H. Kitano, Systems biology: A brief overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.

J. S. Edwards and B. O. Palsson, Systems properties of the Haemophilus influenzae Rd metabolic genotype, Journal of Biological Chemistry, vol.274, issue.25, pp.17410-17416, 1999.

J. L. Reed, T. D. Vo, C. H. Schilling, and B. O. Palsson, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)

, R54. Available from, vol.4, 2003.

C. G. De-oliveira-dal'molin, L. E. Quek, R. W. Palfreyman, S. M. Brumbley, and L. K. Nielsen, AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis, Plant Physiology, vol.152, issue.2, pp.579-589, 2010.

H. Ellegren, Genome sequencing and population genomics in non-model organisms. Trends in Ecology and Evolution, vol.29, pp.51-63, 2014.

H. Liu and A. M. Deutschbauer, Rapidly moving new bacteria to model-organism status, Current Opinion in Biotechnology, vol.51, pp.116-122, 2018.

J. Huerta-cepas, K. Forslund, L. P. Coelho, D. Szklarczyk, L. J. Jensen et al., Fast genomewide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution, vol.34, pp.2115-2122, 2017.

K. J. Kauffman, P. Prakash, and J. S. Edwards, Advances in flux balance analysis. Current Opinion in Biotechnology, vol.14, pp.491-496, 2003.

J. D. Orth, I. Thiele, and B. Ø. Palsson, What is Flux Balance Analysis ? Nature biotechnology, vol.28, pp.245-248, 2010.

D. Segrè, D. Vitkup, and G. M. Church, Analysis of optimality in natural and perturbed metabolic networks, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.15112-15117, 2002.

S. Schuster, T. Pfeiffer, and D. A. Fell, Is maximization of molar yield in metabolic networks favoured by evolution, Journal of Theoretical Biology, vol.252, issue.3, pp.497-504, 2008.

H. G. Holzhütter, The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks, European Journal of Biochemistry, vol.271, issue.14, pp.2905-2922, 2004.

A. P. Oliveira, J. Nielsen, and J. Förster, Modeling Lactococcus lactis using a genome-scale flux model, BMC Microbiology, vol.5, issue.1, p.39, 2005.

P. D. Karp, D. Weaver, and M. Latendresse, How accurate is automated gap filling of metabolic models?, BMC Systems Biology, vol.12, issue.1, p.73, 2018.

A. M. Feist and B. O. Palsson, The biomass objective function, Current Opinion in Microbiology, vol.13, issue.3, pp.344-349, 2010.

S. Chan, J. Cai, L. Wang, M. N. Simons-senftle, and C. D. Maranas, Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models, Bioinformatics, vol.33, issue.22, pp.3603-3609, 2017.

J. C. Lachance, C. J. Lloyd, J. M. Monk, L. Yang, A. V. Sastry et al., Generating biomass objective functions for genome-scale metabolic models from experimental data, PLOS Computational Biology, vol.15, issue.4, p.1006971, 2019.

A. F. Peters, D. Marie, D. Scornet, B. Kloareg, and J. M. Cock, Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics, Journal of Phycology, vol.40, issue.6, pp.1079-1088, 2004.

A. Cormier, K. Avia, L. Sterck, T. Derrien, V. Wucher et al., Re-annotation, improved largescale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus, New Phytologist, vol.214, issue.1, pp.219-232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402123

J. M. Cock, L. Sterck, P. Rouzé, D. Scornet, A. E. Allen et al., The Ectocarpus genome and the independent evolution of multicellularity in brown algae, Nature, vol.465, issue.7298, pp.617-638, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00906990

S. Prigent, G. Collet, S. M. Dittami, L. Delage, D. Corny et al., The genome-scale metabolic network of Ectocarpus siliculosus (EctoGEM): A resource to study brown algal physiology and beyond, Plant Journal, vol.80, issue.2, pp.367-381, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057153

M. Aite, M. Chevallier, C. Frioux, C. Trottier, J. Got et al., reproducibility and wiki-exploration for "à-la-carte" reconstructions of genome-scale metabolic models, PLoS Computational Biology, vol.14, issue.5, p.1006146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807842

J. E. Tapia, B. González, S. Goulitquer, P. Potin, and J. A. Correa, Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp. Frontiers in Microbiology, vol.7, p.197, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01286600

S. Pande and C. Kost, Bacterial Unculturability and the Formation of Intercellular Metabolic Networks, Trends in Microbiology, vol.25, issue.5, pp.349-361, 2017.

A. R. Zomorrodi, M. M. Islam, and C. D. Maranas, Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities, ACS Synthetic Biology, vol.3, issue.4, pp.247-257, 2014.

E. Muller, K. Faust, S. Widder, M. Herold, M. Arbas et al., Using metabolic networks to resolve ecological properties of microbiomes. Current Opinion in Systems Biology, vol.8, pp.73-80, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02328165

A. E. Otwell, L. García-de-lomana, A. Gibbons, S. M. Orellana, M. V. Baliga et al., Systems biology approaches towards predictive microbial ecology, Environmental Microbiology, vol.20, issue.12, pp.4197-4209, 2018.

J. R. Marchesi and J. Ravel, The vocabulary of microbiome research: a proposal. Microbiome, vol.3, p.31, 2015.

T. Schmidt, J. Raes, and P. Bork, The Human Gut Microbiome: From Association to Modulation. Cell, vol.172, pp.1198-1215, 2018.

S. Leonelli and R. A. Ankeny, What makes a model organism? Endeavour, vol.37, pp.209-212, 2013.

Y. Xu and F. Zhao, Single-cell metagenomics: challenges and applications, Protein & Cell, vol.9, issue.5, pp.501-510, 2018.

,

D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski et al., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nature Biotechnology, vol.36, issue.10, pp.996-1004, 2018.

A. Almeida, A. L. Mitchell, M. Boland, S. C. Forster, G. B. Gloor et al., A new genomic blueprint of the human gut microbiota, Nature, p.1, 2019.

M. Cavaliere, S. Feng, O. S. Soyer, and J. I. Jiménez, Cooperation in microbial communities and their biotechnological applications, Environmental Microbiology, vol.19, issue.8, pp.2949-2963, 2017.

J. A. Gilbert, M. J. Blaser, J. G. Caporaso, J. K. Jansson, S. V. Lynch et al., Current understanding of the human microbiome, Nature Medicine, vol.24, issue.4, pp.392-400, 2018.

M. A. Hassani, P. Dur?n, and S. Hacquard, Microbial interactions within the plant holobiont. Microbiome, vol.6, p.58, 201803.

J. P. Gauthier, Y. Outreman, L. Mieuzet, and J. C. Simon, Bacterial communities associated with hostadapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA, PloS one, vol.10, issue.3, p.120664, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01274516

L. L. Blackall, B. Wilson, and M. Van-oppen, Coral-the world's most diverse symbiotic ecosystem. Molecular Ecology, vol.24, pp.5330-5347, 2015.

E. Stalidzans, A. Seiman, K. Peebo, V. Komasilovs, and A. Pentjuss, Model-based metabolism design: Constraints for kinetic and stoichiometric models, Biochemical Society Transactions, vol.46, issue.2, pp.261-267, 2018.

A. A. Mannan, Y. Toya, K. Shimizu, J. Mcfadden, A. M. Kierzek et al., Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism, e0139507. Available from, vol.10, 2015.

A. Varma and B. O. Palsson, Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110, Applied and Environmental Microbiology, vol.60, issue.10, pp.3724-3731, 1994.

O. Ebenhöh, T. Handorf, and R. Heinrich, Structural analysis of expanding metabolic networks, Genome informatics International Conference on Genome Informatics, vol.15, issue.1, pp.35-45, 2004.

W. Liebermeister, J. Uhlendorf, and E. Klipp, Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation, Bioinformatics, vol.26, issue.12, pp.1528-1534, 2010.

C. D. Maranas and A. R. Zomorrodi, Optimization methods in metabolic networks, 2016.

P. M. Doran, Bioprocess engineering principles

A. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke, COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC systems biology, vol.7, p.74, 2013.

J. Schellenberger, R. Que, R. Fleming, I. Thiele, J. D. Orth et al., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature protocols, vol.6, pp.1290-307, 2011.

L. Heirendt, S. Arreckx, T. Pfau, S. N. Mendoza, R. A. Heinken et al., Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nature Protocols, vol.14, pp.639-702, 2019.

S. Stolyar, S. Van-dien, K. L. Hillesland, N. Pinel, T. J. Lie et al., Metabolic modeling of a mutualistic microbial community. Molecular systems biology, vol.3, p.92, 2007.

A. R. Zomorrodi and C. D. Maranas, OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities, PLoS Computational Biology, vol.8, issue.2, p.1002363, 2012.

A. Heinken and I. Thiele, Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework, Gut microbes, vol.6, issue.2, pp.120-150, 2015.

H. S. Song and D. Ramkrishna, When is the quasi-steady-state approximation admissible in metabolic modeling? When admissible, what models are desirable? Industrial and Engineering Chemistry Research, vol.48, pp.7976-7985, 2009.

A. M. Reimers and A. C. Reimers, The steady-state assumption in oscillating and growing systems, Journal of Theoretical Biology, vol.406, pp.176-186, 2016.

R. Mahadevan, J. S. Edwards, and F. J. Doyle, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophysical journal, vol.83, issue.3, pp.1331-1371, 2002.

T. Handorf, O. Ebenhöh, and R. Heinrich, Expanding metabolic networks: Scopes of compounds, robustness, and evolution, Journal of Molecular Evolution, vol.61, issue.4, pp.498-512, 2005.

N. Christian, P. May, S. Kempa, T. Handorf, and O. Ebenhöh, An integrative approach towards completing genome-scale metabolic networks, Molecular BioSystems, vol.5, issue.12, pp.1889-1903, 2009.

T. Schaub and S. Thiele, Metabolic network expansion with answer set programming, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.5649, pp.312-326, 2009.

S. Prigent, C. Frioux, S. M. Dittami, S. Thiele, A. Larhlimi et al., Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks, PLOS Computational Biology, vol.13, issue.1, p.1005276, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01449100

A. Ravikrishnan, M. Nasre, and K. Raman, Enumerating all possible biosynthetic pathways in metabolic networks, Scientific Reports, vol.8, issue.1, p.9932, 2018.

N. Christian, T. Handorf, and O. Ebenhöh, Metabolic synergy: increasing biosynthetic capabilities by network cooperation, Genome informatics International Conference on Genome Informatics, vol.18, pp.320-329, 2007.

S. Ofaim, M. Ofek-lalzar, N. Sela, J. Jinag, Y. Kashi et al., Analysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation. Frontiers in Microbiology, vol.8, p.1606, 2017.

I. Opatovsky, D. Santos-garcia, Z. Ruan, T. Lahav, S. Ofaim et al., Modeling trophic dependencies and exchanges among insects' bacterial symbionts in a host-simulated environment. BMC Genomics, vol.19, p.402, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916790

C. Frioux, E. Fremy, C. Trottier, and A. Siegel, Scalable and exhaustive screening of metabolic functions carried out by microbial consortia, Bioinformatics, vol.34, issue.17, pp.934-943, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871600

O. Ebenhöh, T. Handorf, and D. Kahn, Evolutionary changes of metabolic networks and their biosynthetic capacities. Systems biology, vol.153, pp.354-362, 2006.

K. Kruse and O. Ebenhöh, Comparing flux balance analysis to network expansion: producibility, sustainability and the scope of compounds, Genome Informatics, vol.20, pp.91-101, 2008.

A. Eng and E. Borenstein, An algorithm for designing minimal microbial communities with desired metabolic capacities, Bioinformatics, vol.32, issue.13, pp.2008-2016, 2016.

S. Greenblum, P. J. Turnbaugh, and E. Borenstein, Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.594-603, 2012.

L. Cottret, P. V. Milreu, V. Acuña, A. Marchetti-spaccamela, L. Stougie et al., Graph-Based Analysis of the Metabolic Exchanges between Two Co-Resident Intracellular Symbionts, Baumannia cicadellinicola and Sulcia muelleri, with Their Insect Host, Homalodisca coagulata, PLoS Computational Biology, vol.6, issue.9, p.1000904, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02304740

A. Julien-laferrière, L. Bulteau, D. Parrot, A. Marchetti-spaccamela, L. Stougie et al., A Combinatorial Algorithm for Microbial Consortia Synthetic Design, Scientific Reports, vol.6, p.29182, 2016.

S. Pan and J. L. Reed, Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries, Current Opinion in Biotechnology, vol.51, pp.103-108, 2018.

P. D. Karp, D. Weaver, and M. Latendresse, How accurate is automated gap filling of metabolic models?, BMC Syst Biol, vol.12, issue.1, p.73, 201806.

S. Kumar, V. Dasika, M. S. Maranas, and C. D. , Optimization based automated curation of metabolic reconstructions. BMC bioinformatics, vol.8, p.212, 2007.

I. Thiele, N. Vlassis, and R. Fleming, fastGapFill: efficient gap filling in metabolic networks, vol.17, pp.2529-2531, 2014.

C. Frioux, T. Schaub, S. Schellhorn, A. Siegel, and P. Wanko, Hybrid metabolic network completion. Theory and Practice of Logic Programming, vol.19, pp.83-108, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01557347

Y. Bai, D. B. Müller, G. Srinivas, R. Garrido-oter, E. Potthoff et al., Functional overlap of the Arabidopsis leaf and root microbiota, Nature, vol.528, issue.7582, pp.364-369, 2015.

L. Provasoli and I. J. Pintner, Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae), Journal of Phycology, vol.16, issue.2, pp.196-201, 1980.

N. I. Johns, T. Blazejewski, A. L. Gomes, and H. H. Wang, Principles for designing synthetic microbial communities, Current Opinion in Microbiology, vol.31, pp.146-153, 2016.

A. Mas, S. Jamshidi, Y. Lagadeuc, D. Eveillard, and P. Vandenkoornhuyse, Beyond the Black Queen Hypothesis, ISME J, vol.10, issue.9, pp.2085-2091, 201609.
URL : https://hal.archives-ouvertes.fr/hal-01290210

C. S. Henry, H. C. Bernstein, P. Weisenhorn, R. C. Taylor, J. Y. Lee et al., Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction, Journal of Cellular Physiology, vol.231, issue.11, pp.2339-2345, 2016.

S. Louca, M. F. Polz, F. Mazel, M. Albright, J. A. Huber et al., Function and functional redundancy in microbial systems, Nature Ecology & Evolution, p.1, 2018.

G. Sambamoorthy and K. Raman, Understanding the evolution of functional redundancy in metabolic networks, Bioinformatics, vol.34, issue.17, pp.981-987, 2018.

N. Klitgord and D. Segrè, Environments that induce synthetic microbial ecosystems, PLoS Computational Biology, vol.6, issue.11, p.1001002, 2010.

S. Chan, M. N. Simons, and C. D. Maranas, SteadyCom: Predicting microbial abundances while ensuring community stability, PLoS Computational Biology, vol.13, issue.5, p.1005539, 2017.

B. García-jiménez, J. L. García, J. Nogales, and . Flycop, Metabolic modeling-based analysis and engineering microbial communities, In: Bioinformatics. vol, vol.34, pp.954-963, 2018.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set Solving in Practice, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.6, issue.3, pp.1-238, 2012.

T. Janhunen, R. Kaminski, M. Ostrowski, S. Schellhorn, P. Wanko et al., Clingo goes linear constraints over reals and integers. In: Theory and Practice of Logic Programming, pp.872-888, 2017.

M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, =. Clingo et al., Technical Communications of the Thirtieth International Conference on Logic Programming

D. Nègre, M. Aite, A. Belcour, C. Frioux, L. Brillet-gueguen et al., Genome-Scale Metabolic Networks Shed Light on the Carotenoid Biosynthesis Pathway in the Brown Algae Saccharina japonica and Cladosiphon okamuranus, vol.8, 2019.

A. Belcour, J. Girard, M. Aite, L. Delage, C. Trottier et al., Inferring Biochemical Reactions and Metabolite Structures to Understand Metabolic Pathway Drift. iScience, vol.23, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01943880

H. Knoop, M. Gründel, Y. Zilliges, R. Lehmann, S. Hoffmann et al., Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803, PLoS Computational Biology, vol.9, issue.6, p.1003081, 2013.

S. Imam, S. Schäuble, J. Valenzuela, L. García-de-lomana, A. Carter et al., A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systemslevel analyses, Plant Journal, vol.84, issue.6, pp.1239-1256, 2015.

M. A. Campodonico, D. Vaisman, J. F. Castro, V. Razmilic, F. Mercado et al., Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications, Metabolic Engineering Communications, vol.3, pp.84-96, 2016.

P. D. Karp, M. Latendresse, S. M. Paley, M. Krummenacker, Q. D. Ong et al., Pathway tools version 19.0 update: Software for pathway/genome informatics and systems biology, vol.17, pp.877-890, 2016.

A. P. Arkin, R. W. Cottingham, C. S. Henry, N. L. Harris, R. L. Stevens et al., The United States Department of Energy Systems Biology Knowledgebase, Nature Biotechnology, vol.36, issue.7, pp.566-569, 2018.

H. Wang, S. Marci?auskas, B. J. Sánchez, I. Domenzain, D. Hermansson et al., RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor, PLOS Computational Biology, vol.14, issue.10, p.1006541, 2018.

D. Machado, S. Andrejev, M. Tramontano, and K. R. Patil, Fast automated reconstruction of genome-scale metabolic models for microbial species and communities, Nucleic Acids Research, vol.46, issue.15, pp.7542-7553, 2018.

S. N. Mendoza, B. G. Olivier, D. Molenaar, and B. Teusink, A systematic assessment of current genomescale metabolic reconstruction tools, Genome Biology, vol.20, issue.1, p.158, 2019.

S. Magnúsdóttir, A. Heinken, L. Kutt, D. A. Ravcheev, E. Bauer et al., Generation of genomescale metabolic reconstructions for 773 members of the human gut microbiota, Nature Biotechnology, vol.35, issue.1, pp.81-89, 2016.

A. Noronha, J. Modamio, Y. Jarosz, E. Guerard, N. Sompairac et al., The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease, Nucleic Acids Research, 2018.

S. M. Dittami, T. Barbeyron, C. Boyen, J. Cambefort, G. Collet et al., Genome and metabolic network of "Candidatus Phaeomarinobacter ectocarpi", a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Frontiers in Genetics, vol.5, p.241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079739

B. Burgunter-delamare, H. Kleinjan, C. Frioux, E. Fremy, M. Wagner et al., Metabolic Complementarity Between a Brown Alga and Associated Cultivable Bacteria Provide Indications of Beneficial Interactions. Frontiers in Marine Science, vol.7, p.85, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02333039