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Abstract 
 
The accuracy of roundness measurement is limited by the repeatability of measurement machines. For commercial roundness 
measurement machines, this limitation can be reduced by means of complex solutions to control the parameters’ influence and 
thus limit the non-repeatable effects. The LNE-CNAM developed a cylindricity measuring machine with a particular architecture to 
overshoot the repeatability limitation. The working principle consists in comparing the form of the measured part with a reference 
form. This architecture offers the possibility of overcoming the spindle defects and consequently getting rid of the non-repeatable 
and random spindle error motion. The present work is about the development of an error separation technique based on the 
particular architecture of the new cylindricity measuring machine. In this case the separation technique consists in separating the 
defect of the reference form from that of the measured part. In addition, through the introduction of a one-step measurement 
with two sets of probes or two measurements with a set of probes, the method described here is also concerned with the 
minimisation of the number of operations necessary for a complete separation of errors. The effectiveness of the introduced 
method for a sub-nanometre error separation is proved by simulation. 
 
Keywords – Error separation technique, spindle metrology, Fourier-based methods, harmonic distortion.    
  

 

1. Introduction   

The accuracy and the reliability of commercial roundness 
measuring machines are generally bounded by spindle 
imperfections. This is mainly due to their working principle 
which consists in comparing the form of the part to measure 
with a spindle motion. When it comes to cylinder  
measurements, there is an amplification of errors due to the 
combination of axes (rotation and translation). The NMI of 
France LNE-CNAM has developed a new high precision machine 
for cylinder measurements that cope with these limitations by 
means of original design concepts [1-3].   

One important concept of the machine developed by the LNE 
is the DMT concept (Dissociated Metrology Technique), applied 
to avoid random error effects on the measurements. This 
concept leads to a particular working principle which consists in 
comparing the form of the measured artefact with a reference 
form (Figure 1). Hence, one can overcome the effects of spindle 
error motion and especially non-repeatable spindle error 
motion. Therefore, the challenge is only in separating the form 
of the artefact from that of the reference. This working 
principle opens new doors to the enhancement of the accuracy 
of roundness and cylindrical form measurements. Studies must 
accordingly be conducted to investigate new error separation 
techniques suitable for this new working principle. 

 A number of such error separation techniques have 
previously been developed [3-4]. The present study is 
motivated by the need for an error separation technique 
providing a great flexibility in terms of probes arrangement and 
artefact positioning. The intention is to develop an error 

separation technique that suitably takes advantage of the 
current probes arrangement on the machine. Furthermore the 
developed method should also address the minimisation of the 
number of acquisitions.   

 

 
Figure 1. Partial schematic of the DMT architecture of the LNE machine 
 

The next sections of this paper first introduce the new error 
separation technique theoretical development. Then an 
investigation into the harmonics suppression phenomenon will 
lead to the definition of systematic guidelines for an optimal 
choice of angular shifting. Finally, the effectiveness of the 
method will be highlighted through simulations.  



  
 2. The new error separation technique      

2.1. Theoretical development     
 
As depicted in Figure 2, the introduced method consists in 

performing a set of 𝑁 + 1 ≥ 2 measurements with an angular 
shifting of 𝜑! between the artefact and the reference for the 
measurement 𝑖. In the following, the reference is not moved 
during the whole process. The initial angular shifting 𝜑" is set 
to zero.   

During the measurements, probes record the reference and 
artefact’s form but also spindle error motion (repeatable and 
non-repeatable), thermal drift, their own non-linearity and 
measurement noise from the acquisition system. The thermal 
drift can be considerably reduced by controlling the 

temperature in the working volume but also by choosing the 
appropriate material for the reference. It is advantageous to 
choose materials with a sufficiently low expansion coefficient 
both for the artefact and the reference. In practice, an 
alternative approach is to choose for the reference, a cost-
effective material with the same coefficient of expansion as the 
artefact so as to have the same dilatation for both the artefact 
and the reference in a controlled environment [3][5]. Probes’ 
non-linearities can be significantly reduced by an appropriate 
calibration [3][6]. To deal with noise from the acquisition 
system, an efficient solution is to use a convenient setting 
(cutoff filters, cables type and lengths, acquisition rate) coupled 
with a spatial and temporal averaging of the measurements (by 
using capacitive probes for instance).  

 
Figure 2. Schematic of the new error separation method 
 

In the following, it is assummed that the conditions are met 
to neglect thermal drift, measurement noise and non-linearity 
errors. The remaining information in probes’ recordings are 
repeatable and non-repeatable spindle error motion and the 
form of measured parts (artefact and reference). In the context 
of the LNE’s new machine’s architecture, the reference and the 
artefact are mounted on the same spindle. Therefore, the 
artefact and reference probes (respectively 𝑆# and 𝑆$) aligned 
along the same axis with the same orientation measure the 
same spindle error motion (figure 2). Thus, for the initial test 0, 
we have:  
 

)
𝑚"
%(𝜃) = 𝑃(𝜃) + 𝐵𝑟&!(𝜃) + 𝐵𝑟&"!

" (𝜃)
𝑚"
$(𝜃) = 𝑅(𝜃) + 𝐵𝑟&!(𝜃) + 𝐵𝑟&"!

" (𝜃)
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Where :  

⎩
⎪
⎨

⎪
⎧ 𝑃 = 𝑎𝑟𝑡𝑒𝑓𝑎𝑐𝑡!𝑠	𝑓𝑜𝑟𝑚																																																																									
𝑅 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑓𝑜𝑟𝑚																																																																											
𝐵𝑟"! = 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑙𝑒	𝑠𝑝𝑖𝑛𝑑𝑙𝑒	𝑒𝑟𝑟𝑜𝑟	𝑚𝑜𝑡𝑖𝑜𝑛	𝑎𝑙𝑜𝑛𝑔	𝑎𝑥𝑖𝑠	𝑋										
𝐵𝑟""!

# = 𝑛𝑜𝑛	𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑙𝑒	𝑠𝑝𝑖𝑛𝑑𝑙𝑒	𝑒𝑟𝑟𝑜𝑟	𝑚𝑜𝑡𝑖𝑜𝑛	𝑎𝑙𝑜𝑛𝑔	𝑎𝑥𝑖𝑠	𝑋

   

 
For any other measurement 𝑖 (1 ≤ 𝑖 ≤ 𝑁), the artefact form 

measured by the artefact probe is 𝜑! phase shifted. For the 
reference probe, only the non-repeatable spindle error motion 
varies :  

 

)
𝑚!
%(𝜃) = 𝑃(𝜃 − 𝜑!) + 𝐵𝑟&!(𝜃) + 𝐵𝑟&"!

! (𝜃)
𝑚!
$(𝜃) = 𝑅(𝜃) + 𝐵𝑟&!(𝜃) + 𝐵𝑟&"!

! (𝜃)									
																						(2) 

 
Spindle error motion (repeatable and non-repeatable) is 

overcome through a difference between the recordings of the 
artefact’s probe 𝑚!

% and the reference probe 𝑚!
$ as follows:  

 
𝛥!(𝜃) = 𝑚!

%(𝜃) −𝑚!
$(𝜃) = 𝑃(𝜃) − 𝑅(𝜃 − 𝜑!)																							(3) 

 
An appropriate linear combination of the differences Δ! of 

the N+1 tests, helps isolating the artefacts form. This means 

finding a N+1 tuple (𝑎", … , 𝑎') ∈ 	ℜ(')*)∗ verifying the 
following equation :  

>𝑎!

'

!-"

= 0																																(4) 

In this condition (Eq.4.), we get : 

𝑆(𝜃) =>𝑎!Δ! =	>𝑎!𝑃(𝜃 − 𝜑!)
'

!-"

													(5)
'

!-"

 

 
With 𝜑" = 0.  
In order to extract the artefact’s form, the combined signal 

𝑆(𝜃) is transformed from spatial domain to the harmonic 
domain. This can be accurately be done with a discrete Fourier 
transformation (DFT) since inter-harmonics represented by 
non-repeatable spindle errors are cancelled from the signal in 
Eq.3. Therefore, the DFT 𝑺(𝒌) and 𝑷(𝒌) of respectively 𝑆(𝜃) 
and 𝑃(𝜃) can be defined as follows:  

⎩
⎪
⎨

⎪
⎧𝑺(𝒌) =

1
𝑀 > 𝑆(𝑚)𝑒

./01𝒌
3

34*

1-"

𝑷(𝒌) =
1
𝑀 > 𝑃(𝑚)𝑒

./01𝒌
3

34*

1-"

																												(6) 

Where 𝑀 is the number of collected points during one 
circular profile measurement (number of samples).  

It therefore comes from Eq. 5 and 6 that:  

𝑺(𝒌) = L>𝒂𝒊

𝑵

𝒊-𝟎

𝒆4𝒋𝒌𝝋𝒊O𝑷(𝒌)																					(7) 

 
If we define 𝑾(𝒌) = R∑ 𝒂𝒊𝑵

𝒊-𝟎 𝒆4𝒋𝒌𝝋𝒊T, it comes that:  
 

𝑺(𝒌) = 𝑾(𝒌). 𝑷(𝒌)																																		(8) 
 
In the frequency domain, 𝑷 is obtained from Eq. 8 and the 

artefact’s form 𝑃 in the time domain come by the inverse 
discrete Fourier transformation of 𝑷. Furthermore, knowing 
the artefact’s form, the reference form 𝑅 is deduced from the 
initial acquisition as follows :  

 



  
𝑅(𝜃) = 𝑃(𝜃) − 𝛥"(𝜃)																																								(9) 

 
When only two measurements are performed (𝑁 = 1), the 

method comes down to a reversal method since the artefact is 
moved only once. This offers the possibility to perform a 
complete and stable separation with only two sets of 
measurements. Furthermore, it opens new perspectives in 
reversal error separation with a high flexibility on the value of 
the angular shifting. For high precision designers, this means a 
great suppleness in probes arrangement. In practice, such 
reversal method can be applied either by a one-step 
measurement with two sets of probes or two measurements 
with a single set of two probes.   
 

The complex function 𝑾 can be considered as the transfer 
function from 𝑷 to 𝑺. It determine the accuracy of the errors 
separation. There are some values of the frequency variable 𝒌 
depending on the angular position 𝜑! which leads to a zero 
transfer function. This results in the suppression of the 
corresponding harmonics. This problem, also encountered in 
classic multiprobe methods is therefore closely linked to the 
values of the angles 𝜑! chosen. 
Consequently, the next step is about choosing the optimal 
values of the angles 𝜑! to avoid harmonic suppression.  
 
2.2. Choice of optimal angles    

 
As in classic multiprobe methods, the harmonic suppression 

phenomenon is highly dependent on the values of the angular 
position 𝜑!. Several studies aiming at determining the optimal 
angular positions have been conducted in the case of classic 
multiprobe method. Zhang et al. [7], proposes an approach 
based on a non-linear optimisation problem. With minor 
modifications this method will be widely used in the form of 
complex non-linear optimisation [7-8]. However, this approach 
does not lead to a single optimal solution. In fact, the problem 
leads to several local optimums. The solution domain is 
therefore represented by a fractal. Nevertheless, this approach 
made it possible to highlight the non-optimal character of a 
regular angular position (e.g. 120° and 240°) [9]. Chen [10] later 
introduced a multi-objective matrix approach which 
additionally takes into account the effects of software 
calculation and approximation errors. More recently a direct 
calculation method was proposed by Baek [11]. If this new 
method does not take into account the effects of software-
related errors, it leads to the determination of several optimal 
values of angular positions.  

In the case of the present method, harmonic suppression 
occurs at frequency 𝒌𝝋 where the module of the transfert 
function 𝑾 is zero (Eq. 10). In practice, depending on the 
accuracy of the calculator used, this phenomenon may also 
occur when X𝑾(𝒌𝝋)X is very close to zero.  
 

X𝑾(𝒌𝝋)X = 0																																							(10) 
 
Similarly to the classic multiprobe, the first coefficient of the 
N+1 tuple (𝑎", … , 𝑎') can be set to 1 (𝑎" = 1). This is to reduce 
the number of coefficients 𝑎! to determine. Thus, Eq.10 gives:  

Y1 +	>𝒂𝒊

𝑵

𝒊-𝟏

𝒆4𝒋𝒌𝝋𝒊Y = 0	 ⇔

⎩
⎪
⎨

⎪
⎧1 +>𝑎!𝑐𝑜𝑠𝒌𝝋𝜑! = 0

'

!-*

>𝑎!𝑠𝑖𝑛𝒌𝝋𝜑! = 0
'

!-*

		(11) 

 

Knowing Eq. 4, the positive solution domain of Eq.11 is in the 
following form:  
 

𝕂; =`)
2𝜋𝑘<$
𝜑!

, 𝑘<$ ∈ 	ℕ
∗d

'

!-*

											(12) 

 
For correct separation, the sampling must be performed 
exactly at a regular angular sampling interval Δ = .0

3
 so that:  

𝑁<$ =
𝜑!
Δ 																									(13) 

 
Therefore, 𝕂; can be reformulated in an irreducible fraction as 
follows:  
 

𝕂; =`

⎩
⎨

⎧
𝑘<$ .

e 𝑀
𝑀 ∧ 𝑁<$

g

e
𝑁<$

𝑀 ∧𝑁<$
g
= 𝑛<$ , 𝑘<$ ∈ 	ℕ

∗

⎭
⎬

⎫'

!-*

											(14) 

 
Where 𝑀 ∧𝑁<$ = 𝐻𝐶𝐹	R𝑀,𝑁<$T. 
 
Eq. 14 predicts the harmonics suppressed during the 
separation. To satisfy Eq.14, 𝑛<$  as well as 𝑘<$  are integers. 
Therefore, any 𝑘< ∈ 	𝕂; is a multiple of 𝑁<$/(𝑀 ∧ 𝑁<$). Thus, 
to accurately perform the separation throughout the frequency 
region of interest, it is convenient to maximise 𝑁<$/(𝑀 ∧ 𝑁<$). 
To do this, it is advantageous to always minimise 𝑀 ∧𝑁<$.  

For a correct error separation without harmonic suppression, 
the following steps can be taken to keep the minimum 
harmonic suppressed out of the harmonics region of interest :  

From the number of samples 𝑀, the sampling rate 𝑓=, and the 
consistent revolute speed 𝜔 = 2𝜋𝑓=/𝑀, compute the angular 
sampling interval Δ = 𝑓=/𝜔. For each measurement 𝑖, choose 
𝑁<$  greater than the maximum value of interest of the 
harmonics. 𝑁<$  should also be chosen in order to minimise 𝑀 ∧
𝑁<$. Compute the corresponding angle 𝜑!. Use simulated data 
to validate the suitability of the angles 𝜑!. Repeat the previous 
steps until the simulated residuals of the separation is 
satisfying.  

3. Simulations            

In order to validate the introduced method, a case study is 
conducted on simulated data. The simulation is performed in 
the case of a minimum number of measures (two measures 
with one angular shifting of the artefact).  

The simulated artefact’s form 𝑃(𝜃) contains harmonics with 
amplitudes between 8 and 10nm and a number of undulations 
per revolution (upr) between 5 and 35upr. For the reference 
form 𝑅(𝜃) the harmonic amplitudes vary between 1 to 4nm 
and a number of upr between 5 and 58upr. The amplitudes of 
the repeatable spindle error motion represented by the 
synchronous error motion 𝐵𝑟&%

! vary between 2 and 20nm with 
less than 21upr. For the non-repeatable or asynchronous error 
motion 𝐵𝑟&"!

! , a white noise generator with a maximum 
amplitude of 5nm is used.  

The optimal angle is calculated using the previous guidelines. 
The number of samples per revolution is fixed to 𝑀 =
5050000. The sample rate 𝑓= is set to 505	𝐻𝑧. The maximum 
frequency of interest is 58upr. As depicted in the summarising 
Table 1, the obtained optimal angle is 𝜑* = 74°39′43". 𝑁<&is 
chosen as a prime number in order to form with 𝑀 a set of 
coprime integers. This ensures a minimal value of the 
𝐻𝐶𝐹(𝑀,𝑁<&).  

 



  
Table 1. Optimal angle evaluation  

𝝋𝟏 74°39'43" 
Parameters 𝑘1>?!@AB=BCA(𝑢𝑝𝑟) 58 

𝑀 5050000 
𝑓=(𝐻𝑧) 505 

Δ(µdegree) 71 
𝑁<& 1047341 

𝑀 ∧𝑁<& 1 

The next Figure 3 shows the results of the simulation. The 
simulated and the recalculated artefact and reference form are 
presented respectively in figure 3 (a)-(b) and (d)-(e). The 
residuals of both the recalculated artefact and reference form 
are within the order of 104Dnm. This discrepancy is mainly due 
to software approximations errors during the DFT computation. 
This can be ameliorated by enhancing the accuracy of the DFT 
operator.  

 
Figure 3. Simulation results: (a) & (b) artefact form; (d) & (e) reference form; (c) artefact residuals; (f) reference residuals 
 

4. Conclusion      

The purpose of the current study was to introduce a new 
error separation technique based on the DMT architecture of a 
cylindricity measuring machine. The method has been detailed 
in a general point of view. The new design perspectives given 
by the introduced method in terms of probes arrangement 
have been pointed out. A mathematical analysis leads to the 
introduction of a systematic approach for the choice of optimal 
shifting angles to avoid the harmonics suppression 
phenomenon during the separation. 

The method has been applied by simulation in the particular 
case of a minimal number of two measures. The results prove 
the effectiveness of the separation method with a sub-
nanometre discrepancy less than 104Dnm.  

Further investigations on the robustness of the introduced 
method with respect to error sources (such as sensor and 
artefact positioning and alignment errors) through Monte 
Carlos simulations will lead to an uncertainty budget 
estimation. Future work will also focus on experimental 
investigations of the introduced method. This will lead to a 
detailed comparison with the other methods previously 
developed in the context of DMT architectures. 
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