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IRIT, University of Toulouse, France

Email: {elhadi.belghache, jean-pierre.george, marie-pierre.gleizes}@irit.fr

Abstract—The big data era brought us new data processing
and data management challenges to face. Existing state-of-the-
art analytics tools come now close to handle ongoing challenges
and provide satisfactory results with reasonable cost. But the
speed at which new data is generated and the need to manage
changes in data both for content and structure lead to new
rising challenges. This is especially true in the context of
complex systems with strong dynamics, as in for instance large
scale ambient systems. One existing technology that has been
shown as particularly relevant for modeling, simulating and
solving problems in complex systems are Multi-Agent Systems.
This article aims at exploring and describing how such a
technology can be applied to big data in the form of an Adaptive
Multi-Agent System providing dynamic analytics capabilities.
This ongoing research has promising outcomes but will need
to be discussed and validated. It is currently being applied in
the neOCampus project, the ambient campus of the University
of Toulouse III.

Keywords—Big Data; Adaptive Multi-Agent Systems; Dy-
namic Analytics; Big Data Challenges

1. Rising Challenges in the Big Data World

[1], [2] and others provide recent surveys of the main
concepts of big data analytics with a slight highlight on
big data analysis (mining). In fact, most of the big data
publications focus more on big data analysis and its ap-
plications than on other important concepts. In this scope
of big data literature analysis, [3] extracted and validated
from the literature the main dimensions or concepts that
characterize the big data topic, which are: data dimension,
IT-infrastructure dimension, method dimension, application
dimension. This analysis showed that very few publications
amongst the literature tackle the data selection, the results
visualization and interpretation.

1.1. Big Data Analytics

One critical part of our endeavor is to go to the root of
the Big Data Analytics topic, its definitions and concepts,
its challenges and its goals, so as to approach it with a new
eye. From the literature we managed to construct a global
picture of the Big Data Analytics with enough details in
order to have a fine overview of it (see figure 1).

Figure 1. An overview of Big Data Analytics.

We define big data analytics by means of three concepts
and three dimensions, which hold the main keys that one
should keep in mind when it comes to big data analytics.

Data. Obviously the core of big data analytics, data
consists here in a huge amount of potentially private and
critical data generated rapidly from multiple sources in
various shapes; data may be volatile, non persistent and
untrustworthy due to the possible uncertainties within them.
These features of big data are the basis of the main chal-
lenges of big data analytics that prompted the scientific to
renew the data processing concept.

Processing. The most known processing model is
Knowledge Discovery from Databases (KDD). Nevertheless
each community (Databases, Machine Learning, Business
Intelligence, etc.) has its own way to model the data pro-
cessing pipeline. They are all similar with small variations
to highlight the steps related to the community strength.

The main model is the simplest one. Input or pre-
processing is the transformation step of the incoming raw
data into data which means putting them in a ready-to-
process form by gathering, integrating, cleaning, reducing
the raw data. Analysis, also known as data mining, is the
center of the process, where a plethora of mining algorithms
extract relevant information. Output, called post-processing,
is the last step of the processing pipeline, in which the



user produces his own knowledge about the incoming data
by interpreting or annotating the extracted information by
means of an intuitive visualization after that information has
been evaluated and selected.

Since these three steps are sequential, each one in-
fluences the next for the best or the worst. Indeed, the
more clean are the data the more relevant the extracted
information will be, the more relevant and well presented
are the information the best should the produced knowledge
be, and this knowledge will help the pre-processing in the
next processing cycle. This is why the pre-processing, the
mining and the post-processing have to be considered with
an equivalent concern.

Management. People’s concern about malicious or un-
ethical use of their personal, private or critical data led big
data analytics designers to set rules for safe data manage-
ment that ensures privacy, security and ethical governance
of such personal and sensitive data.

A widespread technique to achieve this is to encrypt
the Personal Identifiers (PID), like the name, the birth date
and the zip code, during the integration task in the pre-
processing step and remove them for the analysis step.

Technological dimension. Or IT-infrastructure dimen-
sion; relies on the data concept and the processing concept.
Thus, this dimension represents the set of tools, software
and hardware architectures used for data storage and data
processing, like for example: DBMS, MapReduce, Grid
Computing, Cloud Computing and so on.

Economical dimension. Joins the management concept
and the processing concept, and embodies the commitment
of the data analysts to discover new processing methods
that get more relevant and less costly information in order
to earn as much benefits as possible in a safe management
scope.

Legal dimension. Depends on management and data.
It expresses the obligation of ethical and safe use of the
data by for example giving to the owner the full rights on
his data and also giving him a clear description of how his
data are used and for what purpose. Many organizations and
councils were founded to establish and enforce such laws.

1.2. Ongoing Challenges

At the beginning of the big data era three main chal-
lenges inherent to the characteristics of big data appeared
(the initial ’3Vs’ of big data): Volume: data sets with
tremendous size and high complexity (a lot of features);
Velocity: rapid generation of data that arrives in continuous
streams; Variety: different types of data come in various
forms. These challenges, also known as the ’data flood’,
drove the storage systems and processing techniques at that
time to their limits.

After becoming familiarized with the first challenges,
new techniques started to get good results, but soon the
data flood overwhelmed these techniques. Indeed, as the
volume of data grew and the sources multiplied the raw data
were becoming poorer and useful information becoming
rarer (”thirst despite the flood”). Increasingly usefulness and

reliability of the data and their sources were questioned.
Hence the apparition of two new challenges bringing the
challenges of big data to ’5Vs’. [4] define the new ’Vs’ as
follows: Value: the usefulness of the data or more precisely
the amount of useful information among the data flood;
Veracity: reliability and confidence attributed to the data
and their sources.

1.3. Rising challenges

Many of the current analytics tools [5] [6] can handle
ongoing challenges and provide satisfactory results with rea-
sonable cost. For example the recent Data Science Machine
[7] is based on a Deep Feature Synthesis algorithm and an
automatically optimized ensemble learning pipeline in the
interest of providing a fully automated analytics tool.

However, with the recent increase of the number of smart
and wearable devices and other measuring instruments in
ambient applications, we barely begin to deal with all the
aspects of those new big data. As a result, the importance of
the ongoing challenges is renewed, and additional comple-
mentary data processing and data management challenges
appear. As [2] expected we move forward to the next stage
of big data analytics.

• Genericity: as shown in [5] and [6], most of
the analytics tools are domain-dependent and re-
quire domain-specific expertise to build these tools.
Hence, in order to adapt these tools to other appli-
cation domains, the designer has to reconstruct his
processing technique (data mining algorithm). Thus,
designing a generic big data analytics tool should be
a new challenge.

• Super Velocity: since the computing power is grow-
ing, the chips are shrinking and networks capabilities
are increasing; the generation and the acquisition
rates of data is way beyond the storing rate and
the processing rate of the current systems. This is
especially true when unpredictable burst-type data
generation occurs.

• Variability: in addition to the changes (growth and
evolution) to data content, the data structure (fea-
tures) may change as well over time. Thence, we
consider that managing the dynamicity of the data
(content and structure) must be acknowledged as a
new crucial challenge.

1.4. The need of new dynamic approaches

As the big data community shows a real interest in
handling dynamic data (evolving content), new data mining
techniques known as stream mining were developed [8]
[9]. These stream mining algorithms usually sample the
data stream (pick up some points) in a certain manner and
process them in a incremental or on-line way. Despite the
outcomes delivered by these new techniques, the data stream
is under-exploited which potentially leads to a leak of useful



Figure 2. Multi-Agent Systems : from the inspiration from natural systems
to artificial systems tackling complex and decentralized tasks.

information on one hand and forget what was previously
discovered on the other hand.

Thence, our aim is to design new big data analytics
techniques that can manage truly dynamic big data (content
and structure), in a domain-agnostic way, and adapt itself
to the changes that occur over time without having to shut
down the data processing to take into account these changes
by updating the process and restarting all over again.

2. A New technology for Big Data : Adaptive
Multi-Agent Systems (AMAS)

2.1. Multi-Agent Systems

Multi-Agent System (MAS) [10] is defined as a macro-
system composed of autonomous agents which pursue in-
dividual objectives and which interact in a common envi-
ronment to solve a common task. It is often viewed as
a paradigm to design complex applications (see figure 2).
The autonomy of an agent is a fundamental characteristic
: an agent is capable of reacting to its environment and
displaying pro-activity (activity originating from its own
decision). As such, it is the building brick of a paradigm
which can be used to model a complex reality in a bottom-
up way, relying only on a limited and localized knowledge
of the environment for each agent. And indeed, agents have
been used in a great variety of fields, a fact which can
contribute to explain the difficulty to produce a unified
definition of the concept.

While it is not true for all MAS, some interesting
properties can be achieved when taking advantage of the
autonomy of the agents. This autonomy, coupled with an
adequate behavior of the agents, can lead to systems able
to adjust, organize, react to changes, etc. without the need
for an external authority to guide them. These properties
are gathered under the term self-* capabilities [11] (self-
tuning, self-organizing, self-healing, self-evolving...). Not
all MAS necessarily present all of these self-* capabilities
but, as a result of building a system from autonomous and

locally situated agents, many MAS will exhibit them to some
degree. Consequently, MAS are often relevant for dynami-
cally taking into account changes in their environment. For
example, a MAS in charge of regulating the traffic of packets
in a computer network could be able to react efficiently to
the disappearance of some of the relay nodes.

MAS have been applied to a great variety of fields: social
simulation, biological modelling, systems control, robotics,
etc. and agent-oriented modelling can be seen as a program-
ming paradigm in general, facilitating the representation of
a problem.

2.2. Adaptive Multi-Agent Systems

A particular approach to MAS relying strongly on self-*
properties is the AMAS technology and underlying the-
ory [12]. A designer following this approach focuses on
giving the agent a local view of its environment, means
to detect problematic situations and guidelines to act in a
cooperative way, meaning that the agents will try to achieve
their goals while respecting and helping the other agents
around them as best as they can. The fact that the agents
do not follow a global directive towards the solving of
the problem but collectively build this solving, produces an
emergent problem solving process that explores the search
space of the problem in original ways.

Cooperation is the engine of the self-organisation pro-
cesses taking place in the system and the heart of our
bottom-up method. Cooperation is classically defined by the
fact that two agents work together if they need to share
resources or competences. We add to this definition, the fact
that an agent locally tries on one hand, to anticipate prob-
lems and on the other hand to detect cooperation failures
called Non Cooperative Situations (NCS, see definition 1)
and try to repair these NCS [13]. To anticipate NCSs, the
agent always chooses the actions which disturb other agents
it knows the less. In others words, the agents, by trying to
always have a cooperative attitude, act by reorganising their
acquaintances and interactions with the others agents.

Definition 1. An agent is in a Non Cooperative Situation
(NCS) when: (¬cper) a perceived signal is not under-
stood or is ambiguous; (¬cdec) perceived information
does not produce any new decision; (¬cact) the conse-
quences of its actions are not useful to others.

The objective is to design systems that do the best they
can when they encounter difficulties. The designer has to
describe not only what an agent has to do in order to achieve
its goal but also which locally detected situations must be
avoided and when they are detected how to suppress them.

A cooperative agent in the AMAS theory has the four
following characteristics. First, an agent is autonomous.
Secondly, an agent is unaware of the global function of the
system; this global function emerges (from the agent level
towards the multi-agent level). Thirdly, an agent can detect
NCSs and acts to return in a cooperative state. And finally,
a cooperative agent is not altruistic (it does not always seeks



to help the other agents), but benevolent (it seeks to achieve
its goal while being cooperative).

Agents have to be able to detect when they are in an
NCS and how they can act to come back in a cooperative
situation. Agents also always try to stay in a cooperative
situation and so the whole system converges to a cooperative
state within and with its environment.

The main information an AMAS agent uses for its
decision process is a specific measure called criticality. This
measure represents the state of dissatisfaction or urgency of
the agent regarding its local goal. Each agent is in charge
of estimating its own criticality and providing it to the other
agents1. The role of this measure is to aggregate into a single
comparable value all the relevant indicators regarding the
state of the agent. Having a single indicator of the state of
the agent simplifies the reasoning of the agents. In addition,
this mechanism has the interesting property of limiting the
information transmitted to the others agents, which can be
of interest in case of a large distributed systems where
data privacy, data volume and computational complexity are
issues.

With this additional information, each agent can and has
to choose to cooperate with the most critical agent he is
aware of. This leads to a very powerful heuristic to cut
through a search space so as to drive the system to the
expected state, effectively achieving a decentralized process
that can be qualified as emergent collective problem solving.

This describes the typical decision process of a generic
AMAS agent. But the NCS and the actions which could be
applied to solve them are not generic: designers have to
write their own specific NCS set and related actions for each
kind of agent they wish the system to contain. Moreover,
designers have the task to provide the agents which adequate
means to calculate their criticality. But the main idea here
is that this is far more manageable and realistic at the local
level of each agent than at the global level of the whole
complex system.

3. Managing Data in Dynamic Complex Sys-
tems with an AMAS

There is currently an increasing interest in MAS tech-
nologies and their applications on Big Data analytics [14].
Several try to use concepts like swarm intelligence, self-
organising maps, etc. However, all these new techniques are
still domain-dependent and do not handle changes in the
data. We aim to tackle this by applying the AMAS technol-
ogy and its mechanism of adaptation through cooperation.

3.1. Applicability on the Big Data analytics pipeline

The conventional Big Data analytics process (figure
3) is a rigid straightforward pipeline which doesn’t allow

1. In open and untrusted environments, there exists several mechanisms
to tackle uncertainty on exchanged information. This is often the case in
System of Systems approaches. Inside a given system where each agent has
been designed for the same stakeholder, each agent is assumed to provide
the most trustful and accurate information

the modification of already loaded data (content and most
importantly structure) on the fly.

Figure 3. Conventional Big Data Analytics pipeline.

Another process model, the distributed pipeline (figure
4), was proposed to bypass this rigidity through processing
time reduction by means of parallelism; for example with
the help of the MapReduce pattern and its famous Hadoop
framework. However, the main issue about dynamics still
remains.

Figure 4. Distributed Big Data Analytics pipeline.

The AMAS technology, with the cooperative interaction
process of its autonomous agents, gives us the means to
break down this rigidity and decentralize the Big Data
analytics process (see figure 5). This results in Big Data
analytics tasks interaction, mainly through communication,
and then each task can help and work together with other
tasks for the sake of the continuous real-time adaptation of
the analytic process to data changes.

Another way to achieve this goal, is to use the retro-
action property of System-of-Systems (SoS) by designing
one or several AMASs for each step of Big Data analytics
and agentify them (represent them with an agent) in one
super AMAS (see figure 6).

3.2. A first tool : continuous real-time detection of
correlations, dependencies, relationships...

Our first aim in this scope is to build up a tool for contin-
uous real-time detection of data correlations, dependencies



Figure 5. AMAS based Big Data Analytics ’pipeline’.

Figure 6. AMAS of AMAS based Big Data Analytics ’pipeline’.

and relationships in broad sense, in any dynamic complex
system (i.e. without requiring any specific knowledge of the
application domain).

When one finds strong correlation (positive or negative)
he may think of a causal relation between the features, but
often it is a weaker relation (like influence or association) or
a more complex relation that may involve deep dependencies
through the data like a ’Genetic Regulation Network’ where
proteins inhibit and activate the generation of other ones. In
addition, those relations might exist for a short time and for
a particular subset or cluster of the data.

To find as much subtle relationships as possible from the
data flood in real-time, we design our detection tool on the
AMAS technology and we describe briefly its architecture
and the agents behavior that achieve this goal.

3.2.1. The architecture. Our AMAS is composed of agents
that represent the data features or attributes. Each agent
receive its feature stream (the part of the data stream that
conveys the values of the feature) and is, initially, randomly
related to some of the other agents which compose its
’neighborhood’. For example if we have to manage a smart
city, we can plug an agent on each of its sensors without
gathering the sensors data in a database.

So, if there are changes in the structure of the data, it
will be automatically reflected onto the AMAS mainly by
the creating or removal of the agents related to the changes.
As AMAS are open systems, these new agent can ’enter’
and immediately take part in the activity.

3.2.2. The agents behavior. Two neighbor agents can in-
teract in order to detect potential correlations between the
features they represent by sharing the values collected from
the data stream of these features, or more synthetic markers
when appropriate.

If correlations are found, the agents decide which type
of relation could produce these correlations and they put a
confidence on this relation between them. Then they will do
same with other neighbors.

Figure 7. An example of a possible AMAS for detection of relationships.

For instance, when the agent B (see figure 7), has
interacted with both his neighbors A and C, he will search
for new agents to put them in his neighborhood.

However, when a new neighbor agent as E is already in
the neighborhood of one of its own neighbors (A), then B
will increase the confidence of his relation with A, if E and
B are related, otherwise B will decrease this confidence.
Thus, if the confidence of B about his relation with A
reaches a certain (higher or lower) bounds, B will update
(strengthening or weakening) the type of his relation with A.
Also, the relation between B and E may evolve over time due
to data changes and then these changes will be propagated
to the A-B relation and the A-E relation. This may lead
some of the relations to oscillate between strengthening
and weakening which can be detected as emanating from
a complex multi-feature relation.

As a result of this confidence propagation and relation
updates, the whole system will adapt itself to dynamic data
in an progressive and organic way.

3.3. Expected outcome

The characteristics of AMAS systems let us expect
several promising outcomes, such as fast real-time corre-
lation detection in dynamic environments and non exponen-
tial ’complex-system-like’ scaling up; subtle dependencies
detection that would be hidden in statistic-based analytics
and fine context-learning capabilities; limited memory and
storage requirement, etc. This approach would not replace



current techniques, but would be applicable in specific situa-
tion where these techniques would give unsatisfactory result
(for instance hidden or surprising correlations), fail or even
break down (for instance, no storage or long term memory
possibilities due to critical or private data, need for the
removal of a data source during run-time or introduction of
new and dynamic data, etc.). Moreover, current techniques
and several AMAS tools could be composed in a System-of-
Systems architecture to constitute a complete decentralised
data ’pipeline’, their individual strength being combined.

Two main projects in which our laboratory is involved
will directly benefit from the bigdata analytics presented in
this paper.

neOCampus. This research project is supported by the
University of Toulouse III. It’s aim is to demonstrate the
skills of researchers of different domains of the University
towards the design of the campus of the future. Three majors
goals are identified : ease the life of campus user, reduce
the ecological print, control the energy consumption. The
campus is seen as a smart city where several thousands of
data streams come from heterogeneous indoor and outdoor
sensors (CO2, wind, humidity, luminosity, human presence,
energy and fluids consumption...). Artificial intelligence
techniques are used to understand the aims and behaviour of
citizens from manually selected subsets of data. For scaling
up, we need to automatically create these subsets.

3PEgase. The increasing ageing of the population is a
major problem, and they have to be assisted in their daily
life. Technological advances allow efficient and relevant
home monitoring (such as fall detection, under nutrition,
geolocation). More complicated situations and alerts require
big data analytics. Our artificial intelligence approach en-
ables real-time learning from indoors sensors data in order
to detect abnormal situations for each specific housing. But
we need a new tool for correlating similar situations from
hundreds of different users to improve the learning process.

4. Conclusion and future work

The speed at which new data is generated, and the need
to manage changes in data both for content and structure
lead to new rising challenges in what can be called Dynamic
Big Data Analytics. This is especially true in the context of
complex systems with strong dynamics, as in for instance
large scale ambient systems. One existing technology that
has been shown as particularly relevant for modeling, simu-
lating and solving problems in complex systems are Multi-
Agent Systems. We described and discussed in this article
how such a technology can be applied to big data in the form
of an Adaptive Multi-Agent System where local analytics
agents interact in a self-organised way.

This is ongoing research that we think has really promis-
ing outcomes, such as fast real-time correlation detection
in dynamic environments, fine context-learning capabilities,
non exponential ’complex-system-like’ scaling up, limited
memory requirement, etc. As the architecture of the systems
and the behaviors of the agents (the algorithms) have been

designed, we move into the implementation and validation
phases.

This technology is currently being applied to several
problems that will show its genericity (i.e. it does not require
domain-specific expertise from the engineer that applies it)
and validate its interests. The first is the neOCampus project,
the ambient campus of the University of Toulouse III that
is being iteratively equipped with pervasive ambient sensors
and effectors. Student activity will be one of the main gener-
ator of data. The second is the 3Pegase project in which we
work with Orange and hospitals in Toulouse among others.
The aim is an end-to-end predictive platform for elderly
people staying at their own pervasively equipped homes.
The third will be the performance and quality validation in
well known big data on-line competitions.
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