Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Regularity for the Boltzmann equation conditional to macroscopic bounds

Abstract : The Boltzmann equation is a nonlinear partial differential equation that plays a central role in statistical mechanics. From the mathematical point of view, the existence of global smooth solutions for arbitrary initial data is an outstanding open problem. In the present article, we review a program focused on the non-cutoff case and dedicated to the derivation of a priori estimates in $C^\infty$, depending only on physically meaningful conditions. We prove that the solution will stay uniformly smooth provided that its mass, energy and entropy densities remain bounded, and away from vacuum.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02567198
Contributor : Cyril Imbert <>
Submitted on : Thursday, May 7, 2020 - 5:00:12 PM
Last modification on : Friday, June 12, 2020 - 11:02:06 AM

Links full text

Identifiers

  • HAL Id : hal-02567198, version 1
  • ARXIV : 2005.02997

Collections

Citation

Cyril Imbert, Luis Silvestre. Regularity for the Boltzmann equation conditional to macroscopic bounds. 2020. ⟨hal-02567198⟩

Share

Metrics

Record views

14