the savanna
biome that enables sufficient grass production during wet months.

Dynamical processes underlying savanna vegetation have been the subject of many models.
Some of them explicitly considered the influence of soil water resource on the respective produc-
tions of grass and woody vegetation components (see the review of Yatat et al. [2018b]). Most of
the models also incorporated the grass-fire positive feedback, several of them distinguishing fire-
sensitive small trees and shrubs from non-sensitive large trees (Higgins et al. [2000], Beckage et al.
[2009], Baudena et al. [2010], Staver et al. [2011], Yatat et al. [2014, 2018b]), while the rest stuck
to the simplest formalism featuring just grass and tree state variables (Van Langevelde et al.
[2003], D’Odorico et al. [2006], Higgins et al. [2010], Accatino et al. [2010], Beckage et al. [2011],
Yu and D’Odorico [2014], Tchuinté Tamen et al. [2014], see also the review of Yatat et al. [2018b]).
Models featuring the grass-fire feedbacks have shown that complex physiognomies displaying tree-
grass coexistence (i.e. savannas) may be stable (Van Langevelde et al. [2003], D’Odorico et al.
[2006], Baudena et al. [2010], Accatino et al. [2010], Yatat et al. [2014], Tchuinté Tamen et al. [2014])
as well as more “trivial” equilibria such as desert, dense forest or open grassland. Some models also
predict alternative stable physiognomies under similar rainfall conditions (Accatino et al. [2010],
Staver et al. [2011], Tchuinté Tamen et al. [2014], Yatat et al. [2014, 2018b]) while field observa-
tions report contrasted savanna-forest mosaics at landscape scale (see Figure 1). However, the
ability to predict, along the whole rainfall gradient, all the physiognomies that are suggested by
observations as possible stable or multi-stable outcomes was not fully mastered and established.
Indeed, most models focused on specific contexts or questions and often feature parameters diffi-
cult to assess over large territories, especially in Africa (Accatino et al. [2010], Higgins et al. [2010],
Baudena et al. [2010], De Michele et al. [2011], Beckage et al. [2011], Yu and D’Odorico [2014]).
Nonetheless, the Accatino et al. [2010]’s attempt was a seminal step in that direction but with
some notable imperfections (see below).

The Accatino et al. [2010] model was pioneering in the sense that it allowed these authors to
provide a “broad picture”, by delimiting stability domains for a variety of possible vegetation equi-
libria as functions of gradients in rainfall and fire frequency. This result was especially interesting
and the considered model was sufficiently simple (two vegetation variables, i.e. grass and tree cov-
ers) to provide analytical forecasts. However, results from Accatino et al. [2010] were questionable
regarding the role of fire return time. In fact, all over the rainfall gradient their model predicted
that increasing fire frequency would lead to an increase in woody cover which contradicts empirical
knowledge on the subject. The features of the model that led to this problem were barely debated
in the ensuing publications. And more recent papers instead either devised more complex models
or shift to stochastic modelling (see the review of Yatat et al. [2018b]) that did not allow much
analytical exploration of their fundamental properties.

In this paper, we aim to account for a wide range of physiognomies and dynamical outcomes
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(a)

(b)

Figure 1: (a) Photo of forest–grassland boundary in Mpem & Djim National Park, Central Cameroon. (b) An abrupt

Forest–savanna (grassland) mosaics in Ayos, Cameroon.

of the tree–grass interactions system at both regional and continental scales by relying on a simple
model that explicitly address some essential processes that are: (i) limits put by rainfall on woody
and grassy biomasses development, (ii) asymmetric interactions between woody and herbaceous
plant life forms, (iii) positive feedback between grass biomass and fire intensity and, decreased fire
impact with tree height.

Starting from Yatat et al. [2018b], we explicitly express the growth of both woody and herba-
ceous vegetation as functions of the mean annual rainfall, with the aim to study model predictions
in direct relation to rainfall and fire frequency gradients. Through the present contribution we aim
at extending and improving a framework for modelling vegetation in the savanna biome through an
ODE-based model, that is minimal (in terms of state variables and parameters), mathematically
tractable and generic in the sense that its structure does not pertain to particular locations in the
savanna biome.

An idiosyncrasy of our minimalistic tree-grass model is that we considered the fire-induced loss
of woody biomass by mean of two independent non-linear functions, namely ω (see (2)) and ϑ
(see (3)). Introducing these two functions, Tchuinté Tamen et al. [2017] showed that the previous
model substantially improve previously published results on tree-grass dynamical systems (see also
Yatat et al. [2018b]). For example, they showed that increasing fire return period systematically
leads the system to switch from grassland or savanna to forest (woody biomass build-up). This result
is entirely consistent with field observations (Bond et al. [2005], Yatat et al. [2018b] and references
therein). From this sound basis, we introduced improvements in the model which are exposed in
the present paper. Notably, we now let influences of trees on grasses range from facilitation to
competition according to climate.

The goal of the present paper is to show that the theoretical analysis of our minimalistic tree-
grass ODE model is able to provide, at broad scales, an array of sensible predictions about possible
vegetation physiognomies that was not attained by tree–grass models of similar levels of complexity.
Hence, relying only on qualitative results, we will construct a bifurcation diagram depicting the
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possible vegetation types along the rainfall vs. fire frequency gradients. Last but not least, in
order to render our approach easy-to-use, we have developed a R-Shiny application to build the
previous bifurcation diagram taking into account all the model parameters that can be changed
easily according to the reader’s wish.

This paper is organized as follows. Section 2 presents the ODE model. Section 3 gives the main
theoretical results. Section 4 presents parameter ranges as well as results of the sensitivity analysis
of the ODE model. In section 5, the R-Shiny application is presented, bifurcation diagrams in
the rainfall-fire frequency space are given and numerical simulations are also provided to illustrate
vegetation shifts in relation to rainfall and fire drivers as basis for discussions in section 6. Finally, in
section 7, we summarize the main results of this paper and how they can be improved or extended.

2 The minimalistic ODE model formulation

Our model features two coupled ordinary differential equations (eq. (5) below) expressing the
dynamics of tree and grass biomasses. Each equation entails a term of logistic growth (with param-
eters depending on MAP, section 2.1) and terms of biomass suppression by external agents (e.g.
grazers or browsers) and fire. Coupling of the equations occurs because fire intensity experienced
by woody biomass is a non-linear increasing function of grass biomass (see section 2.3), while the
grass biomass dynamics is asymmetrically influenced by woody biomass (see section 2.2). The
model presented here is built on a previous ODE framework that models fire-induced mortality
on woody biomass by mean of two independent non-linear functions, namely ω (see (2)) and ϑ
(see Tchuinté Tamen et al. [2017], Yatat et al. [2018b]). The present contribution improves it by
allowing both facilitative and competitive effects of trees on grasses. We thus take into account the
fire-mediated negative feedback of grasses onto trees and the negative (in the case of competition)
or positive (in the case of facilitation) feedback of grown-up trees on grasses.

2.1 Grass and tree biomass growths along the rainfall gradient

2.1.1 Annual growths

We assume that the annual productions of grasses and trees are non-linear and saturating functions
of MAP. Following Van de Koppel et al. [1997], Higgins et al. [2010] and Van Nes et al. [2014], a
Monod equation is judged adequate to describe how limiting water resource modulates the maximal
growth of both life forms (e.g., Whittaker [1975], see also Penning de Vries and Djitèye [1982,

Figure 4.6.3, page 191]). We assume that
γGW

bG + W
and

γT W

bT + W
are annual biomass productions of

grass and trees respectively, where γG and γT (in yr−1) express maximal growths of grass and tree
biomasses respectively. Half saturations bG and bT (in mm.yr−1) determine how quickly growth
increases with water availability.

Accatino et al. [2010] considered that vegetation growths are linear functions of soil moisture,
however, the nonlinear relationship between soil-water and biomass production is widely observed in
the field (Mordelet [1993], Yatat et al. [2018b] and references therein) as soon as the most favourable
part of the rainfall gradient is taken into account.

2.1.2 Carrying capacities

We further assume that carrying capacities of grass KG(W) and tree KT (W) are increasing and
bounded functions of water availability W. There are empirical field data sets (e.g. UNESCO
[1981], Sankaran et al. [2005] and references therein) which expressed how maximum standing tree
biomass increases with rainfall. Some more studies have dealt with tree cover in relation to MAP at
a continental or regional scale (see e.g., Bucini and Hanan [2007] and Figure 2 (a) in Favier et al.
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[2012] that observed increasing and saturating curves). To determine KT , we combined field plot
data reported in Higgins et al. [2010] for the savanna side and Lewis et al. [2013] for the forest side

(see also Figure 2). To fit the data, we used the following function KT (W) =
cT

1 + dT e−aT W
, where

cT (in t.ha−1) stands for the maximum value of the tree biomass carrying capacity, aT (mm−1yr)
controls the steepness of the curve, and dT controls the location of the inflection point. We used the
nonlinear quantile regression (Koenker and Park [1996]), as implemented in the “quantreg” library
of the R software R Core Team [2018]. According to the 0.75th quantile regression (Figure 2 left,
blue curve), we found cT = 498.6 t.ha−1, dT = 106.7, and aT = 0.0045 mm−1yr.

Concerning the grass biomass standing crop, KG, we used empirical field data from Braun
[1972a,b], Menaut and Cesar [1979] and Abbadie et al. [2006]. We consider the following function:

KG(W) =
cG

1 + dGe−aGW
, where cG (in t.ha−1) denotes the maximum value of the grass biomass

carrying capacity, aG (mm−1yr) controls the steepness of the curve, and dG controls the location
of the inflection point. We reached the following values: cG = 17.06 t.ha−1, dG = 14.73, and
aG = 0.0029 mm−1yr for the 0.75th quantile regression (Figure 2 right, blue curve).

(a) (b)

Figure 2: (a) Maximum standing tree biomass KT versus Mean Annual Rainfall. Data are drawn from figures in Higgins et al.

[2010] and Lewis et al. [2013]. Solid blue, red and black curves represent the quantile regression fits for 0.75th, 0.9th and 0.5th

quantiles, respectively. (b) Maximum grass biomass (standing crop) KG versus rainfall. Data are from Menaut and Cesar

[1979], Braun [1972a,b] and Abbadie et al. [2006].

2.2 Asymmetric tree-grass interactions

Several studies, located under different rainfall regimes, compared grass production under and
outside a tree crown. The synthesis by Mordelet & Le Roux (see Abbadie et al. [2006, page 156])
concluded that the relative production (within to outside crown) is a decreasing function of rainfall.
This means that the impact of tree biomass on grass biomass ranges from possible facilitation, in
arid and semi-arid parts of the rainfall gradient, to competition in the humid part with the tipping
point located around a mean annual rainfall of ca. 600 mm.yr−1. However, despite empirical
evidence possible facilitation has never been integrated in published tree-grass interactions models,
even in those claiming genericity with respect to geographical location (see the review of Yatat et al.
[2018b]). In this contribution, we assume for the effect of tree biomass on grass biomass, a non-linear
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function of the mean annual rainfall, W (in mm.yr−1) named ηT G(W) (in (t.yr)−1), that can take
either negative values, meaning facilitation or positive values for competition. More specifically,

ηT G(W) = a × tanh
(

W − b

c

)

+ d (1)

where b (in mm.yr−1) controls the location of the inflection point, c (in mm.yr−1) controls the
steepness of the curve. The parameter a (resp. d) (in (t.yr)−1) shapes the minimal facilitation
(resp. maximal competition) level. After re-interpretation of Abbadie et al. [2006, page 156],
Yatat et al. [2017] found −0.0412 as the minimal facilitation value for ηT G and, 0.0913 for the
maximal competition value.

2.3 Grass biomass, fire intensity and fire-induced mortality

2.3.1 Fire intensity

In savanna ecology it is overwhelmingly admitted that dried-up grass biomass is the main factor
controlling both fire intensity and spreading capacity. Since our model is non-spatial, we combined
these two properties of fire in a single, increasing function of grass-biomass (actually ’fire momen-
tum’, though we termed it ’fire intensity’ for simplicity), expressing that whence average herbaceous
biomass is in its highest range, fires both display the highest intensity and affect all the landscape.
Conversely, low grass biomass due to aridity, grazing or tree competition, will make fires of low
intensity and/or unable to reach all locations in a given year thereby decreasing the actual average
frequency. We thus assume that the fire intensity noted ω is an increasing and bounded function
(in [0,1]) of the grass biomass given as follows:

ω(G) =
G2

G2 + α2
, (2)

where, G (in t.ha−1) is the grass biomass, α (in t.ha−1) is the value taken by G when fire intensity
is half its maximum. Reader is also referred to Yatat et al. [2018b, section IV-B] for a detailed
discussion about possible shapes of ω(G).

2.3.2 Fire-induced woody biomass mortality

For a given level of ω(G), fire-induced tree/shrub mortality, noted ϑ is assumed to be a decreasing,
non-linear function of tree biomass. Indeed, fires affect differently large and small trees since
fires with high intensity (flame length > ca. 2m) cause greater mortality of shrubs and topkill
of trees while fires of lower intensity (flame length < ca. 2m) topkill only shrubs and subshrubs
(Yatat et al. [2018b] and references therein). It is evident that tree biomass and total height are
linked by increasing relationships. Therefore, we expressed ϑ as follows (Tchuinté Tamen et al.
[2017]):

ϑ(T ) = λmin
fT + (λmax

fT − λmin
fT )e−pT , (3)

where, T (t.ha−1) stands for tree biomass, λmin
fT (in yr−1) is minimal lost portion of tree biomass

due to fire in configurations with a very large tree biomass, λmax
fT (in yr−1) is maximal loss of

tree/shrub biomass due to fire in open vegetation (e.g. for an isolated woody individual having
its crown within the flame zone), p (in t−1) is proportional to the inverse of biomass suffering an
intermediate level of mortality.

2.3.3 Fire-induced grass biomass mortality

Fire-induced grass mortality is assumed to explicitly depend on the mean annual precipitation,
noted W, because in arid and semi-arid locations, grass growth is low or very low due to insufficient
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rainfall and there is generally no continuous grass layer. Consequently, even if a fire occurs, it can
not propagate and its impact on grass layer is therefore very limited. Conversely, in the humid
part of the rainfall gradient, the fire-induced grass mortality is more important because grass layer
is continuous and fire propagates easily. We express the fire-induced grass mortality as follows

λfG(W) = λmin
fG + (λmax

fG − λmin
fG )

Wz

Wz + Sz
. (4)

The parameter z controls the shape for the function λfG(W) while the value of S (in mm.yr−1)
corresponds to the tipping point that separates low values to high values of the function λfG(W)
along the mean annual rainfall gradient. λmin

fG and λmax
fG control the bounds of λfG(W).

2.4 Full system

Our resulting minimalistic model is given by the set of nonlinear ODE (5).














































dG

dt
=

γGW

bG + W
G

(

1 −
G

KG(W)

)

− δGG − ηT G(W)T G − λfG(W)fG,

dT

dt
=

γT W

bT + W
T

(

1 −
T

KT (W)

)

− δT T − fϑ(T )ω(G)T,

G(0) = G0, T (0) = T0,

(5)

where, G and T (in t.ha−1) stand for grass and tree biomasses respectively; δG and δT express,
respectively, the rates of grass and tree biomasses loss by herbivores (termites, grazing and/or
browsing) or by human action. In our modelling, the f (in yr−1) parameter is taken as constant
multiplier of ω(G), and we interpret it as a man-induced “targeted” fire frequency (as for instance in
a fire management plan), which will not automatically translate into actual frequency of fires of no-
table intensity (because of ω(G)). With this interpretation, the actual fire regime may substantially
differ from the targeted one, as frequently observed in the field (see for instance Diouf et al. [2012]
in southern Niger). We therefore distinguish fire frequency from fire intensity because grass biomass
controls fire spread (see e.g. Govender et al. [2006], McNaughton [1992], Yatat et al. [2018b] and
references therein).

3 Long-term behavior of system (5): main results of the qualita-
tive analysis

Our approach has kept the model amenable to a complete qualitative analysis of equilibria and
stability thereof, as developed in the appendices. Equilibria embodying the long-term behavior of
system (5) are summarized in Tables 1 and 2 in the case of competitive and facilitative influences of
trees on grasses, respectively. Tables 1-2 result from the theoretical analysis of system (5) provided
in A. For reader convenience, we recall in the following some key findings from the appendices. Set
the following functions and thresholds:















gG(W) =
γGW

bG + W
,

gT (W) =
γT W

bT + W
,

(6)
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

















R1
W

=
gT (W)

δT
,

R2
W

=
gG(W)

δG + λfG(W)f
.

(7)

Irrespective of the effect of trees on grasses (i.e. facilitation or competition), system (5) always
has the following trivial equilibria:

• a bare soil equilibrium, i.e. desert, E0 = (0, 0)′.

• a forest equilibrium EF = (0, T ∗)′ which exists when R1
W

> 1.

• a grassland equilibrium EG = (G∗, 0)′ which exists when R2
W

> 1,

with the following notation:






















T ∗ = KT (W)

(

1 −
1

R1
W

)

,

G∗ = KG(W)

(

1 −
1

R2
W

)

.

(8)

The novelty in this paper is considering both possible competitive (ηT G(W) > 0) and facilitative
(ηT G(W) < 0) influences of trees on grasses and carrying out the qualitative analysis for both cases
(see Tables 1-2, Proposition 1, A) that shows that this induces a variety of behaviors for system
(5). Precisely, qualitative analyses allow us to efficiently explore all parts of the parameter space by
relying on well-defined thresholds that delineate all outcomes of our model. Notably, we show that
contrary to the competition case that only admits monostability or multi-stability of equilibria, the
facilitation case additionally admits periodic solutions in time (limit cycle, Theorem 4 in A). We
will not further elaborate this theoretical result in the main text since we did not observe it for the
ranges of parameters we investigated.

A savanna equilibrium ES = (G∗, T∗)′ of system (5) features coexistence of both trees and
grasses, and satisfies



























gG(W)
(

1 −
G∗

KG(W)

)

− (δG + λfG(W)f) − ηT G(W)T∗ = 0,

gT (W)
(

1 −
T∗

KT (W)

)

− δT − fϑ(T∗)ω(G∗) = 0.

(9)

We first consider the case of competition of trees on grasses and then the case of facilitation.
Hence, Proposition 1 holds true on the basis of Theorem 6 in B, page 35.

Proposition 1. 1. Competition case. Assume that ηT G(W) > 0. Then system (5) may
admit zero, one, two, three or four savanna equilibria.

2. Facilitation case. Assume that ηT G(W) < 0. Then system (5) may admit zero, one, two,
three, four or five savanna equilibria.

3. Neutral case. Assume that ηT G(W) = 0. Then system (5) may admit zero, one or two
savanna equilibria.

We also set

QF =
gG(W) − ηT G(W)T ∗

δG + λfG(W)f
, RF =

gG(W)

ηT G(W)T ∗ + δG + λfG(W)f
and RG =

gT (W)

δT + λmax
fT fω(G∗)

.

(10)
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Below, we give an approximated interpretation of the aforementioned thresholds. The aim is
to favor an intuitive ecological understanding of our theoretical results in Tables 1-2.

(i) R1
W

=
gT (W)

δT
: reflects the primary production of tree biomass relative to tree biomass loss

by herbivory (termites, browsing) or human action.

(ii) R2
W

=
gG(W)

δG + λfG(W)f
: represents the primary production of grass biomass relative to fire-

induced biomass loss and additional loss due to herbivory (termites, grazing) or human action.

(iii) RF =
gG(W)

ηT G(W)T ∗ + δG + λfG(W)f
: denotes the primary production of grass biomass, rel-

ative to grass biomass loss induced by fire, herbivory (grazing) or human action and to
additional grass suppression due to tree competition, at the close forest equilibrium. RF is
defined when ηT G(W) ≥ 0.

(iv) QF =
gG(W) − ηT G(W)T ∗

δG + λfG(W)f
: denotes the primary production of grass biomass and the ad-

ditional grass production due to tree facilitation, at the close forest equilibrium, relative to
fire-induced grass biomass loss and additional grass suppression due to herbivory (grazing)
or human action. QF is considered when ηT G(W) ≤ 0. The larger RF or QF , the higher the
potential of grass, experiencing competition or facilitation, to maintain at a coexistence state
characterized by T ∗.

(v) RG =
gT (W)

δT + λmax
fT fω(G∗)

: is the primary production of tree biomass relative to fire-induced

biomass loss at the grassland equilibrium and additional loss due to herbivory (browsing) or
human action. The larger RG, the higher the potential of tree growth to compensate biomass
losses at a coexistence state characterized by G∗.

The long-term behavior of system (5), in the case of tree vs. grass competition, is entirely
determined by the previous thresholds. It is summarized in Table 1 where more than one savanna
equilibrium could simultaneously exist and be stable (as per symbol ‘†’, at least one savanna
equilibrium and at most four). Conditions for the existence of savanna equilibria, in the competition
case, are summarized in Table 5. Thresholds R1

∗, R2
∗ and Q2

∗, related to the asymptotic stability
of savanna equilibria, when they exist, are defined in (11), page 33.
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Thresholds
Stable Unstable Case

R1
W

(R2
W

) RG RF R1
∗ R2

∗

≤ 1(≤ 1) ND ND ND ND E0 I

> 1(> 1)

> 1 ≤ 1

– < 1

EF E0, EG, ES II

≤ 1 > 1 EG E0, EF , ES III

≤ 1 ≤ 1 EG, EF E0, ES IV

> 1 ≤ 1

< 1 > 1

EF , ES E0, EG V†

≤ 1 > 1 EG, ES E0, EF VI†

> 1 > 1 ES E0, EG, EF VII†

≤ 1 ≤ 1 EF , EG, ES E0 VIII†

Table 1: Long-term dynamics of system (5) when ηT G(W) ≥ 0 (i.e. competition). ‘ND’ stands
for “Not Defined” threshold. ‘†’ means that more than one savanna equilibrium (i.e. ES) could
be simultaneously stable. Precisely, at least one savanna equilibrium and at most four savanna
equilibria could be simultaneously stable.

Table 2 summarizes the long-term behavior of system (5) in the case of tree vs. grass facilitation
with possible existence of more than one savanna equilibrium. Precisely, at least one savanna
equilibrium and at most five savanna equilibria could be simultaneously stable. See Table 6 for
savanna equilibria existence conditions.

Thresholds
Stable Unstable Case

R1
W

(R2
W

) RG QF R1
∗ Q2

∗

≤ 1(≤ 1) ND ND ND ND E0 I

> 1(> 1)

> 1 ≤ 1

– < 1

EF E0, EG, ES II

≤ 1 > 1 EG E0, EF , ES III

≤ 1 ≤ 1 EG, EF E0, ES IV

> 1 ≤ 1

< 1 > 1

EF , ES E0, EG V‡

≤ 1 > 1 EG, ES E0, EF VI‡

> 1 > 1 ES E0, EG, EF VII‡

≤ 1 ≤ 1 EF , EG, ES E0 VIII‡

> 1 > 1 – < 1 LC E0,EF , EG, ES IX

Table 2: Long-term dynamics of system (5) when ηT G(W) < 0 (i.e. facilitation). The notation ‘‡’
means that more than one savanna equilibrium (i.e. ES) could be simultaneously stable (at least
one and at most five). ‘LC’ stands for limit cycle that appears when all equilibria are unstable.

4 Parameter values and sensitivity analyses of model (5)

Interpretation of results from mathematical models of biological systems is often complicated by
the presence of uncertainties in experimental data that are used to estimate parameter values
(Marino et al. [2008]). Moreover, some parameters are liable to vary in space, even in a given
reference area. Sensitivity analysis (SA) is a method for measuring uncertainty in any type of
complex model by identifying critical inputs and quantifying how input uncertainty impacts model
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outcomes. Different SA techniques exist (Marino et al. [2008] and references therein). In this section
we will perform partial rank correlation coefficient (PRCC) and the extended Fourier amplitude
sensitivity test (eFAST) analysis in order to deal with both cases of nonlinear but monotonic
relationships between outputs and inputs (i.e. PRCC) as well as nonlinear and non-monotonic
trends (eFAST).

The parameter ranges considered for this study are given in Table 3. Though the model aims
to be qualitatively relevant for a large swath of African situations, we particularly ground our
choice of parameter values in a north-south gradient located at and around the 16°E of longi-
tude, and between ca. 6 and 10°N of latitude (i.e., between ca. 900 to 1500 mm.yr−1 of MAP).
This area goes from desert and the Sahel steppe in the north of lake Chad to the equatorial area
in southern Cameroon and it spans the main vegetation physiognomies of Central Africa that
include close canopy forest, grassland, savanna, forest-grassland and forest-savanna mosaics (see
e.g. Figure 1). Using longitude and latitude data, the MAP data were extracted from BIO12
(http://www.worldclim.org/bioclim, see also Hijmans et al. [2005]) using the “raster” package
of RStudio, version 1.1.383 R Core Team [2018]. Retained parameter ranges originate from pub-
lished literature (e.g. f : fire frequency, W: MAP), re-interpretations of empirical results (e.g. λmin

fT :
minimal lost portion of tree biomass due to fire in configurations with a very large tree biomass,
λmax

fT : maximal loss of tree/shrub biomass due to fire in open vegetation), expert-based knowledge

(e.g. λmin
fG : minimal fire-induced grass mortality, λmax

fG : maximal fire-induced grass mortality) or
by data fitting (e.g. cT : maximum value of the tree biomass carrying capacity, cG: maximum
value of the grass biomass carrying capacity). It is to the best of our knowledge the first time that
consistent responses curves (Figure 2) are assessed from existing information all along the rainfall
gradient.

For the PRCC analysis (see Figure 3), we used the PCC function (R software R Core Team
[2018]) and 1000 bootstrap replicates, with a probability level of 0.95 for (the bootstrap) confidence
intervals. For the eFAST analysis (see Figure 4), we used the FAST99 function (R software) with
7500 runs. As expected, because of a large number of parameters (25), it took quite a long time.

eFast sensitivity analysis pointed towards the leading role of parameters relating to fire fre-
quency, biomass growth (γG,T ), biomass destruction (δG,T ). Logically, MAP (W) appears perva-
sive, especially for T . Maximal rate of grass suppression by fire is influential for both tree and grass
biomass while maximal woody biomass suppression is not. For both variables, the α parameter,
which is the critical grass biomass letting fire shift from low to high intensities (eq. (2)) appears of
substantial influence (7th rank for both variables).

PRCC results provide some complementary insights. Some parameters that tend to decrease
grass biomass logically boost tree biomass and vice-versa, e.g. fire intensity, γG vs. γT , δG vs. δT .
For both methods, MAP is of utmost importance for trees and fairly less for grass biomasses. Most
of those parameters were already singled out by eFast but PRCC also underlined the roles of p
(tuning the decrease of fire impact with woody biomass, eq. (3)), aG and λmax

fT . We may note that
parameters related to equations (1) and (4) did not appear prominent in the sensitivity analysis,
in spite of the important role that ηT G (eq. (1)) plays in the qualitative analysis.
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Symbol Unit Baseline Range References

cT t.ha−1 430 423.8–523.4 See text and Fig. 2

aT yr−1 0.004 0.0038–0.0054 See text and Fig. 2

dT – 107 78.26–167.34 See text and Fig. 2

cG t.ha−1 20 12.3–21.82 See text and Fig. 2

aG yr−1 0.0029 0.0023–0.0042 See text and Fig. 2

dG – 14.73 11.36–24.05 See text and Fig. 2

γT yr−1 1.5 1–3 Estimated by revisiting

Stape et al. [2010]; Laclau et al. [2010];

Karmacharya and Singh [1992]

bT mm.yr−1 1100 900–1300 Abbadie et al. [2006]

γG yr−1 2.7 0.5–3.5 Mordelet and Menaut [1995]

bG mm.yr−1 500 400–650 UNESCO [1981]

δT yr−1 0.1 0.015–0.3 Hochberg et al. [1994];

Accatino et al. [2010]

δG yr−1 0.1 0–0.6 Van Langevelde et al. [2003]

λmax
fG – 0.4 0.2–0.7 Expert-based value

λmin
fG – 0.005 0–0.1 Expert-based value

S mm.yr−1 900 750-1100 Expert-based value

z – 8 – Expert-based value

λmin
fT – 0.05 0–0.1 Reinterpretation of

Trollope and Trollope [2010];

see also Higgins et al. [2007]

λmax
fT – 0.65 0.5–1 Reinterpretation of

Trollope and Trollope [2010];

see also Higgins et al. [2007]

p t−1 0.01 0.01–0.15 Reinterpretation of

Trollope and Trollope [2010]

α t.ha−1 1 0.5–2.5 Govender et al. [2006]

b mm.yr−1 600 500–700 Reinterpretation of

Mordelet and Menaut [1995];

see also Abbadie et al. [2006]

c mm.yr−1 120 75–150 Assumed

a (t.yr)−1 0.01 0.001–0.01 Reinterpretation of

Mordelet and Menaut [1995];

see also Abbadie et al. [2006]

d (t.yr)−1 0.0045 0.001–0.01 Reinterpretation of

Mordelet and Menaut [1995];

see also Abbadie et al. [2006]

W mm.yr−1 1300 0–2000 Menaut et al. [1991]; Lewis et al. [2013]

f yr−1 1 0–2 Higgins et al. [2010]; Accatino et al. [2010]

Table 3: Parameter ranges.
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(a) LHS-PRCC sensitivity analysis when the reference output is the Grass biomass, G.
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Figure 3: LHS- PRCC Sensitivity Analysis. For simplicity, λGM := λmax
fG

, λGm := λmin
fG

, λT M := λmax
fT

and λT m := λmin
fT

.
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.
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5 Bifurcation diagrams and numerical simulations

We first provide bifurcation diagrams, based on the thresholds computation for the following set
of parameters (see Table 4). We secondly present numerical simulations (also based on Table 4
values) to illustrate bifurcations in relation to mean annual rainfall (W) and fire frequency (f).

cG, t.ha−1 cT , t.ha−1 bG, mm.yr−1 bT , mm.yr−1 aG, yr−1 aT , yr−1

20 430 500 1100 0.0029 0.004

dG, − dT , − γG, yr−1 γT , yr−1 δG, yr−1 δT , yr−1

14.73 107 2.7 1.5 0.1 0.1

S, − λmin
fT , − λmax

fT , − p, t−1 α, t.ha−1 z

900 0.05 0.65 0.01 2.45 8

λmin
fG , − λmax

fG , − a, t−1yr−1 b, mm.yr−1 c, mm.yr−1 d, t−1yr−1

0.005 0.4 0.01 600 120 0.0045

Table 4: Parameter values considered for simulations.

Thanks to the qualitative analysis of system (5) (see A), any version of the bifurcation dia-
grams (see for instance Figures 6-7), in terms of the fire frequency and the MAP, summarize the
outcomes of the ODE model (5). These bifurcation diagrams are obtained without simulations: they
are produced with a simple web application, called Tree-Grass (see Figure 5), developed using R
R Core Team [2018], shiny R package Chang et al. [2020] and plotly R package Sievert [2020]. The
source code of this application is free to use and is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/).
It is available at https://gitlab.com/cirad-apps/tree-grass. The user can modify the default
parameters which are classified in primary and secondary parameters according to the sensitivity
analysis (see section 4). They can be changed either manually via the interface or by uploading a
csv file containing some custom set of parameters. The “Calculate” button launches the compu-
tation of the bifurcation diagram, using all qualitative thresholds, for the chosen parameters. The
Tree-Grass application allows to export the obtained bifurcation diagram and also the underlying
set of parameters.
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Figure 5: Illustration of the Tree-Grass application interface which permits the user to modify the
model parameters (A), launch qualitative thresholds computation (B), get the resulting interactive
bifurcation diagram (C) and export the outcomes (D).

Figure 6 depicts the outcomes of model (5) depending on fire frequency (f) and mean annual
rainfall (W). In relation to these two parameters, the system experiences both monostability and
multi-stability situations involving desert, forest, grassland and savanna. In the lowest part of the
rainfall gradient,a stable bare soil (i.e. desert) is observed for all values of the fire frequency f . For
a large stretch of the rainfall gradient, i.e. from ca. W=100 mm.yr−1 to ca. W=950 mm.yr−1,
savannas are found to be stable but for high fire frequencies (∼>0.85) they are nevertheless unlikely
to be observed at landscape scale as long as MAP do not exceed 700 - 800 mm. Above this threshold,
increasing the fire frequency is predicted to notably reduce tree biomass and induce a shift from
monostable savanna to monostable grassland and even to multistable states. In the humid parts of
the rainfall gradient (MAP> 950-1000 mm), monostable forest is predicted for low values of the fire
frequency while for very high fire frequencies, forest-grassland bistabilty is possible. Thanks to the
nonlinear functions ω(G) and ϑ(T ) several savanna equilibria may exist and may be simultaneously
stable. For intermediate MAP values associated with very high fire frequency we moreover note a
variety of multi-stable states, i.e. savanna-forest-grassland, savanna-savanna-grassland tristability,
savanna-savanna, savanna-grassland, forest-savanna and forest-grassland bistabilities.
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Figure 6: Bifurcation diagram of model (5) obtained along gradients of MAP (W) and fire frequency (f). Regions in

the W − f parameter space are delineated according to the thresholds of the qualitative analysis computed from the chosen

parameters (Table 4) with monostable states (desert, forest, grassland and savanna), along with bistable states (savanna-

savanna, forest-grassland), a forest-savanna, grassland-savanna. A zoom of bistable and tristable states is presented in Figure

7, page 18

Figure 7 zooms in the bifurcation diagram presented in Figure 6 where we let W to range from
900 mm.yr−1 to 940 mm.yr−1 and the fire frequency f to range from 0.8 yr−1 to 1.05 yr−1. The
zooming highlights the multistable states that are not visible (savanna-savanna-grassland; savanna-
forest) or barely apparent (forest-savanna-grassland) in Figure 6.
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Figure 7: Zooming in the bifurcation diagram presented in Figure 6 to emphasize multi-stable states of limited extent in the

W − f parameter space.

We used simulations of model (5) and phase portraits of the two state variables to illustrate
transitions in the part of the W vs. f parameter space where several multistable configurations were
found. Figure 8 shows a transition from grassland monostability (panel (a)) to forest monostability
(panel (f)) with intermediate stages of grassland-savanna bistability (panel (b)), savanna-savanna-
grassland tristability (panels (c)), savanna-forest-grassland tristability (panel (d)) and savanna-
forest bistability (panels (e)), as the mean annual rainfall W increases from 902 to 930 mm.yr−1

while the fire frequency is kept fixed (f=0.98). We note here that a high woody biomass savanna
equilibrium (slightly less than 100 t/ha) appears in panels (b) and (c) that may be interpreted as
open forest with very low, yet perpetuating grass biomass. The woody biomass of the stable forest
equilibrium in panels (d), (e) and (f) is just above the value found for the high biomass stable
savanna equilibrium. Here the bifurcation owing to a slight increase in mean-annual rainfall entails
the final suppression of grass biomass by tree cover competition. We also note that the area of
grassland stability in panels (c) and (d) is restricted to a tiny domain of the phase space and cannot
be reached for simulations starting from very low levels of woody biomass (especially in (d)).

In Figure 9 we depict a transition due to f while the mean annual rainfall is kept constant
at W = 920. It illustrates a shift from a monostable high woody biomass savanna state to a
forest-grassland bistability as fire frequency f increases from f = 0.9 (panel (a)) to f = 1.05
(panel (e)). Precisely, it shows a transition from savanna monostability (panel (a)) to savanna-
savanna bistability (panel (b)), then savanna-savanna-grassland tristability (panel (c)) and savanna-
grassland bistability (panel (d)) as the fire frequency increases. The woody biomass of the high
level savanna equilibrium is of ca. 100 t/ha as in the previous figure, while the slight increase in
fire frequency decreases the woody biomass of the lower level savanna equilibrium from ca. 40 t/ha
(in (b)) down to 20 t/ha in (c) (this panel being the same as in the previous figure).

18



From this simulation-based illustration we verify that increasing fire return period for a given
rainfall level systematically implies an increase in woody biomass, as classically observed in the
field (Bond et al. [2005], Bond and Parr [2010], Mitchard and Flintrop [2013]).
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(d) Forest-savanna-grassland tristability

0 2 4 6 8 10

Grass biomass

0

20

40

60

80

100

120

T
re

e
 b

io
m

a
s
s

f =0.98,  W =925

0 0.5 1

Grass biomass

80

100

120

T
re

e
 b

io
m

a
s
s

(e) Savanna-forest bistability
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Figure 8: Phase diagrams for grass and woody biomasses (in t/ha) illustrating from simulations of model (5) a transition

from grassland monostability (panel (a)) to forest monostability (panel (f)) due to an increase in mean annual rainfall W. Black

dots represent simulation starting points in phase space, the green dot stands for the stable savanna, the red dot denotes the

stable forest while the blue dot represents the stable grassland. Insets magnify the model behavior around equilibria.
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Figure 9: Phase portrait for grass and tree biomasses (in t/ha) illustrating from simulations of model (5) the transition

from a high woody biomass monostable savanna (panel (a)) to forest-grassland bistability (panel (e)) due to increasing fire

frequency f while keeping constant the mean annual rainfall at W = 920 mm.yr−1. Black dots represent the starting points

of simulations, the green dot stands for the stable savanna, the red dot denotes stable forest while the blue dot represents the

stable grassland. Insets magnify the model behavior around equilibria.
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6 Discussion

The present line of modelling aimed at demonstrating that meaningful and diversified outcomes can
be expected from parsimonious, mathematically tractable models of grassy and woody biomasses
interactions in the savanna biome. On the basis of a simple ODE framework, sensible results
were indeed reached regarding how vegetation physiognomies change in relation to MAP and fire
frequency. The model is liable to predict ‘trivial’ equilibria, i.e. desert, grassland and forest
as well as coexistence savanna equilibria (up to five of them), that is the main physiognomies
encountered along the rainfall gradients of inter-tropical zones. The qualitative analysis also defined
several ecological thresholds that delineate regions of monostability, bistability and tristability
involving these equilibria. The bifurcation diagram allows us verifying that shifts between regions
induced by increasing fire frequency do not favour the woody component of vegetation: monostable
forest gives place to forest-grassland bistability, savanna shifts into grassland, ... This may sound
trivial with respect to common experience (Bond et al. [2005],Bond and Parr [2010], Favier et al.
[2012],Jeffery et al. [2014]), though it is not established to our knowledge that any other model of
only two state variables is able to render this fundamental behavior. For this, the introduction
in earlier versions of two independent non-linear functions ω(G) (see (2)) and ϑ(T ) (see (3)) was
decisive. Moreover, thanks to ω(G) and ϑ(T ), more than one savanna coexistence equilibrium may
exist for system (5), while at least two of them may be simultaneously stable. We also found
that the model can yield a variety of bistable (forest-savanna, forest-grassland, savanna-grassland)
and tristable patterns (forest-savanna-grassland, forest-savanna-savanna and grassland-savanna-
savanna). That relatively simple ODE models can lead to complex behaviours has already been
highlighted, notably by Touboul et al. [2018] though they used three to four state variables.

For the set of parameters we used to compute the bifurcation diagram, we found bi- and trista-
bility occurring in sensible situations, with fire frequencies approaching one fire per year and MAP
values of (900 - 1000 mm per year) close to those reported as allowing forest to take over savanna
in the absence of frequent fires. We however acknowledge that multistable patterns only cover a
limited area in the bifurcation diagram while some of them may disappear upon minor changes
in some parameters. Similarly, forest-savanna-savanna-grassland quadristability and a limit cycle
(linked to facilitation) were proven to be theoretically possible. But neither of them was observed
for the ranges of parameters we deemed plausible and this recall the gap between theoretically-
possible complexity of dynamical outcomes (as underlined in e.g. Touboul et al. [2018]) and what
is actually observable from reasonable parameter ranges. Bistable situations involving grassland
(as alternative to savanna or forest) seems the most robust but they are linked to very high fire
frequencies (above one fire per year) of questionable realism. Under humid equatorial climates,
landscape mosaics juxtaposing both grassland-like and forest vegetation are widely observed in
places were fire frequencies can exceed one per year because of two dry seasons (Walters [2010],
Jeffery et al. [2014]). But lower intensity and impact on woody stems is reported for too frequent
fires (Walters [2010]), while real grasslands in the corresponding landscapes are often associated to
seasonal water-logging. There is thus no agreement that fire alone can ensure grassland stability
under humid climates.

More generally, whether complex multistable situations may actually occur in spite of inherent
temporal variability of climate and environmental factors is a fully open question. Some observa-
tions however suggest that we should not a priori rule them out and that ability to predict their
conditions of occurrence on analytical grounds is a desirable property for a model. For instance, an
analysis by Favier et al. [2012] on remote sensing data along a general transect in Central Africa
reported (for 3–4◦ north latitude range), a distribution of woody cover values featuring three modes,
namely very low values resembling grassland, large values around 80% cover indicating forests and
intermediate cover values around 40% suggesting dense savannas. Possible multistabiltiy of equilib-
ria also means that shifts from one stable state to another may often be less abrupt and spectacular
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that hypothesized from existing models and that trajectories of vegetation change may be more
complex than often thought of (Yatat et al. [2014, 2018b]). In ecology, the theory of alternative
stable states has been to date mostly invoked in relation to bistability of contrasted vegetation types
i.e. forest vs. grassland or vs. savanna (assumed of low cover). Consequently, transitions between
alternative stable states are frequently termed as abrupt or catastrophic shifts (Pausas and Bond
[2020], Scheffer et al. [2001, 2015], Scheffer and Carpenter [2003], Staver et al. [2011], Favier et al.
[2012], Yatat et al. [2018b]) and were therefore deemed unrealistic by some other authors. But we
illustrate here that bistability may involve less contrasted states, as well. Notably, we highlighted
here the possible existence of two savanna equilibria among which one of high woody biomass, that
may be interpreted as dense woodland or open forest. Indeed, the corresponding woody biomass
of slightly less than 100 t/ha is in the upper range of values reported for the miombo woodlands,
while the associated very low grass biomass is not at odd with most miombo reported figures of
less than 2 t/ha (Frost [1996, p. 24-26]). The area of bistability for the two savanna equilibria is
notable in our bifurcation diagram. This finding may echo the long-lasting, unsettled debate about
whether open or dry forests, among which the miombos should be considered as transient or stable
states (Frost [1996, p. 50]).

We made here two additions to the model presented by Yatat et al. [2018b]. First, we allow
the parameter (ηT G) depicting the asymmetric influence of trees on grasses to depend on the
biogeographical context through MAP (eq. (1)). One novelty in the present paper is to provide
complete qualitative analyses of the consequences of this choice and we show that shifting from
competition to facilitation with decreasing MAP, as empirically evidenced (Abbadie et al. [2006,
page 156]), substantially enriches the possible outcomes of the model. This variety of results
illustrates the potential of the ODE framework. Second, we let the fire-induced mortality of grasses
non-linearly decrease with annual rainfall instead of being constant (eq. (4)) in order to avoid
possible nonsensical results in the dry stretch of the MAP gradient for which fire is known to be
absent or a negligible. Our ODE model differs fundamentally from existing tree-grass models in that
MAP is explicit in the parameters of biomass logistic growths. We made a first assessment of these
parameters all over the MAP gradient using published results, while there was no previous synthesis
about MAP influence on potential maximal woody biomass that encompassed both savannas (as
in Higgins et al. [2000]) and forests (as in Lewis [2006]). Some existing models considered rainfall
through an additional state variable of soil moisture (see the review of Yatat et al. [2018b]) leading
to additional parameters and more complex mathematical systems. But there is no real need for a
third equation about soil moisture since its dynamics is very rapid compared to change in vegetation
(Barbier et al. [2008]), leading to systems in which the fast soil moisture variable can be eliminated
(Mart́ınez-Garćıa et al. [2013]).

Accatino and De Michele [2016] questioned the assumption according to which the parameter
f of fire frequency could be constant and independent of vegetation characteristics, as in most
published ODE models and in some non-ODE ones. In fact, if most fires start from human ignition
(Favier et al. [2004], Govender et al. [2006], Archibald et al. [2009]), fires are strongly constrained
by available grass fuel and its distribution across space (Archibald et al. [2010]). Here, we keep
fire frequency f constant but we interpret it as a man-induced ‘targeted’ fire frequency as for
instance in a fire management plan of a protected area or a ranch. This frequency which will
not automatically translate into actual frequency of fires of notable intensity in all places of a
landscape. We therefore modulate f by ω(G) which will stay in its low branch as long as grass
biomass is not of sufficient quantity. For instance, in the ‘W’ National Park in southern Niger, a
one-year frequency was targeted by the fire management plan, but the actual average frequency was
assessed at 0.7 year−1 by a seven-year remote-sensing survey (Diouf et al. [2012]). At the scale of the
entire Serengeti National Park (Tanzania), McNaughton [1992] reported that the burnt area fraction
(i.e. average fire frequency) dramatically decreased in the 70s due to grass biomass depletion by
soaring herbivores populations, although ignition regime by neighbouring communities remained
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probably unchanged. We thereby split fire frequency from final fire impact on woody biomass in
a multiplicative way (f × ω(G) × ϑ(T )). This modelling choice expresses the well-known fact that
grass biomass controls both fire spread and local fire intensity which impacts differently small and
large woody individuals (Govender et al. [2006], McNaughton [1992] and references therein). Thus,
the ω(G) function (bounded in [0,1]) is meant to integrate the difficult spreading of fire and thereby
modulates the overall, external forcing (i.e. f) applied on the tree-grass system.

From a more general standpoint, ODE approaches have been criticized by several authors who
questioned the modelling of fire as a permanent forcing that continuously removes fractions of fire
sensitive biomass all over the year (Higgins et al. [2000], Baudena et al. [2010], Beckage et al. [2011],
Accatino and De Michele [2013, 2016], Tchuinté Tamen et al. [2016, 2017], Yatat et al. [2017, 2018b]).
Indeed, the time between two successive fires is generally long (several months or even years, see
Yatat et al. [2018b, Table IV]). Hence, fire may rather be considered as an instantaneous perturba-
tion of the savanna ecosystem (Yatat et al. [2018b]). Some authors advocated stochastic modelling
of fire occurrences while keeping the continuous-time differential equation framework for vege-
tation growth and direct interactions between plant forms (Baudena et al. [2010], Beckage et al.
[2011]) or using a time-discrete model (Higgins et al. [2000], Accatino and De Michele [2013, 2016],
Touboul et al. [2018]). However, a drawback of most of these time-discrete stochastic models
(Higgins et al. [2000], Baudena et al. [2010], Beckage et al. [2011]) is that they are less amenable to
analytical approaches and often even barely tractable. This is a problem because outcomes span-
ning limited areas in parameter space (as for the multistable states we evidenced) may be missed by
simulations if no qualitative result is available to pinpoint their existence. Another line of thought
relies on the modelling of fires as impulsive events (Yatat et al. [2017, 2018b], Yatat and Dumont
[2018], Tchuinté Tamen et al. [2016, 2017] and references therein). This leads to the impulsive dif-
ferential equation (IDE) framework. To some extends, IDE based models can be seen as a trade-off
between realism (discrete nature of fire occurrences) and mathematical tractability (like in the
present ODE models). In earlier works, there was no qualitative criteria for the savanna equilibria
using IDE models (Tchuinté Tamen et al. [2017], Yatat et al. [2017]). Last but not least, some
processes that likely impact the stability of savanna vegetation including fire spread, seed dispersal
and thus tree establishment are spatially structured (see Li et al. [2019] and references therein).
Consequently, it is obvious that one cannot expect mean-field or spatially implicit savanna models
to accurately reproduce the dynamics of complex, mosaic-like landscapes, even through aggregated
values of the two simple state variables we used here.

7 Conclusion

In this paper, we presented and analyzed an improved version a ‘minimalistic’ tree-grass model
that addresses the influence of fire and rainfall (MAP) in tree-grass ecosystems. The model is
minimalistic in terms of state variables and parameters, by only explicitly addressing essential
processes that are: logistic growth of woody and grassy biomasses, asymmetric direct interactions
thereof (both MAP-modulated), positive grass-fire feedback and decreased fire impact on large
woody biomass.

The model is fully mathematically tractable and is sufficient to produce a realistic bifurcation
diagram rendering the ‘big picture’ of vegetation physiognomies in the savanna biome. Reaching as
meaningful results over complete rainfall and fire gradients with less parameters seems challenging.
Tractability is important because it allows us to efficiently explore all parts of the parameter
space and be sure that interesting situations, notably linked to multi-stability, are not missed as
it may happen if only relying on computer simulations. Since well-defined thresholds delineate all
outcomes of our model, we can rapidly re-draw the bifurcation diagram after changing parameters,
as to better adapt the model response to specific contexts or to integrate improved knowledge on
some parameters. We moreover propose a R-Shiny application, “Tree-Grass”, to let ecologists easily
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explore consequences of modifying parameter values. Results of sensitivity analysis provided in this
paper may also guide such explorations and suggest priorities for further data acquisition.

This work can be improved and extended in several ways. One could consider MAP together
with potential evapotranspiration (PET) instead of MAP alone as to render that under cooler
climates (e.g. in Eastern and Austral Africa) limits in the bifurcation diagrams may shift towards
lower MAP values. Adjusting parameter values to more specific reference data sets is also needed
to better agree with any given biogeographical context. In contexts where parameters are fairly
mastered, spatially explicit approaches are desirable. A former version of the present model has
already inspired a spatially explicit model featuring local propagation of grass and tree biomass (e.g.
clonal reproduction) through diffusion operators, taking into account continuous fire (Yatat et al.
[2018a]), or impulsive periodic fire (Yatat and Dumont [2018], Banasiak et al. [2019]). Several
studies (e.g. Borgogno et al. [2009], Lefever et al. [2009]) have also fruitfully modelled non-local
plant-plant interactions using kernel operators in reference to arid patterned vegetation and single
state variable models (undifferentiated vegetation biomass). Such kernels could be introduced in our
model as to embody distance-dependent interactions between grassy and woody biomass in presence
of fires. Spatially explicit versions of the present model are desirable, for instance to better address
the dynamics of savanna-forest mosaics found under humid climates and investigate the stability
of particular landscape features such as localized structures (e.g. groves, Lejeune et al. [2002]) or
abrupt boundaries (Yatat et al. [2018a], Wuyts et al. [2019]) that are of particular relevance to
understand the dynamics of forest-savanna mosaics in the face of global change.

Supplementary materials

Tree-Grass app source code is freely available at https://gitlab.com/cirad-apps/tree-grass.
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A. Tchuinté Tamen, Y. Dumont, J. J. Tewa, S. Bowong, and P. Couteron. A minimalistic model of
tree–grass interactions using impulsive differential equations and non-linear feedback functions
of grass biomass onto fire-induced tree mortality. Math. Comput. Simulation, 133:265–297, 2017.
URL http://dx.doi.org/10.1016/j.matcom.2016.03.008.

J. D. Touboul, A. C. Staver, and S. A. Levin. On the complex dynamics of savanna land-
scapes. Proceedings of the National Academy of Sciences, 115(7):E1336–E1345, 2018. URL
https://www.pnas.org/content/115/7/E1336.

W. Trollope and L. A. Trollope. Fire effects and management in african grasslands
and savannas. Range and Animal Sci. Resour. Manag., 2:121–145, 2010. URL
https://www.eolss.net/Sample-Chapters/C10/E5-35-18.pdf.
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A Analytical results of system (5)

Here, both competition and facilitation are considered and, will be theoretically analyzed. For
reader convenience, we will explicitly state whether we are in the competition or in the facilitation
case. To favor the readability of the paper, key theoretical results will be stated in this appendix
but their proofs will be given in subsequent appendices.

The right-hand side of system (5) is C1(R2) i.e., continuously differentiable on R
2. Then, from

the Cauchy-Lipschitz theorem, system (5) has a unique maximal solution. From the ecological point
of view, since the variables of system (5) represent biomasses, each variable must stay nonnegative
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and must be bounded during the time evolution (i.e., the system is said to be biologically well-
posed). Note that a solution with initial conditions in R

2
+ stays in R

2
+ since it can not cut the

y-axis (vertical null line) and the x-axis (horizontal null line).
In the case of competition of tree biomass on grass biomass, i.e. ηT G(W) ≥ 0, we define the

subset of solutions

ΓηT G(W)≥0 =
{

(G, T )′ ∈ R
2
+ : G ≤ KG(W), T ≤ KT (W)

}

.

In the case of facilitation of tree biomass on grass biomass, i.e. ηT G(W) < 0, we consider the
subset of solutions

ΓηT G(W)<0 =















(G, T )′ ∈ R
2
+ : G ≤ KG(W) ×

γGW

bG + W
− ηT G(W)KT (W)

γGW

bG + W

, T ≤ KT (W)















.

It is straightforward to verify that the subsets ΓηT G(W)≥0 and ΓηT G(W)<0 are positively invariant
with respect to system (5). It means that any solutions of (5) starting in ΓηT G(W)≥0 or ΓηT G(W)<0

will remain inside. In other words, any solutions initiated in ΓηT G(W)≥0 or ΓηT G(W)<0 will stay
nonnegative and bounded.

A.1 Existence of equilibria

System (5) always has the following trivial equilibria: a bare soil equilibrium, i.e. desert, E0 =
(0, 0)′; a forest equilibrium EF = (0, T ∗)′ which exists when R1

W
> 1; a grassland equilibrium

EG = (G∗, 0)′ which exists when R2
W

> 1. Existence of savanna equilibria ES = (G∗, T∗)′ follows
from Theorem 6 in B, page 35.

A.2 Stability analysis

A.2.1 Stability of equilibria

In the case ηT G(W) ≥ 0, system (5) is a planar, competitive and dissipative system. Hence,
based on Smith [2008, Theorem 2.2, page 35], we deduce that solutions of system (5) will always
converge toward an equilibrium point. That is, no stable limit cycles may exist for system (5)
when ηT G(W) ≥ 0. Recall that QF , RF and RG are given by (10), page 8. Straightforward
computations lead to the following Theorem 1 that deals with hyperbolic equilibria; that is, none
of the eigenvalues of the Jacobian matrix computed at an equilibrium has a null real part (Wiggins
[2003, Definition 1.2.6]). Hence, conclusions of Theorem 1 follow from Wiggins [2003, Theorem
1.2.5] and its proof is omitted:

Theorem 1. (Stability of trivial equilibria: the hyperbolic case)

(1) The desert equilibrium E0 = (0, 0)′ is locally asymptotically stable (LAS) in R
2
+ when R1

W < 1
and R2

W < 1 while it is unstable whenever R1
W > 1 or R2

W > 1.

(2) The grassland equilibrium EG = (G∗, 0)′ is LAS in R
2
+ when RG < 1 while it is unstable if

RG > 1.

(3) a. Competition or Neutrality case. When ηT G(W) ≥ 0, the forest equilibrium EF =
(0, T ∗)′ is LAS in R

2
+ whenever RF < 1 while it is unstable when RF > 1

b. Facilitation case. When ηT G(W) < 0, the forest equilibrium EF = (0, T ∗)′ is LAS in
R

2
+ whenever QF < 1 and it is unstable if QF > 1.
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In Theorem 1, the threshold R1
W

, R2
W

, RG, RF or QF is either lower or greater than one.
However, from a direct computation of Jacobian matrix at E0, EF or EG one deduces that if any
the previous thresholds is equal to one then the corresponding equilibrium becomes non-hyperbolic.
In that case, Theorem 2 is valid.

Theorem 2. (Stability of trivial equilibria: the non-hyperbolic case)

(1) The desert equilibrium E0 = (0, 0)′ is LAS in R
2
+ when (R1

W < 1 and R2
W = 1), (R1

W = 1
and R2

W = 1) or (R1
W = 1 and R2

W < 1).

(2) The grassland equilibrium EG = (G∗, 0)′ is LAS in R
2
+ when RG = 1.

(3) a. Competition or Neutrality case. When ηT G(W) ≥ 0, the forest equilibrium EF =
(0, T ∗)′ is LAS in R

2
+ whenever RF = 1.

b. Facilitation case. When ηT G(W) < 0, the forest equilibrium EF = (0, T ∗)′ is LAS in
R

2
+ whenever QF = 1.

Proof. See C, page 45.

Remark 1. The existence of EF or EG destabilizes the desert equilibrium E0. Hence, there is no
bistability between vegetation and bare soil.

Let ES = (G∗, T∗)′ be a savanna equilibrium given by Proposition 1. If there exist several
savanna equilibria, for each of them, we define the three following threshold:























































































R1
∗ =

−fω(G∗)T∗ϑ
′

(T∗)
(

gG(W)

KG(W)
G∗ +

gT (W)

KT (W)
T∗

) ,

R2
∗ =

gG(W)gT (W)

KG(W)KT (W)
(

−f
gG(W)

KG(W)
ω(G∗)ϑ′(T∗) + fηT G(W)ϑ(T∗)ω′(G∗)

) , when ηT G(W) ≥ 0,

Q2
∗ =

gG(W)gT (W)

KG(W)KT (W)
− fηT G(W)ϑ(T∗)ω′(G∗)

−f
gG(W)

KG(W)
ω(G∗)ϑ′(T∗)

, when ηT G(W) < 0.

(11)

Concerning the stability of savanna equilibria, the following theorem holds:

Theorem 3. (Stability of the savanna equilibrium)

a. Competition or Neutrality case. Assume that ηT G(W) ≥ 0. Then, the savanna equilibrium
ES = (G∗, T∗)′ is locally asymptotically stable whenever R1

∗ < 1 and R2
∗ > 1.

b. Facilitation case. Assume that ηT G(W) < 0. Then, the savanna equilibrium ES = (G∗, T∗)′

is locally asymptotically stable whenever R1
∗ < 1 and Q2

∗ > 1.

Proof. See D, page 46.

Remark 2. Multi-stability of savanna equilibria.
It should be noted that several savanna equilibria may simultaneously verify requirements of Theorem
3. This case is the so-called multi-stability situations involving several savanna equilibria.
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A.2.2 Limit cycle and the Hopf bifurcation

When ηT G(W) < 0, i.e. in the facilitation case, system (5) is a planar and dissipative system but
it is no longer a competitive system. Hence, Theorem 4, that ensures the existence of a limit cycle,
follows from the Poincaré-Bendixson theorem, see e.g. Augier et al. [2010, Theorem 1.20].

Theorem 4. In the case where all equilibria of system (5) are unstable, then one of the following
holds true:

(i) Solutions of system (5) all converge toward a periodic solution.

(ii) System (5) admits a limit cycle like homoclinic or heteroclinic cycle.

In the following, we deal with the case where ηT G(W) < 0 and a periodic solution bifurcates
from a savanna equilibrium. Assume that, for the savanna equilibrium point ES = (G∗, T∗)′, one
has

Q2
∗ > 1. (12)

Following Theorem 3-b, ES = (G∗, T∗)′ is LAS if, in addition to (12), one has R1
∗ < 1. Therefore,

even with (12) satisfies, it can be concluded that when ηT G(W) < 0, the savanna equilibrium
point ES = (G∗, T∗)′ may lose its stability through a Hopf bifurcation under certain parametric
conditions. Considering the fire frequency f as a bifurcation parameter, one can compute the
threshold value

f = fh = −

(

gG(W)

KG(W)
G∗ +

gT (W)

KT (W)
T∗

)

ω(G∗)T∗ϑ
′(T∗)

,

which satisfies
R1

∗

∣

∣

∣

f=fh

= 1. (13)

Assume also that the following condition holds true

Q2
∗

∣

∣

f=fh
> 1, when ηT G(W) < 0. (14)

The transversality condition for the Hopf bifurcation is

d

df
(tr(J∗))

∣

∣

∣

∣

f=fh

= −ω(G∗,f )T∗,f ϑ′(T∗,f ) > 0 (15)

where tr(J∗) is given by (40), page 47, and G∗,f , T∗,f indicate the functionality of the components
of the positive savanna equilibrium ES = (G∗, T∗)′ with respect to the parameter f .

Hence, the savanna equilibrium ES = (G∗, T∗)′ loses its stability through the Hopf bifurcation
when conditions (13) and (14) are satisfied simultaneously.

Now we calculate the Lyapunov number to determine the nature of Hopf-bifurcating periodic
solutions.

Theorem 5. (Hopf bifurcation)
Assume that the savanna equilibrium ES = (G∗, T∗)′ exists and that requirements (13) and (14) are
satisfied. Hence, there exists a real number σ such that, if σ 6= 0, then a Hopf bifurcation occurs at
ES = (G∗, T∗)′ for system (5) at the bifurcation value f = fh. In particular

(i) If σ < 0 then, the savanna equilibrium ES = (G∗, T∗)′ destabilizes through a supercritical
Hopf bifurcation. That is, a unique stable limit cycle bifurcates from ES = (G∗, T∗)′.

(ii) If σ > 0 then, the Hopf bifurcation is subcritical. That is, a unique unstable limit cycle
bifurcates from ES = (G∗, T∗)′.
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Proof. See E.

Remark 3. (The case f = 0)
The particular case where there is no fires in system (5); that is, when f = 0, straightforward
computations lead to the following conclusions:

(i) The unique savanna equilibrium ES = (G∗, T∗)′ is such that T∗ = T ∗ and

(a) when ηT G(W) ≥ 0, G∗ = KG(W)

(

1 −
1

RF,f=0

)

where RF,f=0 is computed from RF

with f = 0.

(b) when ηT G(W) < 0, G∗ =
δGKG(W)

gG(W)
(QF,f=0 − 1) where QF,f=0 is computed from QF

with f = 0.

(ii) The threshold RG is such that RG = R1
W.

(iii) Grassland-forest, grassland-savanna and forest-savanna bistabilies can not occur.

(iv) The function B(T, G) =
1

T G
is a Dulac’s function for system (5). Hence, system (5) does

not admit a closed orbit such that periodic solutions, homoclinic or heteroclinic cycles.

B Existence of a savanna equilibria

Let us set:

A =
gT (W)

KT (W)
T ∗,

B =
gG(W)gT (W)

ηT G(W)KG(W)KT (W)
G∗,

C =
B

G∗
,

D = fλmin
fT ,

λ = f(λmax
fT − λmin

fT ) × e
−p

gG(W)G∗

ηT G(W)KG(W) ,

α0 = p
gG(W)

ηT G(W)KG(W)

(16)

where T ∗ and G∗ are given by (8).
The existence of positive savanna equilibria is given in Theorem 6.

Theorem 6. (Existence of savanna equilibria)
A savanna equilibrium ES = (G∗, T∗)′ satisfies



























gG(W)
(

1 −
G∗

KG(W)

)

− (δG + λfGf) − ηT G(W)T∗ = 0,

gT (W)
(

1 −
T∗

KT (W)

)

− δT − fϑ(T∗)ω(G∗) = 0.

(17)

Using the first equation of (17), we have

T∗ =
gG(W)

ηT G(W)KG(W)
(G∗ − G∗). (18)
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From (18) we deduce that, a condition to have a (positive) savanna equilibrium in the case ηT G(W) >
0 is:

G∗ > G∗. (19)

When ηT G(W) < 0, savanna equilibria are computed with positive G∗ such that T∗ is also positive.
Substituting (18) in the second equation of (17) leads that G∗ must satisfy:

CG3
∗ − λG2

∗eα0G∗ + (A − B − D)G2
∗ + Cα2G∗ + (A − B)α2 = 0. (20)

Table 5 summarizes the conditions of existence of positive solutions G∗ of (20), when ηT G(W) >
0, and that verify (19). Hence, its summarizes the conditions of existence of savanna equilibria in
the case of tree biomass vs. grass biomass competition.

ηT G(W) C − λα0 A − B − D − λ A − B Number of savanna equilibria

< 0 < 0
< 0 0, 1 or 2
> 0 0 or 1

> 0 > 0 0 or 1
> 0

> 0
−

< 0 0, 1 or 2
> 0 0 or 1

> 0 > 0 0 or 1

< 0
< 0 0, 1, 2, 3 or 4
> 0 0, 1, 2 or 3

Table 5: Existence of savanna equilibria in the case of the tree biomass vs. grass biomass compe-
tition. “−” stands for any value.

Table 6 summarizes the conditions of existence of positive solutions G∗ of (20), when ηT G(W) <
0, and that are such that T∗ > 0 (see (18)). Hence, its summarizes the conditions of existence of
savanna equilibria in the case of tree biomass vs. grass biomass facilitation.

ηT G(W) C − λα0 A − B − D − λ A − B Number of savanna equilibria

< 0 < 0
< 0 0, 1 or 2
> 0 0, 1, 2 or 3

> 0 > 0 0, 2, 3, 4 or 5
< 0

> 0
−

< 0 0
> 0 0 or 1

> 0 > 0 0, 1, 2 or 3

< 0
< 0 0, 1 or 2
> 0 0, 1, 2 or 3

−
> 0 > 0 0, 1, 2 or 3

< 0
< 0 0
> 0 0 or 1

Table 6: Existence of savanna equilibria in the case of tree biomass vs. grass biomass facilitation.
“−” stands for any value.

When ηT G(W) = 0, one has










G∗ = G∗,

T ∗ − T∗ −
KT (W)

gT (W)
fϑ(T∗)ω(G∗) = 0.

(21)
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Let us set

u =
KT (W)

gT (W)
fω(G∗)λmin

fT ,

v =
KT (W)

gT (W)
fω(G∗)(λmax

fT − λmin
fT ),

J(T ) = T ∗ − T − u − ve−pT .

(22)

Hence,

1. if −1 + pv > 0 then, there may exist 0, 1 or 2 savanna equilibria.

2. if −1 + pv ≤ 0 then, there may exist 0 or 1 savanna equilibrium.

Proof. From system (5), a savanna equilibrium ES = (G∗, T∗)′ satisfies



























gG(W)
(

1 −
G∗

KG(W)

)

− (δG + λfGf) − ηT G(W)T∗ = 0,

gT (W)
(

1 −
T∗

KT (W)

)

− δT − fϑ(T∗)ω(G∗) = 0.

(23)

Using the first equation of (23), we have

T∗ =
1

ηT G(W)

(

gG(W) − (δG + λfGf) −
gG(W)

KG(W)
G∗

)

=
gG(W)

ηT G(W)KG(W)
(G∗ − G∗). (24)

Substituting (24) in the second equation of (23) gives

(gT (W) − δT ) −
gG(W)gT (W)

ηT G(W)KG(W)KT (W)
(G∗ − G∗)

ω(G∗)
= fϑ(T∗). (25)

From (25), introducing the expression of ω(G), we have

gT (W)

KT (W)
T ∗ −

gG(W)gT (W)

ηT G(W)KG(W)KT (W)
G∗ +

gG(W)gT (W)

ηT G(W)KG(W)KT (W)
G∗

G2
∗

G2
∗ + α2

= fϑ(T∗), (26)

where

fϑ(T∗) = fλmin
fT + f(λmax

fT − λmin
fT ) × e

−p
gG(W)G∗

ηT G(W)KG(W) × e
p

gG(W)G∗

ηT G(W)KG(W) . (27)

From (26) and (27) we have:

(A − B + CG∗)

(

1 +
α2

G2
∗

)

= D + λeα0G∗ , (28)

where,

A =
gT (W)

KT (W)
T ∗, B =

gG(W)gT (W)

ηT G(W)KG(W)KT (W)
G∗, C =

B

G∗
, D = fλmin

fT , λ = f(λmax
fT − λmin

fT ) ×

e
−p

gG(W)G∗

ηT G(W)KG(W) and α0 = p
gG(W)

ηT G(W)KG(W)
.
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From equation (28) we have

CG3
∗ − λG2

∗eα0G∗ + (A − B − D)G2
∗ + Cα2G∗ + (A − B)α2 = 0. (29)

Set H(G∗) = CG3
∗ − λG2

∗eα0G∗ + (A − B − D)G2
∗ + cα2G∗ + (A − B)α2. H is a function of

one variable G∗ ∈]0, +∞[. To find the number of real positive roots of H(G∗), we will use the
intermediate values theorem which is generally good for investigating real roots of differentiable
and monotonous functions.
Below, we distinguish several cases.
Case 1: ηT G(W) > 0.
From the first equation of (23) and from (24) note that one of the conditions to have a plausible
savanna equilibrium is:

0 < G∗ and G∗ > G∗. (30)

In addition, we have







lim
G∗−→0

H(G∗) = (A − B)α2,

lim
G∗−→+∞

H(G∗) = −∞.
(31)

The derivative of H is H
′

(G∗) = 3CG2
∗ −λ(α0G2

∗ +2G∗)eα0G∗ +2(A−B −D)G∗ +Cα2. We have











lim
G∗−→0

H
′

(G∗) = Cα2 > 0,

lim
G∗−→+∞

H
′

(G∗) = −∞.
(32)

Denote by H(2) the derivative of H
′

. We have

H(2)(G∗) = 6CG∗ − λ(α2
0G2

∗ + 4α0G∗ + 2)eα0G∗ + 2(A − B − D).

The limits of H(2)(G∗) at 0 and +∞ are:










lim
G∗−→0

H(2)(G∗) = 2(A − B − D − λ),

lim
G∗−→+∞

H(2)(G∗) = −∞.
(33)

Denote by H(3) the derivative of H(2). We have

H(3)(G∗) = 6C − λ(α3
0G2

∗ + 6α2
0G∗ + 6α0)eα0G∗

and










lim
G∗−→0

H(3)(G∗) = 6(C − λα0),

lim
G∗−→+∞

H(3)(G∗) = −∞.
(34)

We have H(4)(G∗) = −λ(α4
0G2

∗ + 8α3
0G∗ + 12α0)eα0G∗ < 0. It implies that H(3) decreases.

(I) If C − λα0 ≤ 0, then H(3) ≤ 0. It means that H(2) decreases.

1) If A − B − D − λ ≤ 0, then H(2) ≤ 0. It implies that H
′

decreases. Using (32) and the
intermediate values theorem, there exists a unique G∗1 ∈]0, +∞[ such that H

′

(G∗1) = 0.

a) If H(G∗1) < 0, then there is no plausible savanna equilibrium.

b) If H(G∗1) > 0 and A > B, then, at most, there exists a unique savanna equilibrium
E∗ = (G∗, T∗)′ whenever G∗1 < G∗ and, such that G∗ ∈]G∗1, G∗[.
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c) If H(G∗1) > 0 and A < B, then, at most, there are two savanna equilibria: E1
∗ =

(G1
∗, T 1

∗ )′ and E2
∗ = (G2

∗, T 2
∗ )′ whenever G∗1 < G∗ and, such that G1

∗ ∈]0, G∗1[,
G2

∗ ∈]G∗1, G∗[.

2) If A − B − D − λ > 0, then using (33) and the intermediate values theorem, there exists
a unique G∗2 ∈]0, +∞[ such that H(2)(G∗2) = 0. From (32) we have H

′

(G∗2) > 0. Then
using (32) and the intermediate values theorem, there exists a unique G∗3 ∈]G∗2, +∞[
such that H

′

(G∗3) = 0. Similarly as in 1) we have the following results.

a) If H(G∗3) < 0, then there is no plausible savanna equilibrium.

b) If H(G∗3) > 0 and A > B, then, at most, there exists a unique savanna equilibrium
E∗∗ = (G∗∗, T∗∗)′ whenever G∗3 < G∗ and, such that G∗∗ ∈]G∗3, G∗[.

c) The remaining case is H(G∗3) > 0 and A < B. However it is unfeasible since
A − B − D − λ > 0.

(II) If C − λα0 > 0, then using (34) and the intermediate values theorem, there exists a unique
Ḡ∗1 ∈]0, +∞[ such that H(3)(Ḡ∗1) = 0.

1) If H(2)(Ḡ∗1) < 0, then H(2)(G∗) < 0. It implies that H
′

decreases. Using (32) and the
intermediate values theorem, there exists a unique Ḡ∗2 ∈]0, +∞[ such that H

′

(Ḡ∗2) = 0.

a) If H(Ḡ∗2) < 0, then there is no plausible savanna equilibrium.

b) If H(Ḡ∗2) > 0 and A > B, then, at most, there exists a unique savanna equilibrium
Ē∗ = (Ḡ∗, T̄∗)′ whenever Ḡ∗2 < G∗ and, such that Ḡ∗ ∈]Ḡ∗2, G∗[.

c) If H(Ḡ∗2) > 0 and A < B, then, at most, there are two savanna equilibria: Ē
1
∗ =

(Ḡ1
∗, T̄ 1

∗ )′ and Ē
2
∗ = (Ḡ2

∗, T̄ 2
∗ )′ whenever Ḡ∗2 < G∗ and, such that Ḡ1

∗ ∈]0, Ḡ∗2[ and
Ḡ2

∗ ∈]Ḡ∗2, G∗[.

2) If H(2)(Ḡ∗1) > 0 and A − B − D − λ > 0, then using (33) and the intermediate values
theorem, there exists a unique Ḡ∗3 ∈]Ḡ∗1, +∞[ such that H(2)(Ḡ∗3) = 0. Using (32)
there exists a unique Ḡ∗4 ∈]Ḡ∗3, +∞[ such that H

′

(Ḡ∗4) = 0.

a) If H(Ḡ∗4) < 0, then there is no plausible savanna equilibrium.

b) If H(Ḡ∗4) > 0 and A > B, then, at most, there exists a unique savanna equilibrium
Ē∗∗ = (Ḡ∗∗, T̄∗∗)′ whenever Ḡ∗4 < G∗ and, such that Ḡ∗∗ ∈]Ḡ∗4, G∗[.

c) The remaining case is H(Ḡ∗4) > 0 and A < B. However it is unfeasible since
A − B − D − λ > 0.

3) If H(2)(Ḡ∗1) > 0 and A−B−D−λ < 0, then using (33) and the intermediate values the-
orem there are Ḡ∗5 ∈]0, Ḡ∗1[ and Ḡ∗6 ∈]Ḡ∗1, +∞[ such that H(2)(Ḡ∗5) = 0 = H(2)(Ḡ∗6).

a) If H
′

(Ḡ∗5) > 0 and H
′

(Ḡ∗6) > 0, then using (32) and the intermediate value theorem
there exists a unique Ḡ∗7 ∈]Ḡ∗6, +∞[ such that H

′

(Ḡ∗7) = 0.

1. If H(Ḡ∗7) < 0, then there is no plausible savanna equilibrium.

2. If H(Ḡ∗7) > 0 and A > B, then, at most, there exists a unique savanna equilib-
rium Ē∗∗∗ = (Ḡ∗∗∗, T̄∗∗∗)′ whenever Ḡ∗7 < G∗ and, such that Ḡ∗∗∗ ∈]Ḡ∗7, G∗[.

3. If H(Ḡ∗7) > 0 and A < B, then, at most, there are two savanna equilibria:

Ē
1
∗∗∗ = (Ḡ1

∗∗∗, T̄ 1
∗∗∗)′ and Ē

2
∗∗∗ = (Ḡ2

∗∗∗, T̄ 2
∗∗∗)′ whenever Ḡ∗7 < G∗ and, such that

Ḡ1
∗∗∗ ∈]0, Ḡ∗7[, Ḡ2

∗∗∗ ∈]Ḡ∗7, G∗[.

b) If H
′

(Ḡ∗5) < 0 and H
′

(Ḡ∗6) > 0, then using (32) and the intermediate value theorem
there are Ḡ∗8 ∈]0, Ḡ∗5[, Ḡ∗9 ∈]Ḡ∗5, Ḡ∗6[ and Ḡ∗10 ∈]Ḡ∗6, +∞[ such that H

′

(Ḡ∗8) =
H

′

(Ḡ∗9) = H
′

(Ḡ∗10) = 0. Based on (31), one deduces that Ḡ∗8 and Ḡ∗10 are
two local maxima while Ḡ∗9 is a local minimum. Once more, using (31) and the
intermediate values theorem we have:
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1. If max(H(Ḡ∗8, H(Ḡ∗10))) < 0, then there is no plausible savanna equilibrium.

2. If H(Ḡ∗9) > 0 and A < B, then, at most, there exist two savanna equilibria:

Ē
1
∗∗∗∗ = (Ḡ1

∗∗∗∗, T̄ 1
∗∗∗∗)′ and Ē

2
∗∗∗∗ = (Ḡ2

∗∗∗∗, T̄ 2
∗∗∗∗)′ whenever Ḡ∗10 < G∗ and,

such that Ḡ1
∗∗∗∗ ∈]0, Ḡ∗8[, Ḡ2

∗∗∗∗ ∈]Ḡ∗10, G∗[.

3. If H(Ḡ∗9) > 0 and A > B, then, at most, there is a unique savanna equilibrium
Ē∗∗∗∗ = (Ḡ∗∗∗∗, T̄∗∗∗∗)′ whenever Ḡ∗10 < G∗ and, such that Ḡ∗∗∗∗ ∈]Ḡ∗10, G∗[.

4. If H(Ḡ∗8) < 0 and H(Ḡ∗10) > 0, then, at most, there exist two savanna equi-

libria: Ē
1
∗∗∗∗ = (Ḡ1

∗∗∗∗, T̄ 1
∗∗∗∗)′ and Ē

2
∗∗∗∗ = (Ḡ2

∗∗∗∗, T̄ 2
∗∗∗∗)′ whenever Ḡ∗10 < G∗

and, such that Ḡ1
∗∗∗∗ ∈]Ḡ∗9, Ḡ∗10[, Ḡ2

∗∗∗∗ ∈]Ḡ∗10, G∗[.

5. If H(Ḡ∗8) > 0, H(Ḡ∗10) < 0 and A < B, then, at most, there exist two savanna

equilibria: Ē
1
∗∗∗∗ = (Ḡ1

∗∗∗∗, T̄ 1
∗∗∗∗)′ and Ē

2
∗∗∗∗ = (Ḡ2

∗∗∗∗, T̄ 2
∗∗∗∗)′ whenever Ḡ∗9 <

G∗ and, such that Ḡ1
∗∗∗∗ ∈]0, Ḡ∗8[, Ḡ2

∗∗∗∗ ∈]Ḡ∗8, Ḡ∗9[.

6. If H(Ḡ∗8) > 0, H(Ḡ∗10) < 0 and A > B, then, at most, there exist a unique
savanna equilibrium: Ē∗∗∗∗ = (Ḡ∗∗∗∗, T̄∗∗∗∗)′ whenever Ḡ∗9 < G∗ and, such that
Ḡ∗∗∗∗ ∈]Ḡ∗8, Ḡ∗9[.

7. If min(H(Ḡ∗8), H(Ḡ∗10)) > 0, H(Ḡ∗9) < 0 and A < B, then, at most, there

are four savanna equilibria: Ē
1
∗∗∗∗∗ = (Ḡ1

∗∗∗∗∗, T̄ 1
∗∗∗∗∗)′, Ē

2
∗∗∗∗∗ = (Ḡ2

∗∗∗∗, T̄ 2
∗∗∗∗∗)′,

Ē
3
∗∗∗∗∗ = (Ḡ3

∗∗∗∗, T̄ 3
∗∗∗∗∗)′ and Ē

4
∗∗∗∗∗ = (Ḡ4

∗∗∗∗, T̄ 4
∗∗∗∗∗)′ whenever Ḡ∗10 < G∗ and,

such that Ḡ1
∗∗∗∗∗ ∈]0, Ḡ∗8[, Ḡ2

∗∗∗∗ ∈]Ḡ∗8, Ḡ∗9[, Ḡ3
∗∗∗∗ ∈]Ḡ∗9, Ḡ∗10[ and Ḡ4

∗∗∗∗ ∈
]Ḡ∗10, G∗[.

8. If min(H(Ḡ∗8), H(Ḡ∗10)) > 0, H(Ḡ∗9) < 0 and A > B, then, at most, there

are three savanna equilibria: Ē
1
∗∗∗∗∗ = (Ḡ1

∗∗∗∗∗, T̄ 1
∗∗∗∗∗)′, Ē

2
∗∗∗∗∗ = (Ḡ2

∗∗∗∗, T̄ 2
∗∗∗∗∗)′

and Ē
3
∗∗∗∗∗ = (Ḡ3

∗∗∗∗, T̄ 3
∗∗∗∗∗)′ whenever Ḡ∗10 < G∗ and, such that Ḡ1

∗∗∗∗ ∈
]Ḡ∗8, Ḡ∗9[, Ḡ2

∗∗∗∗ ∈]Ḡ∗9, Ḡ∗10[ and Ḡ3
∗∗∗∗ ∈]Ḡ∗10, G∗[.

c) If H
′

(Ḡ∗5) < 0 and H
′

(Ḡ∗6) < 0, then using (32) and the intermediate values
theorem there exists a unique Ḡ∗11 ∈]0, G∗5[ such that H

′

(Ḡ∗11) = 0. Using (31)
and the intermediate value theorem we have:

1. If H(Ḡ∗11) < 0, then there is no plausible savanna equilibrium.

2. If H(Ḡ∗11) > 0 and A > B, then, at most, there exists a unique savanna
equilibrium Ē = (Ḡ, T̄ )′ whenever Ḡ∗11 < G∗ and, such that Ḡ ∈]Ḡ∗11, G∗[.

3. If H(Ḡ∗11) > 0 and A < B, then, at most, there are two savanna equilibria:

Ē
1

= (Ḡ1, T̄ 1)′ and Ē
2

= (Ḡ2, T̄ 2)′ whenever Ḡ∗11 < G∗ and, such that Ḡ1 ∈
]0, Ḡ∗11[ and Ḡ2 ∈]Ḡ∗11, G∗[.

This ends the case ηT G(W) > 0 or the competition case. In the sequel, we assume that ηT G(W) < 0;
that is the facilitation case.

Case 2: ηT G(W) < 0.
Recall that the tree component’s of a savanna equilibrium is given by (24). Hence, in the sequel, a
plausible savanna equilibrium is given by a positive G∗ which is a zero of the function H and which
is such that T∗ defined by (24) is positive. In this case, one has A > 0, C < 0, D > 0, λ > 0 and
α0 < 0.

Let us set K(G) = α4
0G2+8α3

0G+12α0 such that H(4)(G∗) = −λK(G∗)eα0G∗ . One has K ′′(G) =
2α4

0 > 0 and K ′(0) = 8α3
0 < 0. Hence, there exists a unique G̃1∗ ∈ R+ such that K ′(G̃1∗) = 0

and K is decreasing on [0, G̃1∗] and, K is increasing on [G̃1∗, +∞). Since K(0) = 12α0 < 0 and
lim

G→+∞
K(G) = +∞, there exists a unique G̃1∗∗ ∈ (G̃1∗, +∞) such that K(G̃1∗∗) = 0. Thus,

K(G) ≤ 0 on [0, G̃1∗∗] and K(G) > 0 on [G̃1∗∗, +∞). In other words, H(4)(G∗) ≥ 0 on [0, G̃1∗∗]
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and H(4)(G∗) < 0 on [G̃1∗∗, +∞). Hence, H(3) is increasing on [0, G̃1∗∗] and H(3) is decreasing on
[G̃1∗∗, +∞). One has H(3)(0) = 6(C − λα0) and lim

G→+∞
H(3)(G) = 6C < 0.

(I) Assume that H(3)(G̃1∗∗) ≤ 0.

1) Assume that H(2)(0) = 2(A − B − D − λ) ≤ 0. Since H(1)(0) = Cα2 < 0 and
lim

G→+∞
H(1)(G) = −∞, then H(1)(G) < 0 on R+; i.e. H is decreasing on R+.

a) If A − B < 0 i.e. H(0) = (A − B)α2 < 0, then no plausible savanna equilibria exist.

b) If A − B > 0 i.e. H(0) = (A − B)α2 > 0, then there exists a unique G∗1 ∈ [0, +∞)
such that H(G∗1 = 0. Hence, there exists at most one savanna equilibrium E∗ =
(G∗1, T∗1)′ whenever T∗1 > 0, where T∗1 is computed from (24).

2) Assume that 2(A − B − D − λ) > 0. Note that, in this case, A − B > 0. Then, there
exists a unique G̃3∗ ∈ R+ such that H(2)(G̃3∗) = 0, H(1) is increasing on [0, G̃3∗] and is
decreasing on (G̃3∗, +∞). Since H(1)(0) = Cα2 < 0 and lim

G→+∞
H(1)(G) = −∞, we have

two sub-cases.

a) Assume that H(1)(G̃3∗) ≤ 0. Since H(0) = (A − B)α2 > 0 and lim
G→+∞

H(G) = −∞,

then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1 = 0. Hence, there exists
at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever T∗1 > 0.

b) Assume that H(1)(G̃3∗) > 0. Then, there exist G̃3∗∗ ∈ (0, G̃3∗) and G̃3∗∗∗ ∈
(G̃3∗, +∞) that are zeros of H(1).

i) If min(H(G̃3∗∗), H(G̃3∗∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃3∗∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃3∗∗) < 0 and H(G̃3∗∗∗) > 0, then there exist at most three savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃3∗∗), G∗2 ∈ (G̃3∗∗, G̃3∗∗∗), G∗3 ∈
(G̃3∗∗∗, +∞), H(G∗i) = 0 and T∗i > 0, i = 1, 2, 3.

iii) If max(H(G̃3∗∗), H(G̃3∗∗∗)) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃3∗∗), H(G∗1) = 0 and T∗1 > 0.

(II) Assume that H(3)(G̃1∗∗) > 0 and C−λα0 > 0. Then there exists a unique G̃1∗∗∗ ∈ (G̃1∗∗, +∞),
zero of H(3).

1) Assume that H(2)(G̃1∗∗∗) ≤ 0. Since H(1)(0) = Cα2 < 0, then H(1)(G) < 0 on R+.

a) If A − B < 0, then no plausible savanna equilibria exist.

b) If A−B > 0, then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1 = 0. Hence,
there exists at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever T∗1 > 0.

2) Assume that H(2)(G̃1∗∗∗) > 0 and A − B − D − λ > 0. Then there exists a unique
G̃4∗ ∈ (G̃1∗∗∗, +∞) such that H(2)(G̃4∗) = 0. One has two sub-cases.

a) Assume that H(1)(G̃4∗) ≤ 0. Since H(0) = (A − B)α2 > 0 and lim
G→+∞

H(G) = −∞,

then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1 = 0. Hence, there exists
at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever T∗1 > 0.

b) Assume that H(1)(G̃4∗) > 0. Then, there exist G̃5∗ ∈ (0, G̃4∗) and G̃5∗∗ ∈ (G̃4∗, +∞)
that are zeros of H(1).

i) If min(H(G̃5∗), H(G̃5∗∗)) > 0 then there exists at most one savanna equilibrium
E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃5∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃5∗) < 0 and H(G̃5∗∗) > 0, then there exist at most three savanna equi-
libria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃5∗), G∗2 ∈ (G̃5∗, G̃5∗∗), G∗3 ∈
(G̃5∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.
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iii) If max(H(G̃5∗), H(G̃5∗∗)) < 0 then there exists at most one savanna equilibrium
E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃5∗), H(G∗1) = 0 and T∗1 > 0.

3) Assume that H(2)(G̃1∗∗∗) > 0 and A−B −D −λ < 0. Then there exist G̃4∗∗ ∈ (0, G̃1∗∗∗)
and G̃4∗∗∗ ∈ (G̃1∗∗∗, +∞) such that H(2)(G̃4∗∗) = H(2)(G̃4∗∗∗) = 0. One has three
sub-cases.

a) Assume that H(1)(G̃4∗∗∗) ≤ 0. Then H(1)(G) ≤ 0 on R+. Note that lim
G→+∞

H(G) =

−∞.

i) If A − B < 0, then no plausible savanna equilibria exist.

ii) If A − B > 0, then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1 = 0.
Hence, there exists at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever
T∗1 > 0.

b) Assume that H(1)(G̃4∗∗∗) > 0 and A − B > 0. Then, there exist G̃6∗ ∈ (G̃4∗∗, G̃4∗∗∗)
and G̃6∗∗ ∈ (G̃4∗∗∗, +∞) that are zeros of H(1).

i) If min(H(G̃6∗), H(G̃6∗∗)) > 0 then there exists at most one savanna equilibrium
E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃6∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃6∗) < 0 and H(G̃6∗∗) > 0, then there exist at most three savanna equi-
libria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃6∗), G∗2 ∈ (G̃6∗, G̃6∗∗), G∗3 ∈
(G̃6∗∗, +∞), H(G∗i) = 0 and T∗i > 0, i = 1, 2, 3.

iii) If max(H(G̃6∗), H(G̃6∗∗)) < 0 then there exists at most one savanna equilibrium
E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃6∗), H(G∗1) = 0 and T∗1 > 0.

c) Assume that H(1)(G̃4∗∗∗) > 0 and A − B < 0. Then, there exist G̃6∗ ∈ (G̃4∗∗, G̃4∗∗∗)
and G̃6∗∗ ∈ (G̃4∗∗∗, +∞) that are zeros of H(1).

i) If H(G̃6∗∗) < 0, then there is no plausible savanna equilibria.

ii) If H(G̃6∗∗) > 0, then there exist at most two savanna equilibria Ei
∗ = (G∗i, T∗i)′

whenever G∗1 ∈ (G̃6∗, G̃6∗∗), G∗2 ∈ (G̃6∗∗, +∞), H(G∗i) = 0, T∗i > 0, i = 1, 2.

(III) Assume that H(3)(G̃1∗∗) > 0 and C − λα0 < 0. Then there exist G̃2∗ ∈ (0, G̃1∗∗) and
G̃2∗∗ ∈ (G̃1∗∗, +∞), zeros of H(3). We have five sub-cases.

1) Assume that H(2)(0) = A − B − D − λ > 0 and min(H(2)(G̃2∗), H(2)(G̃2∗∗)) > 0. Then
there exists a unique G̃7∗ ∈ (G̃2∗∗, +∞) such that H(2)(G̃7∗) = 0. One has two sub-cases.

a) Assume that H(1)(G̃7∗) ≤ 0. Since A − B > 0, then there exists a unique G∗1 ∈
[0, +∞) such that H(G∗1) = 0. Hence, there exists at most one savanna equilibrium
E∗ = (G∗1, T∗1)′ whenever T∗1 > 0.

b) Assume that H(1)(G̃7∗) > 0. Then, there exist G̃11∗ ∈ (0, G̃7∗) and G̃11∗∗ ∈
(G̃7∗, +∞) that are zeros of H(1).

i) If min(H(G̃11∗), H(G̃11∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃11∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃11∗) < 0 and H(G̃11∗∗) > 0, then there exist at most three savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃11∗), G∗2 ∈ (G̃11∗, G̃11∗∗), G∗3 ∈
(G̃11∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

iii) If max(H(G̃11∗), H(G̃11∗∗)) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃11∗), H(G∗1) = 0 and T∗1 > 0.

2) Assume that A − B − D − λ > 0, H(2)(G̃2∗) < 0 and H(2)(G̃2∗∗) > 0. Then there
exist G̃8∗ ∈ (0, G̃2∗), G̃8∗∗ ∈ (G̃2∗, G̃2∗∗) and G̃8∗∗∗ ∈ (G̃2∗∗, +∞) such that H(2)(G̃8∗) =
H(2)(G̃8∗∗) = H(2)(G̃8∗∗∗) = 0. One has five sub-cases.

a) Assume that max(H(1)(G̃8∗), H(1)(G̃8∗∗∗)) ≤ 0. Since H(0) = (A − B)α2 > 0 and
lim

G→+∞
H(G) = −∞, then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1 = 0.
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Hence, there exists at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever
T∗1 > 0.

b) Assume that H(1)(G̃8∗∗) > 0. Then, there exist G̃12∗ ∈ (0, G̃8∗) and G̃12∗∗ ∈
(G̃8∗∗∗, +∞) that are zeros of H(1).

i) If min(H(G̃12∗), H(G̃12∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃12∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃12∗) < 0 and H(G̃12∗∗) > 0, then there exist at most three savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃12∗), G∗2 ∈ (G̃12∗, G̃12∗∗), G∗3 ∈
(G̃12∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

iii) If max(H(G̃12∗), H(G̃12∗∗)) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃12∗), H(G∗1) = 0 and T∗1 > 0.

c) Assume that H(1)(G̃8∗) < 0 and H(1)(G̃8∗∗∗) > 0. Then, there exist G̃13∗ ∈
(G̃8∗∗, G̃8∗∗∗) and G̃13∗∗ ∈ (G̃8∗∗∗, +∞) that are zeros of H(1).

i) If min(H(G̃13∗), H(G̃13∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃13∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃13∗) < 0 and H(G̃13∗∗) > 0, then there exist at most three savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃13∗), G∗2 ∈ (G̃13∗, G̃13∗∗), G∗3 ∈
(G̃13∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

iii) If max(H(G̃13∗), H(G̃13∗∗)) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃13∗), H(G∗1) = 0 and T∗1 > 0.

d) Assume that H(1)(G̃8∗) > 0 and H(1)(G̃8∗∗∗) < 0. Then, there exist G̃14∗ ∈ (0, G̃8∗)
and G̃14∗∗ ∈ (G̃8∗, G̃8∗∗) that are zeros of H(1).

i) If min(H(G̃14∗), H(G̃14∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃14∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃14∗) < 0 and H(G̃14∗∗) > 0, then there exist at most three savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃14∗), G∗2 ∈ (G̃14∗, G̃14∗∗), G∗3 ∈
(G̃14∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

iii) If max(H(G̃14∗), H(G̃14∗∗)) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃14∗), H(G∗1) = 0 and T∗1 > 0.

e) Assume that min(H(1)(G̃8∗), H(1)(G̃8∗∗∗)) > 0 and H(1)(G̃8∗∗) < 0. Then, there
exist G̃15∗ ∈ (0, G̃8∗), G̃15∗∗ ∈ (G̃8∗, G̃8∗∗), G̃15∗∗∗ ∈ (G̃8∗∗, G̃8∗∗∗) and G̃15∗∗∗∗ ∈
(G̃8∗∗∗, +∞) that are zeros of H(1).

i) If min(H(G̃15∗), H(G̃15∗∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃15∗∗∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃15∗) > 0, H(G̃15∗∗∗) < 0 and H(G̃15∗∗∗∗) > 0, then there exist at most
three savanna equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (G̃15∗∗, G̃15∗∗∗), G∗2 ∈
(G̃15∗∗∗, G̃15∗∗∗∗), G∗3 ∈ (G̃15∗∗∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

iii) If H(G̃15∗) > 0 and H(G̃15∗∗∗∗) < 0 then there exists at most one savanna
equilibrium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃15∗∗, G̃15∗∗∗), H(G∗1) = 0 and
T∗1 > 0.

iv) If H(G̃15∗∗) < 0, H(G̃15∗∗∗∗) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃15∗), H(G∗1) = 0 and G∗1 > G∗.

v) If H(G̃15∗) < 0 and H(G̃15∗∗∗) > 0, then there exist at most two savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃15∗), G∗2 ∈ (G̃15∗, G̃15∗∗), T∗i >
0 and H(G∗i) = 0, i = 1, 2.

vi) If H(G̃15∗∗) < 0 and H(G̃15∗∗∗∗) > 0, then there exist at most two savanna equi-
libria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (G̃15∗∗∗, G̃15∗∗∗∗), G∗2 ∈ (G̃15∗∗∗∗, +∞),
T∗i > 0 and H(G∗i) = 0, i = 1, 2.

43



vii) If max(H(G̃15∗), H(G̃15∗∗∗)) < 0 and min(H(G̃15∗∗), H(G̃15∗∗∗∗)) > 0, then there
exist at most five savanna equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃15∗),
G∗2 ∈ (G̃15∗, G̃15∗∗), G∗3 ∈ (G̃15∗∗, G̃15∗∗∗), G∗4 ∈ (G̃15∗∗∗, G̃15∗∗∗∗) and G∗5 ∈
(G̃15∗∗∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3, 4, 5.

viii) If max(H(G̃15∗), H(G̃15∗∗∗∗)) < 0 and H(G̃15∗∗) > 0, then there exist at most
three savanna equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃15∗), G∗2 ∈
(G̃15∗, G̃15∗∗) and G∗3 ∈ (G̃15∗∗, G̃15∗∗∗), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

3) Assume that A − B − D − λ > 0, max(H(2)(G̃2∗), H(2)(G̃2∗∗)) < 0. Then there exists a
unique G̃9∗ ∈ (0, G̃2∗) such that H(2)(G̃9∗) = 0. One has two sub-cases.

a) Assume that H(1)(G̃9∗) ≤ 0. Since H(0) = (A − B)α2 > 0 and lim
G→+∞

H(G) = −∞,

then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1 = 0. Hence, there exists
at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever T∗1 > 0.

b) Assume that H(1)(G̃9∗) > 0. Then, there exist G̃16∗ ∈ (0, G̃9∗) and G̃16∗∗ ∈
(G̃9∗, +∞) that are zeros of H(1).

i) If min(H(G̃16∗), H(G̃16∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃16∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃16∗) < 0 and H(G̃16∗∗) > 0, then there exist at most three savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃16∗), G∗2 ∈ (G̃16∗, G̃16∗∗), G∗3 ∈
(G̃16∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

iii) If max(H(G̃16∗), H(G̃16∗∗)) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃16∗), H(G∗1) = 0 and T∗1 > 0.

4) Assume that A − B − D − λ ≤ 0, max(H(2)(G̃2∗), H(2)(G̃2∗∗)) < 0. Then, H(1)(G) ≤ 0
on R+. Note that lim

G→+∞
H(G) = −∞.

a) If A − B < 0, then no plausible savanna equilibria exist.

b) If A−B > 0, then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1) = 0. Hence,
there exists at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever T∗1 > 0.

5) Assume that A − B − D − λ ≤ 0, H(2)(G̃2∗) < 0 and H(2)(G̃2∗∗) > 0. Then there exist
G̃10∗ ∈ (G̃2∗, G̃2∗∗) and G̃10∗∗ ∈ (G̃2∗∗, +∞) such that H(2)(G̃10∗) = H(2)(G̃10∗∗) = 0.
One has two sub-cases.

a) Assume that H(1)(G̃10∗∗) ≤ 0. Then H(1)(G) ≤ 0 on R+. Note that lim
G→+∞

H(G) =

−∞.

i) If A − B < 0, then no plausible savanna equilibria exist.

ii) If A − B > 0, then there exists a unique G∗1 ∈ [0, +∞) such that H(G∗1 = 0.
Hence, there exists at most one savanna equilibrium E∗ = (G∗1, T∗1)′ whenever
T∗1 > 0.

b) Assume that H(1)(G̃10∗∗) > 0 and A−B > 0. Then, there exist G̃17∗ ∈ (G̃10∗, G̃10∗∗)
and G̃17∗∗ ∈ (G̃10∗∗, +∞) that are zeros of H(1).

i) If min(H(G̃17∗), H(G̃17∗∗)) > 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (G̃17∗∗, +∞), H(G∗1) = 0 and T∗1 > 0.

ii) If H(G̃17∗) < 0 and H(G̃17∗∗) > 0, then there exist at most three savanna
equilibria Ei

∗ = (G∗i, T∗i)′ whenever G∗1 ∈ (0, G̃17∗), G∗2 ∈ (G̃17∗, G̃17∗∗), G∗3 ∈
(G̃17∗∗, +∞), T∗i > 0 and H(G∗i) = 0, i = 1, 2, 3.

iii) If max(H(G̃17∗), H(G̃17∗∗)) < 0 then there exists at most one savanna equilib-
rium E∗ = (G∗1, T∗1)′ whenever G∗1 ∈ (0, G̃17∗), H(G∗1) = 0 and T∗1 > 0.

c) Assume that H(1)(G̃10∗∗) > 0 and A−B < 0. Then, there exist G̃17∗ ∈ (G̃10∗, G̃10∗∗)
and G̃17∗∗ ∈ (G̃10∗∗, +∞) that are zeros of H(1).
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i) If H(G̃17∗∗) < 0 then no plausible savanna equilibria exist.

ii) If H(G̃17∗∗) > 0, then there exist at most two savanna equilibria Ei
∗ = (G∗i, T∗i)′

whenever G∗1 ∈ (G̃17∗, G̃17∗∗), G∗2 ∈ (G̃17∗∗, +∞), H(G∗i) = 0 and T∗i > 0,
i = 1, 2.

This ends the case ηT G(W) < 0.

Case 3: ηT G(W) = 0.
From system (23), one has











G∗ = G∗,

T ∗ − T∗ −
KT (W)

gT (W)
fϑ(T∗)ω(G∗) = 0.

(35)

From system (35) one deduces that a necessary condition for the existence of plausible savanna
equilibria includes

R1
W > 1, R2

W > 1, T∗ < T ∗.

Let us set

u =
KT (W)

gT (W)
fω(G∗)λmin

fT ,

v =
KT (W)

gT (W)
fω(G∗)(λmax

fT − λmin
fT ),

J(T ) = T ∗ − T − u − ve−pT .

One has J (1)(T ) = −1 + pve−pT and J (2)(T ) = −p2ve−pT < 0. Hence J (1) is decreasing on R+ and
lim

T →+∞
J (1)(T ) = −1.

(I) Assume that J (1)(0) = −1 + pv > 0. Then there exists a unique T̄1∗ ∈ R+ such that
J (1)(T̄1∗) = 0, that is T̄1∗ = ln (pv)/p.

1) Assume that J(T̄1∗) < 0. Then no plausible savanna equilibria exist.

2) Assume that J(T̄1∗) > 0 and J(0) = T ∗ − u − v < 0. Then there exist at most two
savanna equilibria Ei

∗ = (G∗, T∗i)′ whenever T∗1 ∈ (0, T̄1∗), T∗2 ∈ (T̄1∗, +∞), J(T∗i) = 0
and T∗i < T ∗, i = 1, 2.

3) Assume that J(T̄1∗) > 0 and J(0) = T ∗−u−v > 0. Then there exist at most one savanna
equilibrium E∗ = (G∗, T∗1)′ whenever T∗1 ∈ (T̄1∗, +∞), J(T∗1) = 0 and T∗1 < T ∗.

(II) Assume that J (1)(0) = −1 + pv ≤ 0. Then J is decreasing on R+. Note that lim
T →+∞

J(T ) =

−∞.

1) Assume that J(0) = T ∗ − u − v < 0. Then no plausible savanna equilibria exist.

2) Assume that J(0) = T ∗ − u − v > 0. Then there exist at most one savanna equilibrium
E∗ = (G∗, T∗1)′ whenever T∗1 ∈ (0, +∞), J(T∗1) = 0 and T∗1 < T ∗.

This ends the case ηT G(W) = 0 and the proof of the theorem.

C Proof of Theorem 2 (Stability of non-hyperbolic equilibria)

In this section we give the proof of point (1) of Theorem 2. Points (2) and (3) are done in the same
way.
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(a) Assume that R1
W

< 1 and R2
W

= 1. Hence, system (5) becomes



























dG

dt
= −

γGW

bG + W

G2

KG(W)
− ηT G(W)T G,

dT

dt
=

γT W

bT + W
T

(

1 −
T

KT (W)

)

− δT T − fϑ(T )ω(G)T,

(36)

and the Jacobian matrix of system (36) computed at E0 = (0, 0)′ is

JE0
=

(

0 0
0 δT (R1

W
− 1

)

.

Obviously, eigenvalues of JE0
are ξ1 = 0 and ξ2 = δT (R1

W
− 1) < 0. An eigenvector cor-

responding to ξ1 (resp. ξ2) is u1 = (1, 0)′ (resp. u2 = (0, 1)′). Therefore, the linear stable
manifold is Es = {αu2, α ∈ R} and the linear center manifold is Ec = {αu1, α ∈ R}.
Since both Es and Ec are invariant by system (36), one deduces that the stable manifold is
W s = Es and the center manifold is W c = Ec. On the center manifold, that is when T = 0,

we have from the first equation of system (36) that
dG

dt
< 0. Hence, the non-hyperbolic

equilibrium E0 is locally stable in the positive orthant of R2; that is R
2
+.

(b) Assume that R1
W

= 1 and R2
W

= 1. Hence, system (5) becomes































dG

dt
= −

γGW

bG + W

G2

KG(W)
− ηT G(W)T G,

dT

dt
= −

γT W

bT + W

T 2

KT (W)
− fϑ(T )ω(G)T,

(37)

and the Jacobian matrix of system (37) computed at E0 = (0, 0)′ is

JE0
=

(

0 0
0 0

)

.

Obviously, eigenvalue of JE0
is ξ = 0 which is double. Every non zero vectors of R

2 is
an eigenvector corresponding to ξ. Therefore, the center manifold is W c = R

2. On the set

{T = 0}, one has
dG

dt
< 0 and on the set {G = 0}, one has

dT

dt
< 0. Hence, the non-hyperbolic

equilibrium E0 is locally stable in the positive orthant of R2; that is R
2
+.

(c) The case where R1
W

= 1 and R2
W

< 1 is done like item (a).

D Proof of Theorem 3 (Stability of the savanna equilibrium)

The Jacobian matrix at the savanna equilibrium ES = (G∗, T∗)′ is given by

J∗ = J(G∗, T∗) =

(

J11
∗ J12

∗

J21
∗ J22

∗

)

,

where,
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









































































J11
∗ = gG(W) − (δG + λfGf) − 2

gG(W)

KG(W)
G∗ − ηT G(W)T∗,

= −
gG(W)

KG(W)
G∗.

J21
∗ = −fϑ(T∗)ω

′

(G∗)T∗.

J12
∗ = −ηT G(W)G∗.

J22
∗ = gT (W) − δT − 2

gT (W)

KT (W)
T∗ − fω(G∗)[ϑ(T∗) + T∗ϑ

′

(T∗)],

= −
gT (W)

KT (W)
T∗ − fω(G∗)T∗ϑ

′

(T∗).

(38)

Recall that
ϑ

′

(T∗) < 0.

The characteristic equation of J∗ is

µ2 − tr(J∗)µ + det(J∗) = 0, (39)

where, tr(J∗) = J11
∗ + J22

∗ and det(J∗) = J11
∗ J22

∗ − J21
∗ J12

∗ . It follows that all eigenvalues of the
characteristic equation have negative real part if and only if tr(J∗) < 0 and det(J∗) > 0.

We have
tr(J∗) = J11

∗ + J22
∗

= −

(

gG(W)

KG(W)
G∗ +

gT (W)

KT (W)
T∗

)

− fω(G∗)T∗ϑ
′

(T∗)

=
(

gG(W)

KG(W)
G∗ +

gT (W)

KT (W)
T∗

)

(R1
∗ − 1),

(40)

where,

R1
∗ =

−fω(G∗)T∗ϑ
′

(T∗)
(

gG(W)

KG(W)
G∗ +

gT (W)

KT (W)
T∗

) .

When ηT G(W) > 0, we have:

det(J∗) = J11
∗ J22

∗ − J21
∗ J12

∗

=
gG(W)

KG(W)
G∗

(

gT (W)

KT (W)
T∗ + fω(G∗)ϑ′(T∗)T∗

)

− fηT G(W)T∗G∗ϑ(T∗)ω′(G∗),

= T∗G∗

[

gG(W)gT (W)

KG(W)KT (W)
+ f

gG(W)

KG(W)
ω(G∗)ϑ′(T∗) − fηT G(W)ϑ(T∗)ω′(G∗)

]

,

= ηT G(W)T∗G∗

[

gG(W)gT (W)

ηT G(W)KG(W)KT (W)
−

(

d

dG
(fϑ(T (G))ω(G))

∣

∣

∣

∣

G=G∗

)]

,

= T∗G∗

[

−f
gG(W)

KG(W)
ω(G∗)ϑ′(T∗) + fηT G(W)ϑ(T∗)ω′(G∗)

]

(R2
∗ − 1),

(41)

where

R2
∗ =

gG(W)gT (W)

KG(W)KT (W)
(

−f
gG(W)

KG(W)
ω(G∗)ϑ′(T∗) + fηT G(W)ϑ(T∗)ω′(G∗)

) .
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Recall that, the expression of T (G) is given by (24), page 37. Based on the chain rule, we prove
that

d

dG
ϑ(T (G)) =

dϑ(T )

dT

dT

dG
= −ϑ′(T )

gG(W)

ηT G(W)KG(W)
.

When ηT G(W) < 0, we have:

det(J∗) = J11
∗ J22

∗ − J21
∗ J12

∗

= T∗G∗

[

gG(W)gT (W)

KG(W)KT (W)
+ f

gG(W)

KG(W)
ω(G∗)ϑ′(T∗) − fηT G(W)ϑ(T∗)ω′(G∗)

]

,

= T∗G∗

[

−f
gG(W)

KG(W)
ω(G∗)ϑ′(T∗)

]

(Q2
∗ − 1),

(42)

where

Q2
∗ =

gG(W)gT (W)

KG(W)KT (W)
− fηT G(W)ϑ(T∗)ω′(G∗)

−f
gG(W)

KG(W)
ω(G∗)ϑ′(T∗)

.

Thus, in the case ηT G(W) > 0, the savanna equilibrium ES = (G∗, T∗)′ is locally asymptotically
stable whenever R1

∗ < 1 and R2
∗ > 1. Similarly, in the case ηT G(W) < 0, the savanna equilibrium

ES = (G∗, T∗)′ is locally asymptotically stable whenever R1
∗ < 1 and Q2

∗ > 1. This ends the proof
of Theorem 3.

E Proof of Theorem 5 (Lyapunov Number)

Introducing perturbations
x = G − G∗ and y = T − T∗

in system (5) and then expanding in Taylor series, we have

dx

dt
= a10x + a01y + a20x2 + a11xy + a02y2 + a30x3 + a21x2y + a12xy2 + a03y3 + · · ·,

dy

dt
= b10x + b01y + b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2 + b03y3 + · · ·,

(43)

where a10 = J11
∗ := a, a01 = J12

∗ := b, b10 = J21
∗ := c and b01 = J22

∗ := d are the elements of the
Jacobian matrix evaluated at the savanna equilibrium ES = (G∗, T∗)′ with f = fh (see equation
(38), page 47). Hence, together with (13), (14), we have

a10 + b01 = 0 and ∆ = a10b01 − a01b10 > 0.
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Let (F1, F2)′ denotes the right hand side of system (5). The expressions of the coefficients aij and
bij with i, j ∈ {1, 2, 3} are given below:

a20 =
1

2

∂2F1

∂G2

∣

∣

∣

∣

∣

(ES ,f=fh)

= −
gG(W)

KG(W)
, a02 =

1

2

∂2F1

∂T 2

∣

∣

∣

∣

∣

(ES ,f=fh)

= 0, a11 =
∂2F1

∂G∂T

∣

∣

∣

∣

∣

(ES ,f=fh)

= −ηT G(W),

a12 =
1

2

∂3F1

∂G∂T 2

∣

∣

∣

∣

∣

(ES ,f=fh)

= 0, a21 =
1

2

∂3F1

∂G2∂T

∣

∣

∣

∣

∣

(ES ,f=fh)

= 0,

a30 =
1

6

∂3F1

∂G3

∣

∣

∣

∣

∣

(ES ,f=fh)

= 0, a03 =
1

6

∂3F1

∂T 3

∣

∣

∣

∣

∣

(ES ,f=fh)

= 0,

b20 =
1

2

∂2F2

∂G2

∣

∣

∣

∣

∣

(ES ,f=fh)

, b02 =
1

2

∂2F2

∂T 2

∣

∣

∣

∣

∣

(ES ,f=fh)

, b11 =
∂2F2

∂G∂T

∣

∣

∣

∣

∣

(ES ,f=fh)

,

b12 =
1

2

∂3F2

∂G∂T 2

∣

∣

∣

∣

∣

(ES ,f=fh)

, b21 =
1

2

∂3F2

∂G2∂T

∣

∣

∣

∣

∣

(ES ,f=fh)

, b30 =
1

6

∂3F2

∂G3

∣

∣

∣

∣

∣

(ES ,f=fh)

, b03 =
1

6

∂3F2

∂T 3

∣

∣

∣

∣

∣

(ES ,f=fh)

.

(44)
The value of the first Lyapunov number, which helps to determine the nature of the stability of
limit cycle arising through Hopf bifurcation is given by (Andronov et al. [1971, page 253], Perko
[2001, page 353])

σ = −
3π

2b∆3/2

{

[ac(a2
11 + a11b02 + a02b11) + ab(b2

11 + a20b11 + a11b02)

+c2(a11a02 + 2a02b02) − 2ac(b2
02 − a20a02) − 2ab(a2

20 − b20b02)
−b2(2a20b20 + b11b20) + (bc − 2a2)(b11b02 − a11a20)]
−(a2 + bc)[3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − bb21)]

}

= −
3π

2b∆3/2

{

[ac(a2
11 + a11b02) + ab(b2

11 + a20b11 + a11b02)

−2acb2
02 − 2ab(a2

20 − b20b02) − b2(2a20b20 + b11b20) + (bc − 2a2)(b11b02 − a11a20)]
−(a2 + bc)[3cb03 + 2ab12 − bb21]

}

.

(45)

Hence, conclusions of Theorem 5 follow from Perko [2001, Theorem 1, page 352].
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