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Abstract—Nowadays, images can be obtained in various ways
such as capturing photos in single-exposure mode, applying
Multiple Exposure Fusion algorithms to generate an image from
multiple shoots of the same scene, mapping High Dynamic Range
images to Standard Dynamic Range (SDR) images, converting
raw formats to displayable formats, or applying post-processing
techniques to enhance image quality, aesthetic quality,. . . When
looking at some photos, one might have a feeling of unnaturalness.
This paper deals with the problem of developing a model firstly
to estimate if an image looks natural or not to humans and the
second purpose is to try to understand how the unnaturalness
feeling is induced by a photo: Are there specific unnaturalness
clues or is unnaturalness a general feeling when looking at a
photo? The study focuses on SDR images, especially on tone-
mapped images. The first contribution of the paper is the setting
of an experiment gathering human naturalness opinions on 1,900
SDR images mainly obtained from tone mapping operators.
Based on the collected data, the second contribution of the paper
is to study the efficiency of different feature types including
handcrafted features and learned features for image naturalness
analysis. A binary classification model is then developed based
on the determined features to classify if an image looks natural
or unnatural.

Keywords: image unnaturalness study, high dynamic range
image, standard dynamic range image, tone mapping oper-
ator, multiple exposure fusion, handcrafted features, learned
features, transfer learning, convolutional neural network

I. INTRODUCTION

In recent years, more and more new camera models, pho-
tography techniques and image processing applications have
been introduced to consumers. Three emphasises should be
mentioned: High Dynamic Range (HDR) images, Multiple Ex-
posure Fusion (MEF) algorithms and Tone Mapping Operators
(TMOs). The dynamic range of images is the ratio between the
highest and lowest luminance values. The dynamic range of
irradiance in real scenes possibly reaches 1,00,000,000:1. The
human eye can perceive the dynamic ranges from 10,000:1
to 1000,000:1 (depending on circumstances) while a normal
display is able to present a low dynamic range (LDR - in recent
years, LDR and SDR are considered as the same concept) from
100:1 to 300:1 [1], [2], [3]. As a consequence, the luminance
range of scenes displayed on standard screens is narrower
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than that of real scenes and it is also lower than the dynamic
range perception of human eyes. In the past, the problem of
high dynamic range was caused by the camera sensors and
the display devices. The camera sensors were not able to
cover the whole irradiance range of real scenes. Nowadays,
the capability of professional camera sensors has increased
and those sensors can capture high dynamic range of almost
normal scenes (14 stops of dynamic range - the dynamic
range is 214:1). And when the dynamic range is too high to
be covered (for example, 20 stops of dynamic range - the
dynamic range is 220:1) or with a none-professional camera,
Multiple Exposure Fusion (MEF) algorithms can be used to
help covering the whole range. MEF is a technique generating
an image from multiple shoots taken under different exposures
for a given scene [4], [5], [6] by using fusion algorithms
(see examples in Fig. 1). The MEF technique helps an image
having a higher dynamic range than that of an image taken
with a fixed exposure.

On the side of display devices, the work is in progress. Some
of new commercial devices are able to present irradiance peaks
around 1,000 cd / m2 and black levels less than 0.05 cd / m2

(the dynamic range is 20,000:1). Especially, some special
models used in research can reach the highest luminance value
of 10,000 cd / m2. Although the dynamic range of new display
devices is quite high, it is still quite modest when compared to
the dynamic range of real scenes and the perception range of
human eyes [7]. Thus, nowadays the problem of high dynamic
range images is mainly related to display devices.

8 bit data is currently used to present images displayed on
standard screens. Although there is no direct relation between
bit-depth and dynamic range, it is necessary to use more steps
(more bits) to present a higher dynamic range. A pixel of
any HDR image is represented by 3 colors and each color is
coded by 10 bits, 12 bits, 16 bits or 32 bits. Although some
new monitor models (HDR monitors) are able to display a
high dynamic range content (20,000:1), most of the popular
display devices are SDR screens that are able to display only
SDRs of irradiance. Thus, it is necessary to map HDR images
to SDR format before display on SDR screens. To perform
this task, many Tone Mapping Operators (TMOs) have been
proposed [8], [3], [9], [10], [11], [12], [13]. Generally, TMOs
map colors of HDR images from a high dynamic range (from
10,000:1 to 1000,000:1) to a low range (from 100:1 to 300:1),
this process can be considered as a range compression process.



2

Beside this, in order to correct the colors of images or to
create special effects, some post-processing algorithms can be
applied on SDR images. For example, in the first row of Fig. 2,
post-production colors and contrast enhancements have been
used to produce the image on the right. In the post-processed
image of the second row, orange sky and sun-rays have been
created by Adobe CameraRaw and Photoshop respectively.
Additionally, an exposure enhancement algorithm has been
used in that photo. In the last row, Nik Color Efex Pro and
Photoshop have been used to enhance the colors and to create
dodge and burning effects.

One problem of SDR images obtained by using those
algorithms might be the loss of naturalness or the appearance
of unnaturalness (see examples in Fig. 3). Those processing
methods are like double-edge swords since they can signifi-
cantly improve the image quality but they also can provoke
the unnaturalness and decrease the image quality [14].

In this research, the naturalness concept is focused and it
is defined on two sides. On one side, an image is considered
as natural if the appearance of the image looks familiar for a
human observer (it makes the observer have the feeling that
the photo is a faithful representation of the scene). On the
other side, if the observer has the feeling that something in the
photo is wrong (due to color appearances, abnormal details or
more subtil changes) so that the appearance of the photo does
not look faithful, the photo is considered as unnatural. In our
work, the naturalness concept is not supposed to be related to
the image content itself (see Fig. 7). For example, augmented
images are considered as natural in this study. The research
focuses on collecting naturalness opinions from viewers to
design features representing naturalness and unnaturalness.
This study is not about image aesthetic assessment [15] or
image quality assessment [16].

In this paper, there are two main contributions. The first one
is an experiment of subjective image naturalness assessment
without references. The experiment is conducted thoroughly at
the laboratory with a set of SDR images obtained in various
ways. The second contribution is the study of different fea-
tures including handcrafted, shallow learned and deep learned
features (features learned from shallow and deep convolutional
neural networks respectively) for the image naturalness assess-
ment task with the hope to define the best features representing
naturalness / unnaturalness.

The paper is organized as follows. Section 2 presents the
state of the art of image naturalness. Section 3 introduces the
experiment of subjective image naturalness assessment and the
dataset that has been collected. In section 4, feature definition
and feature selection for image naturalness assessment are
described. Section 5 presents the results of automatic natural
/ unnatural SDR image classification. Conclusions and some
future works are presented in the last part.

II. IMAGE NATURALNESS STUDIES: STATE OF THE ART

In the literature, different definitions of image naturalness
have been given. In [20], image naturalness is defined as
the degree of correspondence between a photo displayed on
a device and the memories about the corresponding real-
life scene. An experiment is conducted with 13 observers,

Fig. 1. Examples of MEF. The first and the third rows present images
generated with the multi-exposure images of the second and the fourth rows
respectively. (image source: https://petapixel.com).

8 color images and 22 manipulations of them to gather
the perceived naturalness. The perceived naturalness is then
compared with a naturalness index based on sharpness, col-
orfulness and reproduction of shadow details, memory colors
of skin, grass and sky. In [17] and [18], image naturalness
is defined as the same as in [20] but high quality images
should be considered as natural. By analyzing the chromatic,
hue, saturation and lightness variations, they point out the
significant roles of those factors in image quality and image
naturalness. But those studies only focus on evaluating the
impacts of some factors on naturalness instead of finding
factors affecting photo naturalness. In [19], image naturalness
is defined as the degree of correspondence between a scene
(seen directly) and the corresponding scenes in photos based
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Fig. 2. Examples of post processing methods. The first column contains orig-
inal images (produced directly by cameras) while the second one presents the
corresponding post-processed images. (image source: https://petapixel.com).

on some criteria: brightness, contrast, colour reproduction,
reproduction of details, simulation of glare, visual acuity and
artifacts. An experiment is conducted to evaluate naturalness of
SDR images generated by 14 different TMOs with a human
naturalness assessment experiment with references. The real
scene and the tone-mapped version of an HDR image of
the same scene are shown to the observers. The observers
have to give a subjective score (in range [0,. . . 10]) for the 5
criteria including brightness, contrast, visibility, reproduction
of details and reproduction of colors. Based on the subjective
scores, the TMOs are compared. In [14], a similar issue
was discussed. The influences of the width and magnitude
parameters of countershading in image quality enhancement
and in provoking artifacts are studied. A subjective experiment
was conducted in which observers were asked to adjust the
magnitude parameter to the maximum level without artifacts
under different settings of the width parameter. Based on the
experimental results, some existing methods for image quality
enhancement and tone mapping are improved to avoid noise
and artifacts.

Besides, some naturalness features have been proposed for
tone-mapped Images Quality Assessment (IQA) in few studies.
In [21], [22], naturalness is mentioned as a factor to assess
quality of images since it is considered as a feature in a
feature set for IQA. In those researches, images obtained from
a camera (including pictures of man-made objects as well as
forest / natural environments) are considered as natural images.
The naturalness in this work is computed based on statistics
with 3,000 natural images. It is considered as the fitness of the
standard deviation and the mean of pixel values to a Gaussian
function and a Beta probability density function. In another

TABLE I
OVERVIEW OF NATURALNESS INDEXES AND NATURALNESS FEATURES IN

PREVIOUS STUDIES.

De’s studies [17], [18]
Image naturalness is defined as the degree of correspondence
with (memorized) reality. High quality images should be
considered as natural.
Naturalness indexes:
- Chromatic variation.
- Hue variation.
- Saturation variation.
- Lightness variation.

Cadik’s study [19]
Image naturalness is defined as the degree of correspondence
between a scene (seen directly) and the corresponding scenes
in photos based on some criteria: brightness, contrast, colour
reproduction, reproduction of details, simulation of glare,
visual acuity and artifacts.
Naturalness indexes:
- Brightness.
- Contrast.
- Colour reproduction.
- Reproduction of details.
- Reproduction of shadow details.
- Simulation of glare.
- Visual acuity.
- Artifacts.

Choi’s study [20]
Image naturalness is defined as the degree of correspondence
between a photo displayed on a device and the memories
about the real-life scene.
Naturalness features:
- Memory colors of skin, grass and sky.
- Sharpness.
- Colorfulness.
- Reproduction of shadow details.

Gu’s study [21] and Yaacoub’s study [22]
Images obtained from a camera (including pictures of
man-made objects as well as forest / natural environments)
are considered as natural images. (No definition for unnatural
images)
Naturalness feature is calculated based on standard deviation
and mean of pixel values and a statistic of natural images.
Jiang’s study [23]
Image naturalness definition is based on exposure of images.
Over or under exposure images are considered as unnatural
images while normal exposure images are considered as
natural.
Naturalness features are calculated based on luminance and
yellow intensities.

study, Jiang et al.[23] define naturalness features based on the
differences of normal exposure images and abnormal (over
or under) exposure images. Simply, over or under exposure
images are considered as unnatural images in that research.
Naturalness features computed based on the luminance and
yellow values. Those features are then used with details
features and aesthetic features for tone-mapped image quality
assessment. In those studies, it is concluded that naturalness
plays a role in tone-mapped image quality assessment but
naturalness is mentioned as a factor and there is no clear
definition, conclusion or evaluation about the consistency of
the naturalness. Table I presents an overview of naturalness
features in previous studies.

In the state of the art about image naturalness, it is worthy
to notice that none of those studies has the same definition of
naturalness and their purposes are different from the purpose
of this work. Moreover most of the naturalness features
mentioned in previous researches are handcrafted features.
But in the naturalness concept, we think that there is also
an abstract part related to individual memories which cannot
be precisely described to be inferred by handcrafted features.
As a consequence, there is probably a need about naturalness
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features learning and the respective influences of handcrafted
and learned features on image naturalness assessment is still
an open question.

A B

1

2
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Fig. 3. Examples of artifacts. 1A: Over exposure, lost details. 1B: Under
exposure, lost details. 2A: Too high contrast. 2B: Too low contrast, incorrect
color reproduction. 3A: Bloom effect, incorrect color reproduction. 3B:
Hallow effect, incorrect color reproduction.

III. EXPERIMENT OF SUBJECTIVE IMAGE NATURALNESS
ASSESSMENT

There are few research about image naturalness and one
important challenge is that labelled natural / unnatural datasets
are not available. Thus, there is a need of collecting such
data so the first step before studying image naturalness is
to organize an experiment of subjective image naturalness
assessment without references. The description of the experi-
ment includes the image sources, the experiment design, the
experiment process, the observers, the experiment results and
the naturalness dataset built from the data collected from the
experiment.

A. Image sources

The dataset contains 2,727 SDR images coming from
3 main sources. The first one is 624 SDR images
mapped from 208 HDR images coming from Debevec’s [4],
Fairchild’s [24], Cadik’s [25], Narwaria’s [26], Yeganeh’s [27],
Korshunov’s [28] and Krasula’s [29] datasets. HDR images are
not easy to collect and the number of images in each dataset is
often small, so 7 HDR datasets are used in this research. Those
HDR images are mapped to SDR images by using different
TMOs including Reinhard’s [9] (based on global contrast),
Ashikhmin’s [10] (using local contrast) and Khan’s [8] (based
on histogram and human visual system) algorithms. In order to
focus on both naturalness and unnaturalness, there is a need of
considering not only a well known TMO like Reinhard’s TMO
but also an TMO generating artifacts like Ashikhmin’s TMO

and an TMO generating both natural and unnatural images
like Khan’s TMO.

The second image source includes 1,811 SDR images of
ESPL-LIVE dataset [30]. It includes 747 images tone-mapped
from HDR images by using 4 TMOs [9], [13], [11], [12],
710 images grenerated directly from multi-exposure images
by using 5 MEFs [30], [31], [32], [33] and 354 images gained
after applying 2 post-processing algorithms [30].

The last part of the dataset contains 292 images includ-
ing single-exposure, tone-mapped and post-processed images
downloaded from Flickr website. The contents of the images
are real world scenes including landscape, building, objects,
people,. . . and they are taken under indoor, outdoor, day time,
night time conditions.

B. Experiment setup

1) Experiment design: The experiment was conducted at
GIPSA Lab, France where the experimental conditions are
controlled according to the ITU BT-500 for a subjective
experiment. Every observer performed the experiment by
interacting with an interface displayed on a 24 inch (16:10)
Samsung display (see Fig. 4). The resolution and color profile
of the display has been set to 1920 × 1200 pixels and
sRGB respectively. The peak brightness of the display is 250
cd / m2. It is connected to a computer exporting a 32 bit
color signal. The display and the computer are put in an
experimental room where the light conditions are controlled
thoroughly. The distance from observers to the display was
fixed to 0.7 meter. Although the number of observers in the
laboratory experiment is lower than that of some online crowd
surveys, the thorough control of experimental conditions is the
compensation ensuring the reliability of the experiment results.

Fig. 4. The interface for assessing image naturalness.

2) Experiment process: The process of the experiment
for an observer is described in Fig. 5. Before starting the
experiment, the observer performs an eye sight and a color
sensation tests. The observer then reads the instructions, views
some examples and performs a trial experiment to understand
the experiment precisely and to be familiar with the interface
of the experiment. The observer is instructed to focus on image
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naturalness rather than image quality or image aesthetic. In
the trial phase, the observer has to evaluate the naturalness of
five photos covering different causes of unnaturalness (they
were pre-evaluated by the authors) and not belonging to
the official experiment phase. Each turn, only one photo is
showed to the observer during a short time. As explained
previously, naturalness is an abstract concept not so easy to
define precisely to each observer. So in our opinion, defining
a scale of naturalness (from 1 to 10 from example) would not
have been meaningful. As a consequence, the observers have
been asked to quote each image in a binary way: natural or
unnatural so that we could trust more the provided quotation.
Therefore, there are only two choices: the photo looks natural
or it looks unnatural to the observer (see Fig. 4). The observer
can click a button on the interface or use the keyboard to enter
his/her decision. Although the maximum time for evaluating
an image is 7 seconds, the actual time in the experiment ranges
from 3 to 5 seconds per photo. After giving the subjective
evaluation, an uniform gray background is displayed for 1
second and the next image is then presented automatically
to the observer. In the next step, the official experiment is
performed in the same way as the trial experiment but the
number of photos is higher. In the official phase, the number
of assessed photos per observer is 380. The total performing
time per subject ranges from 25 to 30 minutes.

Fig. 5. The process of the experiment for an observer. There are 4 main steps
including testing eyes, reading instructions, doing the trial test and doing the
official test.

3) Observers: There were 45 people participating in the
experiment which have quoted 1,900 images among the 2,727
available images. The number of men and women are 33 and
12 respectively. Among the 45 observers, 33 observers are
familiar with image processing. The observers’ ages range
from 18 to 57. The average and the standard deviation of their
ages are 26.2 and 7.53 respectively. The results show that 100
percent of them have normal or corrected to normal vision at
that time.

C. Experiment results and the naturalness dataset

17,100 no reference subjective evaluations of photo nat-
uralness were collected from 45 observers for 1,900 SDR
images. Each SDR image has been assessed by the 9 observers.
The distributions of the evaluations wrt each transformation
method are presented in Table II. The distributions of the
different groups are various. Some transformation methods
receive a significant difference between the number of positive
evaluations (assessing an image as natural) and the number of

TABLE II
THE DISTRIBUTION OF THE NATURALNESS EVALUATIONS WRT EACH
TRANSFORMATION METHOD (OR IMAGE SOURCE) FOR THE WHOLE

DATASET. NI: NUMBER OF IMAGES, PV: NUMBER OF POSITIVE VOTES
(EVALUATING IMAGES AS NATURAL IMAGES), NV: NUMBER OF NEGATIVE

VOTES (EVALUATING IMAGES AS UNNATURAL IMAGES).

Transformation method NI PV NV
(or image source)
Khan’s TMO [8] 178 732 870
Ashikhmin’s TMO [10] 178 230 1,372
Durand’s TMO [12] 138 179 1,063
Fattal’s TMO [11] 75 260 415
Reinhard’s TMO [9] 253 1,549 725
Larson’s TMO [13] 127 730 413
Paul’s MEF [33] 97 582 291
Pece’s MEF [32] 91 422 377
Raman’s MEF [31] 133 945 252
Local Adjustment for MEF 50 57 393
Global Adjustment for MEF 59 409 122
Surreal effect (post processing) 131 117 1,062
Grunge effect (post processing) 98 47 835
Flickr dataset 292 1,631 997

negative evaluations (assessing an image as unnatural) such
as Durand’s method (179 versus 1,063), Surreal effect (117
versus 1,062), Grunge effect (47 versus 835), Ashikhmin’s
TMO (230 versus 1,372). In contrast, the difference in the
numbers of positive evaluations and the number of negative
evaluations is in-significant for Pece’s method (422 versus
377), Khan’s method (732 versus 870). In other cases, there is
a slight difference between the number of positive evaluations
and the number of negative evaluations: Reinhard’s method
(1,549 against 725), Fattal’s method (260 against 415), Lar-
son’s method (730 against 413), Flickr dataset (1,631 against
997).

The images are categorized into 10 groups based on the
number of positive and negative evaluations they got. The
results are showed in Fig. 6. A group is represented by a
column in the chart. For example, the first left column in the
chart corresponds to the 301 images that have been assessed as
unnatural by the 9 observers (no one assessed them as natural)
while the right last column shows that 143 images have been
evaluated as natural by the 9 observers (no one evaluated them
as unnatural).

Fig. 6. Results of the subjective naturalness experiment.

Because the purpose of the research is to study naturalness
and unnaturalness signs, there is a need of relevant data. Thus,
only the images with a significant difference between the
number of positive evaluations and the number of negative
evaluations have been considered. Based on the results of the
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TABLE III
THE DISTRIBUTION OF THE NATURALNESS EVALUATIONS FOR THE

SELECTED IMAGES (IMAGES WITH AT LEAST 8 POSITIVE VOTES OR 8
NEGATIVE VOTES). NI: NUMBER OF IMAGES, PV: NUMBER OF POSITIVE
VOTES (EVALUATING IMAGES AS NATURAL IMAGES), NV: NUMBER OF

NEGATIVE VOTES (EVALUATING IMAGES AS UNNATURAL IMAGES).

Transformation method NI PV NV
(or image source)
Khan’s TMO [8] 59 231 300
Ashikhmin’s TMO [10] 123 73 1,034
Durand’s TMO [12] 98 61 821
Fattal’s TMO [11] 21 31 128
Reinhard’s TMO [9] 93 696 141
Larson’s TMO [13] 45 317 88
Paul’s MEF [33] 33 257 40
Pece’s MEF [32] 13 84 33
Raman’s MEF [31] 67 560 43
Local Adjustment for MEF 36 18 306
Global Adjustment for MEF 31 265 14
Surreal effect (post processing) 101 28 881
Grunge effect (post processing) 87 18 765
Flickr dataset 79 544 167

experiment, an image in this study is considered as natural if
there are at least 8 positive evaluations (in total 9 evaluations).
Similarly, if there are at least 8 negative evaluations (in total
9 evaluations), it is considered as unnatural. The others are
considered as uncertain images because related to controver-
sial evaluations. In this experiment, a binary classification
approach is chosen instead of a regression approach because
for our first experiment with the notion of unnaturalness, we
would like to focus on very contrasted cases of natural and
unnatural images to be able to learn a bit more about unnatural-
ness. Thus, the question for the observers is a binary question
“does the image look natural or unnatural?” (not a regression
question). The regression problem will be considered later in
the future.

After discarding the uncertain images, 531 unnatural images
and 355 natural images are kept. The details of the evaluation
distribution of the reduced version are described in Table III.
Obviously, natural images and unnatural images have been
generated by different transformation methods. Some meth-
ods generate mainly natural images (Reinhard’s method) or
unnatural images (Ashikhmin’s method). And some methods
generate both natural and unnatural images such as Khan’s
method with 231 positive votes versus 300 negative votes,
and Pece’s method with 84 positive votes against 33 negative
votes.

In order to balance the dataset 176 unnatural images are
removed randomly. Then, the ground-truth of the image nat-
uralness dataset is built from 355 unnatural and 355 natural
photos. After applying data augmentation including re-scaling,
shifting, flipping, cropping and padding, 200 modified versions
of size 224×244 are generated from every original photo
(See examples in Fig. 7) and the labels of the augmented
versions are set the same as the label of the original one.
Totally, there are 142,000 images in the naturalness dataset in
which half of them are natural and the others are labelled
as unnatural. The dataset is available at http://www.gipsa-
lab.fr/∼quyettien.le/projets en.html.

Fig. 7. Examples of data augmentation including re-scaling, shifting, flipping,
cropping and padding (the black padding parts in those image are not
presented to the observers). The two first rows present augmented versions
of a natural image while the two last rows present augmented versions of
an unnatural image (based on observers’ evaluations). The data augmentation
operations do not change the feeling of naturalness or unnaturalness so that
the same label is kept.

IV. FEATURE DEFINITION AND FEATURE SELECTION

There is a lot of factors responsible for the unnaturalness
of an image. Some of them can be described and defined by
looking at the images while it is not easy to explain and mod-
elize the others (see examples in Fig. 8). As a consequence,
in this study, the considered features for the purpose of image
naturalness assessment are built based on the one side on
hancrafted features designed to take into account some a priori
about unnaturalness and on the other side on features learned
directly either from Convolutional Neural Networks (CNNs)
or from pre-trained models (in order to access to non priori,
indescribable information). The proposed handcrafted features
are designed to focus on the popular artifacts induced by
TMO, MEF and post-processing methods such as the feeling
of perceived luminance, contrast, reproduction of detail and
colors, bloom, halo and dark band effects [19]. In contrast,
learned features are used to detect the abstract factors causing
an unnaturalness feeling about photos.

A. Handcrafted features

Based on the ideas mentioned in [19] the considered hand-
crafted features are:

1) Brightness features: SDR images generated by TMO,
MEF or post-processing algorithms sometimes look unnatural
because of the perceived brightness. The brightness channel is
one of the 3 channels of the HSV (or HSB: Hue, Saturation
and Value or Brightness) color space. The brightness of a pixel
is also calculated as the maximum value of the red, green, blue
values. By analyzing the brightness histogram of the photos in
the dataset, some artifact signs related to brightness could be
detected. As an example, in Fig. 9, according to the results of
the experiment, the top left image looks more natural to the
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Fig. 8. Examples of unnatural images. In the left column, the images have
clear artifact signs. The brightness in the first image is too low, there are
halos surrounding the objects in the second image, the color saturation in the
last one is too high. In contrast, when the observers look at the images of
the right column, they have the feeling that the images are unnatural without
being able to explain clearly why.

observers than those of the other color images. Looking at the
brightness histogram in the last row, it appears that the density
of medium brightness values in the natural image seems to be
denser than those of the other images. In contrast, the two other
images look too bright or too dark which can be detected on
the brightness histograms that are distributed more in high or
low values. The features representing the brightness histogram
including mean (f1), standard deviation (f2), skewness (f3),
kurtosis (f4) and continuity (f5) of brightness are the first
handcrafted features for image naturalness assessment. In
which, the continuity of brightness is defined as:

f5 =
∑
|Hbr(i)−Hbr(i+ 1)| (1)

where Hbr(i) and Hbr(i + 1) are the values of the ith and
i+ 1th bins in the brightness histogram.

Another important factor affecting the image naturalness is
the brightness contrast. Obviously, the global brightness con-
trast of an over-exposed image or an under-exposed image is
often low. However, a photo with a too high global brightness
contrast could also look unnatural. In this study, the features
representing the global brightness contrast of an image are
defined as:

f6 =
µh
br

µbr
(2)

f7 =
µl
br

µbr
(3)

f8 =
f6 − f7
f6 + f7

(4)

Fig. 9. The first row presents the color images. The second and the third
rows illustrate the corresponding darkness and brightness channels (Eq. 6 and
Eq. 7) of them. The fourth row shows the absolute difference (Eq. 8) between
the darkness and the brightness channels. The brightness histograms of the
color images are presented in the last row.

where f6 and f7 represent the highest and the lowest bright-
ness values normalized by the brightness mean (µbr). µh

br and
µl
br are the means of the brightness values of top 5 percent

pixels having the highest and the lowest brightness values
respectively. The global brightness contrast (f8) represents the
relation between the highest and lowest brightness values in
the photo. An unnatural photo often has a too high or a too
low contrast or it also could have low highest brightness values
(under-exposed images) or high lowest brightness values (over-
exposed images).

Fig. 10. The left column presents the color images. The right one illustrates
the corresponding brightness channels of them. The first left image labelled
as unnatural contains artifact signs: halo, dark band and bloom effects while
the second color image is assessed as natural by the observers.

Additionally, images mapped by some TMOs have artifact
signs such as dark bands, halos or blooms (see examples in
Fig. 3 and Fig. 10). Halos and dark bands surrounding details
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increase the contrast of local parts as in Fig. 10 (halos have
high brightness values while dark bands have low brightness
values). In order to detect the high contrast of local parts
caused by halo and dark band effects, an image is divided
into M parts and the local brightness contrast of the image is
defined as the mean of brightness contrasts of the M parts:

f9 =
1

M
×

M∑
i=1

maxibr −minibr
maxibr +minibr

(5)

where maxibr and minibr are the maximum and the minimum
brightness values respectively in the ith part. In this study, M
is set to 100 (10 × 10 as in the right column of Fig. 10).

2) Saturation features: The impression of colors is not only
caused by brightness factors but is also affected by saturation
factors. Thus saturation factors have significant influences on
naturalness perception of images. Similarly to the brightness
features, 9 features (f10 to f18) are defined based on saturation
information (extracted from the channels of the HSV color
space) to present the saturation distribution and the saturation
contrast of an image.

3) The darkness channel and its relation with the brightness
channel: Analyzing the darkness channel and its relation with
the brightness channel is an effective way to classify over-
exposed, under-exposed and well exposed images. Considering
an image in the RGB color space, the darkness channel (Ida)
and the brightness channel (Ibr) are defined based on the RGB
channels as:

Ida(x, y) = min
(
R(x, y), G(x, y), B(x, y)

)
(6)

Ibr(x, y) = max
(
R(x, y), G(x, y), B(x, y)

)
(7)

where (x, y) are the coordinates of a pixel. R(x, y), G(x, y)
and B(x, y) are red, green and blue levels at point (x, y)
respectively. The difference between the two channels is
defined as:

Idi(x, y) = Ibr(x, y)− Ida(x, y) (8)

In Fig. 9, it appears that the pixel values of darkness channel
in the under-exposed image (the last column) are very low
while those of the brightness channel in the over-exposed
image (the second column) are too high. Beside this, the
difference between the brightness and darkness channels of
the over-exposed image is higher than that of the well exposed
image. In contrast, this difference for the under-exposed image
is less significant than that of the natural one. Therefore the
information of the darkness channel and its relation with
the brightness channel is an important clue to evaluate the
naturalness of a photo. The 8 next features (f19 to f26) for
image naturalness assessment are the mean, standard deviation,
kurtosis, skewness of Ida and Idi respectively.

Obviously, some details in the darkness and brightness
channels of the images in the 2 last columns (Fig. 9) are lost.
By comparing the details of the original image in gray scale
and the details of the darkness and brightness channels, the
reproduction of details and the balance between the darkness

and the brightness channels can be evaluated. Thus the 2 last
handcrafted features are defined as:

f27 =

∑
|GIg −GIda |∑

GIg

(9)

f28 =

∑
|GIg −GIbr |∑

GIg

(10)

where GIg , GIda , GIbr are the gradient images [34] of the
original image in gray scale, the darkness and the brightness
channels respectively.

∑
G is the sum of pixel values of the

image G. Note that the black padding regions (generated by
the data augmentation methods) of images are discarded before
calculating the handcrafted features.

To sum up, the overview of the considered handcrafted
features is presented in Table IV. The features are presented in
3 groups including brightness features (9 features), saturation
features (9 features) and darkness features (10 features).

B. Learned features
In some cases, it is possible to explain why an image looks

unnatural to an observer but in general, it is a tough task. No
direct relation appears between the unnatural feeling and the
image clues such as color, brightness, saturation and so on.
As a result, besides being handcrafted, features have also be
learned directly from images by using CNNs [35]. Because
of the modest image number of the naturalness dataset, the 2
approaches used for learning features in this study are shallow
CNNs and transfer learning [36] using deep features learned
from deep CNNs.

1) Shallow learned features: In the first approach, shallow
learned features are learned from shallow CNNs (models
with a low number of convolutional layers and a shallow
architecture). The general structure of the 4 considered models
(see Fig. 11) includes a convolutional layer receiving input
color images of size 224×224, a global average pooling layer
transforming 3D outputs from the convolutional layer into 1D
outputs, a batch normalization layer normalizing the outputs
from the global pooling layer and a fully connected layer on
the top for predicting the input images as natural or unnatural.
The size and the number of kernels in the convolutional layer
are designed according to the number of samples in the dataset
(142,000 samples of size 224×224). In order to learn various
types of features, different models using different kernel sizes
and different kernel numbers (490 kernels of size 5×5, 229
kernels of size 9×9, 65 kernels of size 17×17 and 65 kernels
of size (2×17)×(2×17) - an average pooling layer is used
to resize the input image by 50 percent) are designed as
in Fig. 11. After the training phase, the models without the
prediction layer are considered as feature extractors computing
the learned features from the input images. The 4 feature
extractors calculate 65, 65, 229 and 490 shallow learned
features (features learned from shallow CNNs) for the purpose
of image naturalness assessment. In the training process, the
Adam optimizer and a binary cross-entropy loss function are
used and the batch size is assigned to 128. The learning
rate and the number of iterations are set to 10−6 and 3,000
respectively.
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TABLE IV
OVERVIEW OF THE PROPOSED HANDCRAFTED FEATURES FOR IMAGE

NATURALNESS ASSESSMENT.

Features Formula

Brightness features f1 =
∑N

i=1 Ibr(i)

N

f2 =

√∑N
i=1 (Ibr(i)−f1)2

N−1

f3 =
∑N

i=1 (Ibr(i)−f1)3

N×f32

f4 =
∑N

i=1 (Ibr(i)−f1)4

N×f42
f5 =

∑
|Hbr(i)−Hbr(i+ 1)|

f6 =
µh
br
µbr

f7 =
µl
br
µbr

f8 = f6−f7
f6+f7

f9 = 1
M
×

∑M
i=1

maxibr−min
i
br

maxi
br

+mini
br

Ibr is the brightness channel.

Saturation features f10 =
∑N

i=1 Isa(i)

N

f11 =

√∑N
i=1 (Isa(i)−f10)2

N−1

f12 =
∑N

i=1 (Isa(i)−f10)3

N×f311

f13 =
∑N

i=1 (Isa(i)−f10)4

N×f411
f14 =

∑
|Hsa(i)−Hsa(i+ 1)|

f15 =
µh
sa
µsa

f16 =
µl
sa
µsa

f17 = f15−f16
f15+f16

f18 = 1
M
×

∑M
i=1

maxisa−min
i
sa

maxisa+min
i
sa

Isa is the saturation channel.

Darkness features f19 =
∑N

i=1 Ida(i)

N

f20 =

√∑N
i=1 (Ida(i)−f19)2

N−1

f21 =
∑N

i=1 (Ida(i)−f19)3

N×f320

f22 =
∑N

i=1 (Ida(i)−f19)4

N×f420

f23 =
∑N

i=1 Idi(i)

N

f24 =

√∑N
i=1 (Idi(i)−f23)2

N−1

f25 =
∑N

i=1 (Idi(i)−f23)3

N×f324

f26 =
∑N

i=1 (Idi(i)−f23)4

N×f424

f27 =

∑
|GIg−GIda

|∑
GIg

f28 =

∑
|GIg−GIbr

|∑
GIg

Ida is the darkness channel.
Idi is the differences between the
brightness and darkness channels.
Idi = Ibr − Ida

2) Deep learned features: Deep learned features are learned
from deep CNNs (models with a high number of convolu-
tional layers and a deep architecture). To learn deep features
directly, there is a need of a very high number of images
and it is impossible for the case of this study. Considering
deep features learned by pre-trained models could be a good
solution. Although the deep learned features (features learned
from deep CNNs) have been learned for a given task, they
can be considered to be used for different tasks [36]. The
general structure of deep CNNs includes convolution layers
at the bottom and fully connected layers on the top. The
convolution layers are responsible for learning features while

Output (FC 2)
BN

Global AVG Pool
5x5 CONV, 490

Input (224 x 224 x 3)

Output (FC 2)
BN

Global AVG Pool
9x9 CONV, 229

Input (224 x 224 x 3)

Output (FC 2)
BN

Global AVG Pool
17x17 CONV, 65

Input (224 x 224 x 3)

Output (FC 2)
BN

Global AVG Pool
17x17 CONV, 65
2 x 2 AVG Pool

Input (224 x 224 x 3)

Feature extractor

Feature extractor

Feature extractor

Feature extractor

Fig. 11. Four different architectures of the shallow CNN. 2×2 AVG Pool:
Average pooling layer with the pooling of size 2×2 that reduces the size of
the input image by 50 percent. W×W CONV, N: N kernels of size W×W
of the convolutional layer. Global AVG Pool: global average pooling layer.
BN: Batch normalization layer. FC 2: The fully connected layer containing 2
output neurons (the prediction layer).

the fully connected layers are in charge of combining features
learned from the convolution layers to solve the task. In other
words, after removing the fully connected layers of a pre-
trained deep neural network, the model can be considered as
a feature extractor. In our study, several deep models including
VGG16 [37], Xception [38], ResNet [39], NASNet large
and NASNet mobile [40], MobileNet [41], Inception [42],
DenseNet [43], Inception ResNet [44] pre-trained on the
ImageNet dataset for the task of image classification are
transferred to the new purpose of image naturalness assessment
by keeping the convolution layers and replacing the top fully
connected layers and training them for the new task. Instead
of using all pre-learned features for the new task, there is
a feature selection process to extract relevant features. The
feature selection algorithm is presented in the next part.

3) Feature selection: When using transfer learning, features
are primarily learned for a different task. Some features can be
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transfered well to perform a new task while the remaining are
not relevant. Additionally, combining several feature sets could
increase the performance but it also increases the number of
features. This increase makes the computation complicated and
sometimes it also increases the requirement of data. Therefore,
simplifying a feature set by selecting the most relevant features
is a good solution. Thus, there is a need of selecting and
keeping the most relevant features and discarding the irrelevant
features from a feature set. The relevance of each feature for
the purpose of INA needs to be evaluated. This is done by
using the relief method [45]. The training set S containing
113,600 images (56,800 natural images and 56,800 unnatural
images) selected randomly from the dataset is considered as
the evaluation set to compute the relevance of the features. All
features of each image in S are calculated and normalized to
range [0,. . . 1]. The relevance of a given feature f is calculated
as:

r(f) = dif(f,N,U)− dif(f,N,N)− dif(f, U, U) (11)

dif(f,X, Y ) =

∑‖X‖
i=1

∑‖Y ‖
j=1 (d(f,Xi, Yj))

‖ X ‖ × ‖ Y ‖
(12)

where N and U are the natural images and the unnatural
images of the evaluation set S respectively. The number of
images in set X is presented as ‖ X ‖. Xi is the ith image of
the set X while the absolute difference between f values of
the 2 images x and y is represented as d(f, x, y). The feature
relevances are then normalized to range [0,. . . 1]. The highest
r(f) values illustrate the most relevant features.

In order to reduce the number of features and keep the most
relevant features FT , it is necessary to find a threshold T to be
applied on feature relevance R to discard irrelevant features
(features having the relevance smaller than the threshold T ).
To find the threshold, an algorithm based on the feature
relevance and the binary search algorithm is applied [46]. The
details of the algorithm are described in Fig. 12. The first step
of the algorithm is to initialize a lower threshold T1 and an
upper threshold T2 to 0 and 1 respectively. T1 and T2 are then
considered as the thresholds to select 2 feature sets FT1

and
FT2

(FTj
= {fx|rx ≥ Tj}). FT1

and FT2
are then applied to

classify natural and unnatural images by using 2 SVM models.
Comparing the 2 models trained on S1 with 85,200 images
selected from S and tested on S2 containing 28,400 images
coming from S can point out which threshold is the best (T1 or
T2). The better threshold is kept while the worse threshold is
updated to reduce the distance between the 2 thresholds. After
performing K iterations, the final threshold T is computed
as the average of the 2 thresholds T1 and T2. The algorithm
is then applied on the feature sets to keep the most relevant
features only. To evaluate the feature selection method, look at
the improvement of the classification performance in Table VII
and Table VIII in the experimental section. After selecting
the most relevant features, the accuracy of the classification
based on shallow learned features increases from 0.789 (with
849 features) to 0.808 (with 731 features) while the accuracy
and the loss of the classification based on the deep learned

B

F = {f1, f2,… fn}
R = {r1, r2,… rn}
K, S1, S2

T1 = 0
T2 = 1
i = 0

i < K

j = 1

j < 3

FTj = {fx | rx ≥ Tj}
Train the SVM with FTj, S1
Test the SVM with FTj, S2
Get the accuracy Aj

j = j + 1

A1 < A2

5
12

11
TTTT 



A1 > A2

5
12

22
TTTT 



5
12
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TTTT 
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12

22
TTTT 



i = i + 1

E

2
21 TTT 



True

True
True

True

False
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Fig. 12. Flowchart of the algorithm finding the optimal threshold. The input
includes the feature set F , the feature relevance set R, the number of iterations
K, the training set S1 and the testing set S2. T1, T2 are the lower and
upper thresholds respectively. FTj is the reduced feature set selected with
the threshold Tj . Aj is the accuracy of the SVM classifier trained and tested
with S1 and S2 respectively with the feature set FTj . The output of the
algorithm is the optimal threshold T .

features improves from 0.858, 0.299 (with 2,048 features)
to 0.865, 0.139 (with 425 features) respectively. The feature
reduction helps simplifying the feature sets and increasing the
performance.

V. EXPERIMENTS AND RESULTS

There are several purposes in this part. The first goal is to
automatically answer the question “does an image look natural
or not?”. The second one is to evaluate the efficiency of each
feature set (handcrafted features, shallow learned features and
deep learned features towards naturalness assessment). The
last goal is to try to define more precisely the most relevant
features describing unnaturalness.

Image naturalness assessment is considered here as a binary
classification problem (natural / unnatural image) reflecting
the fact that an observer might or might not feel that the
image is natural. In order to evaluate the performance of each
feature set, the classification is performed separately with the
handcrafted features, the shallow learned features and the deep
learned features.
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A. Dataset and setup

The system having the general structure as in Fig. 13 is
trained and tested to evaluate the classification performances
of each feature set. The general structure includes an input
layer, an output layer and P hidden blocks (in this study, P
is set to 4). Each block contains a fully connected layer, a
batch normalization layer and a dropout layer. The output layer
contains 2 neurons corresponding to the 2 classes (natural and
unnatural). The model is designed to learn how to combine the
computed features for the classification task. Only the fully
connected layers are trained in the training process so the
convergence is fast. In the experiment, the number of iterations
is set to 150. The Adam optimizer is used and the loss function
is the binary cross-entropy loss. The learning rate and the mini-
batch size are set to 10−3, 512 respectively. Regarding the
feature extraction block, each of the 3 feature sets is tested
alone.

FC 2
Dropout 0.25

BN
FC 4

Dropout 0.25
BN
FC 8

Dropout 0.25
BN

FC 16
Dropout 0.25

BN
FC 32

FEATURE EXTRACTOR

RGB image(224 x 224 x 3) Input layer

Hidden block

Output layer

Hidden block

Hidden block

Hidden block

P hidden
blocks
(hidden
layers)

Fig. 13. General structure of the network designed for natural / unnatural
image classification. Features extracted from an RGB input image of size
224×224×3 by the feature extractor are passed through the layers to classify
the image as natural or unnatural. There are 4 hidden blocks with a fully
connected layer, a batch normalization layer and a dropout layer in each
block.

The model is trained on the 113,600 images of the training
set S and tested on a testing set S′1 including 28,400 images
(14,200 natural images and 14,200 unnatural images) gener-
ated from the 142 remaining original images by applying the
data augmentations. There is no overlapping images (images
generated from the same original images) between the training
set and the testing set. Additionally, the classifier is also tested
on a testing set S′2 containing 142 images (71 natural images
and 71 unnatural images) obtained from 142 original images
by re-scaling and padding (just to convert images to the format
of size 224× 224 without cropping) to evaluate the influence
of data augmentation on performances. It helps to demonstrate
the validity of the data augmentation process regarding the
labelling in particular. This is mainly because we focus on the

TABLE V
OVERVIEW OF EVALUATION CRITERIA.

Evaluation criteria Formula
Accuracy A = TP+TN

TP+FP+TN+FN
Lower accuracy Al = A− Ia
Upper accuracy Au = A+ Ia

Loss L =
∑n

i=1 |yi−oi|
n

Lower loss Ll = L− Il
Upper loss Lu = L+ Il

naturalness of the image and not the naturalness of the image
content. The model is evaluated based on the Accuracy (A)
depending on TP, TN,FP, FN (true positive, true negative,
false positive and false negative expressed as a number of
images) and on the Loss (L) described in Table V. The lower
accuracy (Al) and the upper accuracy (Au) reflect the range
of accuracy within the 95% confidence interval [47], [48]. In
general, the accuracy (or overall accuracy) is the most popular
metric for evaluating classification performance while the loss
(or mean absolute error) reflects the classification certainty. In
Table. V, n is the class number (in this case n = 2), y and o
are the target and the output (prediction) values respectively.
The lower loss (Ll) and the upper loss (Lu) present the range
of loss within the 95% confidence interval [47], [48]. Ia and
Il are the accuracy interval and the loss interval. They are
calculated as:

Ia = z ×
√
A× (1−A)

N
(13)

Il = z ×
√
L× (1− L)

N
(14)

where N is the number of testing samples (in this study, N is
28,400 for S′1 and 142 for S′2) and z is the number of standard
deviations from the Gaussian distribution (z = 1.96 for 95%
confidence interval).

The experiments have been performed on a PC equipped
with an Intel(R) Xeon(R) CPU X5650 2.67 GHz (12 CPUs)
and 24 GB memory. The feature computational time TF
(the time for computing features from images directly), the
classification time TC (the time for classifying images based
on computed features), the classification accuracy and the
loss with each feature set are estimated in two cases with
and without a graphic card (NVIDIA GeForce GTX 1080
Ti) to compare the impacts of the feature set choice on
the classification and to evaluate the balance between the
computational cost and the classification accuracy.

B. Results and discussions

1) Handcrafted features based classification: In this first
case, the feature extractor box in Fig. 13 computes the
handcrafted features defined in section IV-A. Table VI shows
the performances of the classification based on handcrafted
features. The impact of each handcrafted feature subset is
also estimated and is showed in the table. It appears that the
overall accuracy of classification based on the separate feature
subsets is quite low (0.712, 0.640, 0.716 for the brightness,
saturation and darkness channels features respectively) and the
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TABLE VI
IMAGE NATURALNESS ASSESSMENT BASED ON THE 28 HANDCRAFTED

FEATURES AND IMPACT OF EACH HANDCRAFTED FEATURE GROUP ON THE
ASSESSMENT.

Classification based on handcrafted feature subsets
performed on the testing set S′1

9 Brightness features A = 0.712 L = 0.389
9 Saturation features A = 0.640 L = 0.495
10 Darkness channel features A = 0.716 L = 0.401

Classification based on all the handcrafted features
(28 features) performed on the testing set S′1

Prediction
Natural Unnatural

Ground truth Natural TP = 12,680 FN = 1,520
Unnatural FP = 3,832 TN = 10,368

A = 0.812 Ia = 0.005 Al = 0.807 Au = 0.817
L = 0.321 Il = 0.005 Ll = 0.316 Lu = 0.326

Classification based on all the handcrafted features
(28 features) performed on the testing set S′2

Prediction
Natural Unnatural

Ground truth Natural TP = 66 FN = 5
Unnatural FP = 19 TN = 52

A = 0.831 Ia = 0.062 Al = 0.769 Au = 0.893
L = 0.326 Il = 0.077 Ll = 0.249 Lu = 0.403

Processing time without the graphic card
TF 63 ms TC 2 ms

Processing time with the graphic card
TF 59 ms TC 2 ms

loss is high (0.389, 0.495, 0.401 for the brightness, saturation
and darkness channels features respectively). By combining
them, the overall accuracy increases to 0.812 and the loss
decreases to 0.321. Beside this, it appears that the FP value
is much higher than the FN value (3,832 versus 1,520), the
handcrafted features appear to be more sensitive to unnatural
images in this case.

Additionally, the feature computation of the handcrafted
features is performed quite fast and the difference between
computations with and without the graphic card is insignificant
(63 ms, without the graphic card and 59 ms, with the graphic
card).

Classification examples based on handcrafted features are
shown in Fig. 14 (because of the size reduction and the PDF
transformation, the perception of contrast and therefore the
impression of image naturalness might have been changed
a little in the figure). As expected, the unnatural images
caused by low saturation are well classified with those features.
Although halos around details and contrast factors have been
considered during the feature design stage, there are some im-
ages with those artifacts in the misclassified unnatural images.
Additionally, the classifier based on the handcrafted features
appears to be too sensitive to colorfulness since most of the
well classified unnatural images and the misclassified natural
images are colorful while the well classified natural images
and the misclassified unnatural images are less colorful. It
seems that the handcrafted features are not able to detect all
the cases and sometimes they are too sensitive to some factors.
So some discriminant features are not taken into account with
the considered handcrafted features.

2) Shallow learned features based classification: In Fig. 13,
the feature extractors are now made of the shallow CNNs
described in section IV-B1. Beside the classifications based on
separate feature sets, the classification with the combination of
all the shallow learned features is also performed. The details
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Fig. 14. Classification examples with handcrafted features. The four first rows
and the four last rows show natural and unnatural images respectively. The
two left columns contain well classified images associated to a very low loss
value while the two right columns contain misclassified images associated to
a very high loss value.

of classification using features learned from the 4 shallow
CNNs are shown in Table VII. Obviously, the classification
based on the combination of shallow learned features has the
best overall accuracy (0.786) and the best loss (0.269) but the
number of features is also the highest (849 features) among the
shallow learned feature sets (65, 65, 229 and 490 features). In
addition to this, the computational time for the shallow learned
features without the graphic card is high (114 ms per photo)
but it decreases a lot (to 64 ms per photo) when using the
graphic card.
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TABLE VII
IMAGE NATURALNESS ASSESSMENT BASED ON THE SHALLOW LEARNED

FEATURES AND IMPACT OF EACH SHALLOW LEARNED FEATURE GROUP ON
THE ASSESSMENT.

Classification based on the separate feature
subsets learned from the shallow convolutional

networks performed on the testing set S′1
Features learned from the A = 0.756 L = 0.337model with 490 5×5 kernels
Features learned from the A = 0.766 L = 0.305model with 299 9×9 kernels
Features learned from the A = 0.753 L = 0.329model with 65 17×17 kernels
Features learned from the

A = 0.741 L = 0.332model with 65 17×17 kernels
and an average pooling layer

Classification based on all the shallow learned features
(849 features) performed on the testing set S′1

Prediction
Natural Unnatural

Ground truth Natural TP = 11,504 FN = 2,669
Unnatural FP = 3,376 TN = 10,824

A = 0.786 Ia = 0.005 Al = 0.781 Au = 0.791
L = 0.269 Il = 0.005 Ll = 0.264 Lu = 0.274

Classification based on the reduced shallow learned feature
set (731 features) performed on the testing set S′1

Prediction
Natural Unnatural

Ground truth Natural TP = 11,131 FN = 3,069
Unnatural FP = 2,390 TN = 11,810

A = 0.808 Ia = 0.005 Al = 0.803 Au = 0.813
L = 0.274 Il = 0.005 Ll = 0.269 Lu = 0.279

Classification based on the reduced shallow learned feature
set (731 features) performed on the testing set S′2

Prediction
Natural Unnatural

Ground truth Natural TP = 65 FN = 6
Unnatural FP = 19 TN = 52

A = 0.824 Ia = 0.063 Al = 0.761 Au = 0.887
L = 0.277 Il = 0.074 Ll = 0.203 Lu = 0.351

Processing time without the graphic card
TF 114 ms TC 2 ms

Processing time with the graphic card
TF 64 ms TC 2 ms

In order to study the compromise between the number of
features and the accuracy, the feature reduction algorithm
based on the Relief method (see Fig. 12) is applied on
the combined feature set to reduce the feature number from
849 to 731. Although the number of features decreases, the
feature computational time does not change because the two
feature sets are computed by the same CNNs. By keeping the
most relevant features only for the classification, the overall
classification accuracy increases from 0.786 to 0.808 but the
loss increases slightly from 0.269 to 0.274.

Fig. 15 shows classification examples based on the combi-
nation of the shallow learned feature sets. Focusing on the
true classification samples of unnatural images, it appears
that the filters in the shallow models are efficient to detect
unnatural images caused by halos around details. Contrary to
the classification based on handcrafted features, the shallow
learned features based classifier is not efficient to detect color
saturation artifacts since the color saturation of 5 (of the 8)
misclassifed unnatural images is low. With the handcrafted
features, the classifier focuses on the characteristics of the
whole image while the shallow learned features based clas-
sifier focuses on each sub region of the image (the size of
sub regions depends on the size of kernels). It explains the
differences between the classification results based on the two
feature sets.
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Fig. 15. Classification examples with shallow learned features. The four first
rows and the four last rows show natural and unnatural images respectively.
The two left columns contain well classified images associated with a low loss
value while the two right columns contain misclassified images associated with
a high loss value.

3) Deep learned features based classification: The feature
extractor is successively made of the nine pre-trained deep
models described in section IV-B2 followed by the feature
selection process described in section IV-B3. After training
and testing the models using the 9 reduced feature sets, the
highest overall accuracy (0.865) is obtained with the model
using the features learned from the ResNet extractor. The
ResNet model was pre-trained on ImageNet dataset using an
SGD optimizer, a batch size of 256, a momentum of 0.9. The
model was trained for 60 × 104 iterations with the learning
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TABLE VIII
IMAGE NATURALNESS ASSESSMENT BASED ON THE FEATURES LEARNED
FROM THE RESNET MODEL PRE-TRAINED ON THE IMAGENET DATASET.

Classification based on the ResNet feature set
(2,048 features) performed on the testing set S′1

Prediction
Natural Unnatural

Ground truth Natural TP = 12,539 FN = 1,661
Unnatural FP = 2,359 TN = 11,841

A = 0.858 Ia = 0.004 Al = 0.854 Au = 0.862
L = 0.299 Il = 0.005 Ll = 0.294 Lu = 0.304
Classification based on the reduced ResNet feature set

(425 features) performed on the testing set S′1
Prediction

Natural Unnatural
Ground truth Natural TP = 12,709 FN = 1,491

Unnatural FP = 2,336 TN = 11,864
A = 0.865 Ia = 0.004 Al = 0.861 Au = 0.869
L = 0.139 Il = 0.004 Ll = 0.135 Lu = 0.143
Classification based on the reduced ResNet feature set

(425 features) performed on the testing set S′2
Prediction

Natural Unnatural
Ground truth Natural TP = 66 FN = 5

Unnatural FP = 11 TN = 60
A = 0.887 Ia = 0.052 Al = 0.835 Au = 0.939
L = 0.132 Il = 0.056 Ll = 0.076 Lu = 0.188

Processing time without the graphic card
TF 93 ms TC 2 ms

Processing time with the graphic card
TF 47 ms TC 2 ms

rate starting at 0.1 and divided by 10 when the error reaches a
plateaus [39]. In this case, there is no re-trained ResNet layers.
The model without the last layer (the fully connected layer) is
considered as the feature extractor for the proposed model as
in Fig. 13. Specifically, 425 learned features are extracted from
the 2,048 ResNet features by applying the Relief based feature
reduction algorithm. The details of the best classification are
showed in Table VIII. The overall accuracy and the loss of the
classification are quite good at 0.865 and 0.139 respectively.
The number of features used in the classification process is
high (425 features) but the computation of the features with
the graphic card is quite fast, 47 ms (the computational time
without the graphic card is 93 ms).

Classification examples based on the ResNet features are
presented in Fig. 16. It appears that some of the well clas-
sified unnatural images have halos around details. Secondly,
brightness factors are not detected well since there are some
misclassified unnatural images having a too low brightness.
Beside this, it is similar to the handcrafted features based
classification since most of the well classified unnatural images
are colorful. There are some overlapping images (4 of 8)
between the misclassified natural images based on the shallow
learned features and the ones based on the deep learned
features. It demonstrates that some similar characteristics are
learned from the training samples by both deep and shallow
CNNs.

4) Discussions: The general purpose of the study is the
naturalness of images (not naturalness of scenes). There are
several images of the same scene generated from the same
original image but in various ways and they might look totally
different (See the first row of Fig. 9 where 3 images of
the same scene are generated in 3 different ways). Table IX
reflects that the classifications performed on S′1 and S′2 are
similar since the differences in classification accuracy and

True classifications False classifications
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Fig. 16. Classification examples with deep learned features. The four first
rows and the four last rows show natural and unnatural images respectively.
The two left columns contain well classified images associated with a low loss
value while the two right columns contain misclassified images associated with
a high loss value.

TABLE IX
IMAGE NATURALNESS ASSESSMENT BASED ON THE 3 FEATURE SETS

PERFORMED ON THE TESTING SETS S′1 AND S′2 .

Feature set A± Ia L± Il A± Ia L± Il
(testing (testing (testing (testing
on S′1) on S′1) on S′2) on S′2)

Handcrafted 0.812 0.321 0.831 0.326
features ± 0.005 ± 0.005 ± 0.062 ± 0.077
Shallow learned 0.808 0.274 0.824 0.277
features ± 0.005 ± 0.005 ± 0.063 ± 0.074
Deep learned 0.865 0.139 0.887 0.132
features ± 0.004 ± 0.004 ± 0.052 ± 0.056
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classification loss are insignificant. This means that the image
naturalness assessment is not affected by data augmentation.
That is why we kept the same natural or unnatural label after
data augmentation. According to (13) and (14), the intervals of
accuracy and loss depend on the number of testing samples.
Indeed, the accuracy and loss intervals of the classification
performed on S′1 (from 0.004 to 0.005) is much smaller than
those of the classification executed on S′2 (from 0.052 to 0.077)
because the number of samples in S′1 is much bigger than
that of S′2 (28,400 versus 142). The highest confidence of the
classification results is obtained with the biggest testing set
S′1.

In Fig. 17, it is seen that the classifications based on
different feature sets act differently since some images are
classified well with a feature set but they are misclassified with
the others. Table X presents a general comparison between the
classifications based on the 3 feature and sets. By using deep
learned features, the classification accuracy and the classifica-
tion loss reach the best values (Accuracy: 0.865 compared
to 0.812, 0.808 and Loss: 0.139 versus 0.321, 0.274 for
the handcrafted, shallow learned features based classifications
respectively). Additionally, the classification accuracy with the
handcrafted features and the one with the shallow learned
features are almost equal. Looking at Fig. 18, it appears that
the evolution of the loss function is quite different between
the feature sets. With handcrafted features and shallow learned
features, the loss values constantly increase from low values to
high values (even not reaching 0 or 1 in the case of handcrafted
features). In contrast, with deep learned features, the loss
values in true classifications are nearly zero and they are nearly
one in false classifications. This makes the decision more reli-
able. Moreover, the average loss of the classification based on
deep learned features is much smaller than that of the others.
Additionally, it appears that the handcrafted features (when
well designed) are quite efficient since an overall accuracy
of 0.812 is obtained with only 28 features. The classification
accuracy with handcrafted features is similar to the accuracy
with shallow learned features (accuracy: 0.812 versus 0.808)
but the classification certainty for shallow learned features is
better (loss: 0.274 against 0.321). Although the number of
handcrafted features is smaller than that of the learned features
(28 versus 731 and 425), the feature computational time of the
handcrafted features and the learned features with the graphic
card are almost the same (59 ms, 64 ms and 47 ms for the
handcrafted features, the shallow learned features and the deep
learned features respectively). Deep learned features are quite
efficient since the classification accuracy and the loss are better
than those of handcrafted features and shallow learned features
(accuracy: 0.865, loss: 0.139). It is seen that the problem
of naturalness is abstract and too complicated for shallow
CNN architectures to learn features reflecting this problem.
Using simple and shallow CNN architectures could not be a
good choice for this problem (the classification performance
with shallow learned features is even lower than that with
handcrafted features).

The last discussion of this part is “did the models learn
to recognize the signatures of the transformation methods or
did they learned to access to naturalness / unnaturalness?”

0

1

0

1

0

1

Fig. 17. Classification losses based on the 3 feature sets. Y axis represents
the loss values while X axis represents the images. Each horizontal line is the
border between true classifications (loss < 0.5) and false classifications (loss
> 0.5).

0

1

0

1

0

1

Fig. 18. Loss distribution of classification based on the 3 feature sets. Y axis
represents the loss values while X axis represents the images (sorted based
on loss values). Each vertical line is the border between true classifications
(loss < 0.5) and false classifications (loss > 0.5).
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TABLE X
IMAGE NATURALNESS ASSESSMENT BASED ON THE HANDCRAFTED, THE

SHALLOW, THE DEEP LEARNED FEATURES. (NF AND TF ARE THE
NUMBER OF FEATURES AND THE FEATURE COMPUTATIONAL TIME

RESPECTIVELY)

Feature set NF TF (ms) A± Ia L± Il
Handcrafted 28 59 0.812 0.321
features ±0.005 ±0.005
Shallow 731 64 0.808 0.274
learned features ±0.005 ±0.005
Deep learned 425 47 0.865 0.139
features ±0.004 ±0.004

TABLE XI
CROSS VALIDATION OF THE MODEL USING THE REDUCED RESNET

FEATURE SET (425 FEATURES). EACH GROUP OF IMAGES IS CONSIDERED
AS THE TESTING SET WHILE THE REMAINING GROUPS ARE CONSIDERED

AS THE TRAINING SET.

Transformation method (or A± Ia L± Il
image source) of the testing set
Khan’s TMO [8] 0.756±0.008 0.282±0.008
Ashikhmin’s TMO [10] 0.795±0.005 0.214±0.005
Durand’s 0.833±0.005 0.187±0.005
TMO [12]
Fattal’s TMO [11] 0.679±0.014 0.340±0.014
Reinhard’s TMO [9] 0.694±0.007 0.306±0.007
Larson’s TMO [13] 0.906±0.006 0.119±0.007
Paul’s MEF [33] 0.755±0.010 0.253±0.010
Pece’s MEF [32] 0.906±0.011 0.169±0.014
Raman’s 0.879±0.006 0.164±0.006
MEF [31]
Local Adjustment for MEF 0.583±0.012 0.489±0.012
Global Adjustment for MEF 0.951±0.005 0.061±0.006
Surreal effect (post processing) 0.718±0.006 0.285±0.006
Grunge effect (post processing) 0.959±0.003 0.085±0.004
Flickr dataset 0.812±0.006 0.340±0.007
Total 0.801±0.002 0.221±0.002

because unnaturalness signs come from transformation meth-
ods. Looking at Table III, it appears that different sources
of images have been considered. And negative and positive
evaluations are not coming all from the same source of images.
Additionally, there are few images per group, so it is unlikely
that the signatures of the transformation methods are learned
in this case. In order to verify this assumption, an additional
experiment has been performed. The images are categorized
in 14 groups as in Table III. The experiment is performed
14 times, each time the augmented images from only one
group are considered as the testing set while the classifier
using the reduced ResNet feature set (425 features) is trained
with the augmented images from the remaining ones, so the
signatures of the transformation method in the testing set can
not be learned. The initialization of the training process is
similar to that of the previous one with the reduced ResNet
feature set. The results are showed in Table XI. Although
the accuracy and the loss change a little bit compared to the
accuracy and the loss of the model trained in the previous way
(from 0.865 to 0.801 for accuracy and from 0.139 to 0.221 for
loss), the accuracy and the loss values are quite good at 0.801,
0.221 respectively. The differences between the 2 tests are in-
significant so it can be concluded that the extracted features
are for image naturalness assessment and the solved problem
here is not the classification of transformation methods.

5) Towards unnatural image understanding: Although this
part sounds a little speculative, the authors want to share with
the readers experiences obtained after working with the human

subjective image naturalness experiments and analyzing the
obtained results. This might be helpful for other studies.

It seems that the feeling of unnaturalness comes from 2 main
causes: visible unnaturalness clues and viewers’ experience.

The first unnaturalness clue is color. It includes brightness,
color saturation and hue. In general, it is impossible for a
camera to cover the whole range of brightness of real scenes.
By applying algorithms (TMOs, MEFs), the brightness range
of a real scene is compressed and it leads to the fact that the
brightness distribution, the brightness range and the brightness
contrast of photos and those of real scenes are different.
For instance, in the first row of Fig. 3, the left photo is
too bright (over exposure) while the right one is too dark
(under exposure). Additionally, the left image of the second
row has a too high brightness contrast since some regions
are too bright while some regions are too dark. Beside being
compressed, the brightness also could be affected by using post
processing algorithms. For example, when a photo has been
taken under dark conditions, if the photographer wants to make
it brighter, he / she might post-process the photo to increase
the brightness. Generally, if the difference is insignificant, it
might not be detected by viewers’ eyes but if the difference is
important, it becomes an artifact sign. Besides this, choosing
parameters for transforming algorithms is a very important
task. If parameters of a method are chosen correctly for a
given photo, the photo quality can increase significantly but
a wrong chosen parameter can make the photo horrible [14]
and of course unnatural. TMOs, MEFs and post-processing
re-produce brightness, color saturation and hue of images.
An abnormal color saturation (too high or too low) could be
detected by human eyes. Unusual hues in photos make photos
unnatural to viewers. For instance, it is impossible to have
orange sky as in Fig. 2 or dark blue sky as in Fig. 3.

Beside color, the second visible unnaturalness clue is the
reproduction of details. In order to reproduce lost details, to
enhance sharpness or to reduce noise in photos, some post-
processing algorithms modify photo details. Those changes
could lead to artifact signs such as blurriness, graininess, halo,
dark band effects. Additionally, when combining multiple
shoots taken under different exposures, MEFs try to preserve
details coming from different images. Sometimes, the details
are not combined well and some artifact clues such as motion
blur, ghost effects are produced. TMOs generate unnatural
details in a different way. When compressing color range,
some TMOs try to preserve local contrast and global contrast
in photos. The reduction of the dynamic range might produce
artifact details (too sharp, contrast details, halo bands) or some
details could be lost after mapping.

When the unnaturalness feeling comes from viewers’ ex-
perience, unnaturalness clues are not obvious. As a matter
of fact, the observers compare scenes in photos to scenes
retrieved from their memory (what they have seen) [49] to
find differences and similarities, so assessment results depend
on individual factors [50]. For example, some viewers think
dark photos and bright photos are unnatural because they are
not familiar with those scenes while some people disagree
because they have seen similar scenes in few cloudy days or
few sunny days (see examples in Fig. 19). Another example
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Fig. 19. Examples of controversial images. The images in the left column
are assessed as natural by 5 observers and as unnatural by 4 observers. The
images in the right column are assessed as unnatural by 5 observers and as
natural by 4 observers.

is about the tree colors. Green colors of trees are not the same
and they vary under different light conditions. However, some
viewers fix a range of green colors for plants in their mind.
Except those colors, they consider that other green colors are
unnatural. In this case, when evaluating the naturalness of
scenes with trees in photos, viewers often focus on 3 questions
“What trees are they?”, “What are their colors?” and “Do they
and their colors match?”. As a result, it is not easy to design
handcrafted features in this case because naturalness appears
to be an individual feeling while deep learning helps us to
learn others features that are not always explained by building
on a combination of different handcrafted features.

How to explain that during our naturalness assessment
experiment, people all agree on the evaluation of some images
and completely disagree about some other images? Looking
at Fig. 6, the images are categorized in 10 image groups
based on the corresponding evaluations. In order to analyze
the confidence of naturalness labels of those images, the 10
groups are merged into 5 categories in which each category
is presented by a pair of values (X,Y ). X is the number
of observers having the same opinion about the naturalness
of an image while Y is the number of observers having
the opposite opinion. According this definition, there are 5
categories: (9,0), (8,1), (7,2), (6,3) and (5,4). The naturalness
label of each image is decided by the majority of the observers
so it appears that the confidence of the labels in category
(9,0) is the highest and the confidence in category (5,4) is the
lowest. Analyzing each category, it appears that images with
the highest confidence labels generally present obvious visible
artifact. Thus, the answer here is that the unnaturalness clue is
clearer to viewers and it is easier for them to make the decision
in the cases with clear unnaturalness signs. On the contrary,
images with the lowest confidence labels are images on which
the naturalness / unnaturalness feeling is more related to the
viewer’s experience. The feeling of unnaturalness based on
viewers’ experience sometimes is not the same and the image
naturalness in those cases could be controversial.

Overall, the naturalness concept can definitely be defined
based on 2 terms. The first one is memory color that reflects
the typical color of an object that a beholder acquires through
viewers’ experience with that object [49]. The second term is
obvious artifacts that can be recognized by eyes such as very
high or very low contrast, too sharp details, loss details, artifact
details (see Fig. 3). That is why the problem of naturalness
assessment is so tricky.

VI. CONCLUSIONS

In this paper, 2 main contributions have been presented.
Firstly, an experiment of subjective image naturalness classi-
fication without references was organized. It was performed
under strict experimental conditions. From 45 observers, over
17,000 subjective naturalness evaluations for 1,900 SDR im-
ages have been obtained to establish a naturalness dataset
for the purpose of analyzing photo naturalness automatically.
Secondly, the image naturalness is evaluated in different ways
using handcrafted features, features learned directly from CNN
and transferred learned features. The experiments on the
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naturalness dataset point out the roles of the different feature
types in the task of image naturalness evaluation. Handcrafted
features are simple and quite efficient while deep learned
features are complicated but get higher a performance and
shallow learned features are not a good choice for analyzing
image naturalness.

According to the current results, the direction of our re-
search in the future is to organize an experiment with an HDR
screen firstly to answer the question “are TMOs introducing
unnaturalness in images or are the HDR images with unnatural
artifacts even when displayed on an HDR screen?” and sec-
ondly to analyze the similar points of naturalness features for
HDR images and SDR images. The second future direction
is to develop a system giving naturalness score to images
(regression problem). Finally, detecting unnatural images will
be considered as the first step before developing methods in
order to restore them.
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