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On the basis of (i) Particle Image Velocimetry data of a Turbulent Boundary Layer

with large field of view and good spatial resolution and (ii) a mathematical relation

between the energy spectrum and specifically modeled flow structures, we show that

the scalings of the streamwise energy spectrum E11(kx) in a wavenumber range di-

rectly affected by the wall are determined by wall-attached eddies but are not given

by the Townsend-Perry attached eddy model’s prediction of these spectra, at least

at the Reynolds numbers Reτ considered here which are between 103 and 104. In-

stead, we find E11(kx) ∼ k−1−px where p varies smoothly with distance to the wall

from negative values in the buffer layer to positive values in the inertial layer. The

exponent p characterises the turbulence levels inside wall-attached streaky structures

conditional on the length of these structures.

Keywords: Turbulent Boundary Layers, wall-attached flow structures, Particle Image

Velocimetry
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Attached flow structure and streamwise energy spectra

I. INTRODUCTION:

In the past forty years, the turbulence spectrum of velocity fluctuations in wall turbulence

has received considerable attention as it gives valuable insight into the behaviour of wall-

bounded flows by indicating the distribution of energy across scales. Spectral scaling laws

built on ideas initiated by Townsend [1] , in particular the attached eddy hypothesis, have

seen consistent development over the years (see Refs. Perry & Chong [2], Perry et al. [3],

Perry & Li [4], Marusic et al. [5] and Marusic & Kunkel [6]). Perry & Abell [7] and Perry et

al. [3] showed how Townsend’s attached eddy hypothesis implies that the energy spectrum

E11(kx) of the turbulent streamwise fluctuating velocity at a distance y from the wall scales

as E11(kx) ∼ U2
τ k
−1
x in the range 1/δ � kx � 1/y where Uτ is the friction velocity and

δ is the boundary layer thickness. Nickels et al. [8] stressed the use of overlap arguments

to deduce the -1 power law behaviour. That is, a k−1x region in the spectra would exist

where the inner scaling (based on y and Uτ ) and outer scaling (based on δ and Uτ ) are

simultaneously valid over the same wavenumber range. Nickels et al. [9] stated that it is

necessary to take measurements surprisingly close to the wall to observe a k−1x behaviour

and thought this was the reason why Morrison et al. [10] and McKeon & Morrison [11] did

not observe any −1 region in their spectra as their measurements were not close enough to

the wall. However, recent experiments by Vallikivi et al. [12] do not show an overlap region

and these authors infer that the k−1x region cannot be expected even at very high Reynolds

numbers.

The present work looks at the basis for the k−1x range in flat plate turbulent boundary

layers from a new perspective. Using Particle Image Velocimetry (PIV) and a simple model

which can in principle be applied to various wall-bounded turbulent flows, we show how, in

the turbulent boundary layer, a power-law spectral range exists but is not a Townsend-Perry

k−1x range and how it can be accounted for by taking only streamwise lengths and intensities

of wall-attached structures into account.

This paper is organized as follows. In sections II and III we provide a model for the

streamwise energy spectrum. The experimental set-up of the flat plate boundary layer is

presented in section IV. Our data set is validated in V A and the method for educing the

wall-attached flow structures relevant to our model is described in section V B. The main

results of the paper are in V C and V D followed by a discussion in V E. We conclude in
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section VI.

II. A SIMPLE MODEL FOR THE SPECTRAL SIGNATURE OF THE

TOWNSEND-PERRY ATTACHED EDDY RANGE OF WAVENUMBERS

As already mentioned in the introduction, Perry & Abell [7], Perry & Chong [2] and

Perry et al. [3] showed how Townsend’s attached eddy hypothesis implies E11(kx) ∼ U2
τ k
−1
x

in the range 1/δ � kx � 1/y. Perry et al. [3] also developed a flow structure model for

this spectral range in terms of specific attached eddies of varying sizes randomly distributed

in space and with a number density that is inversely proportional to size. In this paper

we attempt to distill such a type of model to its bare essentials. These bare essentials are

that flow structures are primarily objects with clear spatial boundaries. In section V we

model these boundaries with on-off functions in the expectation that the spectral signature

in the attached eddy wavenumber range is dominated by these sharp gradient, effectively on-

off, behaviours. The concomitant expectation is that the additional superimposed velocity

fluctuations fill the content of a predominantly higher frequency spectral range. In this

section we show that the streamwise energy spectrum’s k−1x spectral range can be captured

by simple on-off representations of elongated streaky structures of varying sizes as long as

their number density has a space-filling power law dependence on size.

We therefore assume that the attached eddies responsible for the k−1x spectral range have

a long streaky structure footprint on the 1D streamwise fluctuating velocity signals at a

distance y from the wall. We also assume that these streaky structures can be modeled as

simple on-off functions and that it is sufficient to represent the streamwise velocity fluctua-

tions u(x) at a given height y from the wall as follows

u(x) =
∑
n,m

anmΠ(ξ) (1)

where Π(ξ) = 1 if −1 < ξ < 1 with ξ = x−xnm

λn
and Π(ξ) = 0 otherwise. The on-off

function Π(ξ) is our cartoon model of a streaky structure. Streaky structures of length λn

are centred at random positions xnm and their intensity is given by the coefficients anm. For

each subscript n, the subscript m counts the spatial positions where cartoon structures of

size λn can be centred in a given realisation. The sum in (1) is over all structures lengths

λn and all their positions xnm.
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The energy spectrum of u(x) is E11(kx) = (2π)2

Lx
|û(kx)|2 where Lx is the length of the

record, û(kx) is the Fourier transform of u(x), and the overbar signifies an average over real-

isations. The Fourier transform of Π(x−xnm

λn
) being Π̂(kx, λn, xnm) = 2ik−1x eikxxnm sin(kxλn),

it follows that

û(kx) = 2ik−1x
∑
nm

anme
ikxxnm sin(kxλn) (2)

which implies that the energy spectrum is given by

E11(kx) = 4
(2π)2

Lx
k−2x

∑
nm

anmeikxxnm sin(kxλn)
∑
pq

apqe−ikxxpq sin(kxλp). (3)

We introduce two assumptions which were also used by Perry et al. [3] in their more

intricate model. The first assumption is that the positions and amplitudes of our cartoon

stuctures are uncorrelated and that different positions are not correlated to each other either,

i.e. eikxxnmeikxxpq = δpnδqm. As a result, the expression for the energy spectrum simplifies as

follows:

E11(kx) = 4
(2π)2

Lx
k−2x

∑
nm

(anm)2 sin2(kxλn). (4)

Let us say that there is an average number Nn of cartoon stuctures of size λn centred

within an integral scale along the x-axis. The expression for E11(kx) simplifies even further:

E11(kx) = 4
(2π)2

Lx
k−2x

∑
n

a2nNn sin2(kxλn) (5)

where a2n ≡ (anm)2 is the same irrespective of position xnm.

We now consider a continuum of different structure sizes λ rather than discrete length-

scales λn and the previous expression for E11(kx) must therefore be replaced by

E11(kx) = 4
(2π)2

Lx
k−2x

∫
dλa2(λ)N(λ) sin2(kxλ) (6)

in terms of easily understandable notation. At this point we introduce a generalised form

of the second assumption which was also used by Perry et al. [3]: we assume a power-law

form for N(λ) in the range λi < λ < λo where λi ∼ y and λo ∼ δ, and N(λ) = 0 outside

this range for simplicity. This power law form is N(λ) = (−NM +No(λ/δ)
−1−D) where NM

and No are positive dimensionless numbers which increase propotionally to Lx so as to keep

number densities constant. The number NM is introduced to allow for the possibility of

an upper bound on streaky structure size given by N(λo) = 0, i.e. NM = No(λo/δ)
−1−D
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which should be small given that LSM and VLSM streaky structures have been observed

with lengths greater than δ [see Smits et al. 13].

Vassilicos & Hunt [14] proved that, if 0 ≤ D ≤ 1, then the set of points defining the edges

of the on-off functions Π(ξ) is fractal and D is effectively the fractal dimension of this set

of points. The case where this fractal dimension is D = 1 is the case where these points are

space-filling. The population density assumption of Perry et al. [3] corresponds to D = 1

which is also the choice we make in this work. We now show that this choice can lead to

E11(kx) ∼ k−1x in the range 1/λo � kx � 1/λi.

We calculate the energy spectrum by carrying out the integral in (6). This requires a

model for a2(λ) which, in this section, we chose to be as simple as possible and therefore

independent of λ in the relevant range, i.e. a2(λ) = A2/δ for λi < λ < λo where A2 is a

constant. Using our models for N(λ) and a2(λ) and the change of variables λkx = l, (6)

becomes

E11(kx) = A2δ(Co(kxδ)
−2+D − CM(kxδ)

−2) (7)

where

Co = 4(2π)2No
δ

Lx

∫ λokx

λikx

dl sin2(l)l−1−D

and

CM = 4(2π)2NM
δ

Lx
(kxδ)

−1
∫ λokx

λikx

dl sin2(l)

which is bounded from above by NM

Lx

λo−λi
δ

. In the attached eddy range 1/λo � kx � 1/λi,

Co ≈ 4(2π)2No

Lx

∫∞
0
dl sin2(l)l−1−D which means that Co is approximately independent of kx

in this range.

Substituting the value D = 1 in equation (7), we get E11(kx) = A2(Cok
−1
x − CMδ−1k−2x )

which is well approximated by

E11(kx) ≈ CoA
2k−1x (8)

for wavenumbers kxδ � CM/Co (i.e. Cok
−1
x � Cmδ

−1k−2x ). Note that CM/Co is much

smaller than 1 because NM is much smaller than No and that (8) is valid in the range

1/λo � kx � 1/λi where λo scales with but is much larger than δ. For a good correspondence

with the scalings of the Townsend-Perry attached eddy model one needs to take λi ∼ y and

A2 ∼ U2
τ .
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III. A STRAIGHTFORWARD GENERALISATION

It is worth generalising the previous section’s model by assuming that a2(λ) is not constant

but varies with λ in the range λi < λ < λo, for example as a2(λ) = (A2/δ)(λ/δ)p where p

is a real number with bounds which we determine below. The arguments of the previous

section can be reproduced till equation (6) which now becomes

E11(kx) = A2δ[co(kxδ)
−2+D−p − cM(kxδ)

−2] (9)

where

co = 4(2π)2No
δ

Lx

∫ λokx

λikx

dl sin2(l)l−1−D+p

and

cM = 4(2π)2NM
δ

Lx
(kxδ)

−1−p
∫ λokx

λikx

dl l+p sin2(l)

which is bounded from above by Nm

(1+p)Lx
[(λo

δ
)1+p − (λi

δ
)1+p]. In the attached eddy range

1/λo � kx � 1/λi, co ≈ 4(2π)2No

Lx

∫∞
0
dl sin2(l)l−1−D+p which means that co is approximately

independent of kx in this range if 0 < D − p < 2.

Substituting the value D = 1 in (9), we obtain the following leading order approximation

in the parameter range −1 < p < 1:

E11(kx) ≈ c0A
2δ(kxδ)

q (10)

where

p+ q = −1 (11)

for wavenumbers kxδ � (cM/co)
1

1−p . Note that cM/co is much smaller than 1 if p is not too

close to 1 because NM is much smaller than No.

The spectral shape (10) is potentially significantly different from what the classical

Townsend-Perry attached eddy model predicts. We emphasize that in this and the pre-

vious sections we have developed a simple model based on on-off functions representing long

streaky structures which returns a wavenumber dependency of E11(kx) which is either identi-

cal to the Townsend-Perry spectral shape if p = 0, or different but in some ways comparable

if p 6= 0. In the remainder of this paper we present experimental evidence in support of

D = 1 and (10)-(11) rather than (8), with p as function of y+.
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IV. EXPERIMENTAL SET-UP

An experiment was performed in the boundary layer wind tunnel at the Lille Mechanics

Laboratory (LML) having a test section 2m wide, 1m high and 20.6m long. The tests

were conducted at two free stream velocities of 3m/s and 10m/s corresponding to Reynolds

numbers Reθ = 8100 (Reτ = 2700) and Reθ = 20600 (Reτ = 7200) respectively. To capture

the large streamwise wall-normal field, four 12 bits Hamamatsu cameras having a resolution

of 2048x2048 pixels were installed in series to observe a region between 19.26m and 20.42m

from inlet which is 1.16m long (≈ 3.36δ and 3.85δ, for Reθ = 8100 and 20600 respectively)

and 0.3m high (≈ 0.86δ and 1δ) for Reθ = 8100 and 20600 respectively). Nikon lenses of

50mm focal length were set on the cameras and the magnification obtained was 0.05. The

Software HIRIS was used to acquire the images of the four cameras simultaneously. A total

of 22500 and 29500 samples were recorded at the highest and lowest Reynolds numbers

respectively. The flow was seeded with 1µm Poly-Ethylene glycol and illuminated by a

double pulsed NdYAG laser at 400mJ/pulse. The modified version by LML of MatPIV

toolbox, was used under Matlab to process the acquired images from the 2D2C PIV. A

multipass software was used with a final pass of 28x28 pixels (with a mean overlap of 65%)

corresponding to 4mm x 4mm i.e. 33x33 wall units for Reθ = 8100 and 100x100 wall units

for Reθ = 20600. Image deformation was applied at the final pass. The final grid had 766

points along the wall and 199 points in the wall-normal direction with a grid spacing of

1.5mm corresponding to 11 wall units and 35 wall units for the test cases at Reθ = 8100

and Reθ = 20600 respectively.

V. RESULTS AND DISCUSSION

A. Validation of experimental data

Figure 1 shows profiles of the mean streamwise velocity U and the rms streamwise fluc-

tuating velocity u′ obtained from PIV at Reθ = 8100 and Reθ = 20600 and compared with

the hot-wire anemometry results of Carlier & Stanislas [15]. The mean velocity profiles are

in good agreement with the hot-wire data and are well resolved from y+ ≈ 30 and y+ ≈ 90

upwards for Reθ = 8100 and 20600 respectively. Comparisons of the profiles of u′+ (u′ scaled

with inner variables) show a fairly good match with the hot-wire data. A plateau of u′+
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FIG. 1: Mean streamwise velocity profiles (top) and rms streamwise fluctuating velocity

profiles (bottom) at Reθ = 8100 (U∞ = 3m/s) and Reθ = 20600 (U∞ = 10m/s) obtained

with PIV and compared with the hot wire anemometry results of Carlier & Stanislas [15].

is present in the range 100 < y+ < 300 for our higher Reynolds number case. Close to

the wall, the u′+ values obtained from our PIV are slightly underestimated, in particular

for Reθ = 20600, demonstrating some filtering of the PIV at this resolution (Foucaut et al.

[16]). To compute from PIV the energy spectra used in this paper, we used the method of

Foucaut et al. [16]. As seen in figure 2 for the particular case of wall distance y+ = 200

at Reθ = 20600, the agreement between the spatial spectrum from the PIV and the tem-

poral spectrum from the hot-wire anemometry of Carlier & Stanislas [15] is good up to

wavenumbers kx ≈ 500 corresponding to length-scales of 2mm.
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FIG. 2: Comparison of the streamwise energy spectra obtained from PIV and hot-wire

anemometry at y+ = 200 for Reθ = 20600. E11(kx) is in m3/s2 and kx is in rad/m. The

hot-wire anemometry was made by Carlier & Stanislas [15] at 19.6m from wind tunnel

inlet in the same wind tunnel.

B. Structure detection

In sections II and III we developed a spectral model of the streamwise turbulence fluc-

tuating velocity based on the concept of elongated streaky structures which are part of

attached eddies and can be modeled as simple on-off functions. In this and the next subsec-

tions we use our PIV data to test this concept and assess its potential as an hypothesis for

understanding near-wall streamwise energy spectra.

Figure 3(a) shows a sample field of instantaneous streamwise fluctuating velocity compo-

nents u. The existence of well-defined elongated and tilted wall-attached regions of relatively

high (positive or negative) u values is clear. It is these regions that we need to target in

relation to the elongated streaky structures of our model.

The raw instantaneous streamwise velocity fields are affected by noise so that single

structures in figure 3(a) appear split in many little parts. To smooth out these structures

without modifying their shape and statistics we used a two-dimensional Gaussian filter. This

filtering operation was found to be sufficient to capture and connect the structures while
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FIG. 3: Wall-attached elongated streaky structure eduction method applied on a sample

instantaneous streamwise velocity field at Reθ = 20600. From top: (a) Raw instantaneous

streamwise fluctuating velocity component field (b) The same field after application of a

Gaussian filter (c) Binary image obtained after thresholding negative streamwise

fluctuating momentum regions. (d) Final image obtained after cleaning as described in

subsection V B.
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FIG. 4: Figure 3(d) reproduced in the top plot, with, in the bottom plot, the average

streamwise fluctuating velocity α and the streamwise length λ of the detected

wall-attached structures at y/δ = 0.03.

retaining their overall shape. The standard deviation of the Gaussian filter was three pixels

which corresponds to approximately 0.015δ for both Reynolds numbers, i.e. 105 wall units

for Reθ = 20600 and 33 wall units for Reθ = 8100. The result of this operation on figure

3(a) leads to figure 3(b).

To educe on-off functions such as the ones required by our model we apply a threshold uth

on the gaussian-filetered u∗ to obtain binary images which distinguish between u∗ < uth and

u∗ > uth. Effects of the threshold on the statistics of educed structures were investigated in

the range 0.1u′300+ < |uth| < u′300+ where u′300+ is u′ at y+ = 300.

A threshold uth equal to −0.4u′300+ was finally chosen to detect low momentum structures

in the present study as it corresponds to the value that leads to least threshold-dependency

of our statistics for a negative uth (for example, uth equal to −0.2u′300+ or −0.6u′300+ return

results with no significant difference, see Appendix A). This thresholding operation leads to

figure 3(c) when applied to figure 3(b). The white structures in figure 3(c) correspond to

u∗ < uth.

One more step is required before comparing with our model. White structures which cut

through the vertical borders of the figure are discarded because their streamwise extent is

unknown; and white structures which are not attached to the bottom wall (at y = 0 but in

11
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fact as close to y = 0 as allowed by our PIV data, i.e. y+ = 16 and y+ = 48 for the lower and

the higher Reynolds number cases respectively) are also discarded because we are concerned

with wall-attached structures. With this extra step, figure 3(c) gives rise to figure 3(d).

All the steps leading from raw fluctuating streamwise velocity fields to the binary fields

which we use in our statistical analysis are depicted in figure 3. The current study’s effort

is concentrated on wall-attached elongated structures of negative streamwise fluctuating

velocity as in figure 3(d), but the analysis can be repeated equally well on structures of pos-

itive streamwise fluctuating velocity with results that are similar though slightly less sharp

with regard to (10)-(11) (see Appendix A). The general behaviours of positive and negative

fluctuating streamwise velocity structures are similar, the negative velocity structures being

slightly longer in agreement with Dennis & Nickels [17].

C. Lengths of wall-attached streamwise velocity structures

We now need to obtain statistics of wall-attached elongated streaky structures represented

as on-off functions in our model and as binary structures in the final stages of our structure

eduction method. We first label the connected components of the binary images using image

processing tools. Then we compute the streamwise length λ of each labelled structure at

a distance y from the wall, i.e. the difference between the smallest and the largest values

of streamwise coordinate x in this labelled structure at height y. Finally we compute the

average value α of the streamwise fluctuating velocity component u inside this labelled

structure at height y. Thus we obtain a pair (λ, α) for each labelled structure at each height

y considered. This procedure is illustrated in figure 4 where the streamwise extent λ and the

corresponding amplitude α of two labelled structures at wall distance y/δ = 0.03 is shown.

A total of 14493 and 19576 wall-attached binary structures were detected at Reθ = 20600

and Reθ = 8100 respectively. (As mentioned in section IV, 22500 and 29500 samples were

recorded at the highest and lowest of our two values of Reθ respectively, and the ratios

14930/22500 and 19576/29500 are about the same.)

The model in sections II and III assumes that the number of wall-attached elongated

streaky structures of size λ has a decreasing power-law dependence on λ in a certain range

of λ values. Following Perry et al. [3], we expect the spatial distribution of such structures

to be space-filling, which implies (see Vassilicos & Hunt [14]) that the exponent of this

12
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FIG. 5: PDFs of streamwise lengths λ (see figure 4) for varying domain lengths at wall

distance y+ = 195 for Reθ = 20600. Lin-lin plot (top) and premultiplied log-log plot

(bottom)

power law should be -2. Figures 5 and 6 show the probability distribution function (PDF)

of lengths λ at various wall distances. The most probable length λ lies between 0.3δ and

0.5δ and lengths λ longer than 3.5δ occur very rarely.

We tested for finite size effects of the field of view by computing the PDF on smaller

domains, namely 3.5δ and 3δ long in the streamwise direction but same in the wall normal

direction. As shown in figure 5 there is no significant differences caused by the three fields

of view except that the smallest field returns a slightly more noisy PDF. Indeed, a reduced

field of view leads to a smaller number of detected wall-attached elongated binary structures

and therefore to reduced statistical convergence.

Figures 5 and 6 show a power law dependence on λ between about 0.5δ and 2δ with

13



Attached flow structure and streamwise energy spectra

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

λ/δ

P
D
F
(λ
/
δ)

 

 

y
+
=52 y

+
=88 y

+
=125 y

+
=198 y

+
=306  −C

1
+C

2
(λ/δ)

−2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

λ/δ

P
D
F
(λ
/
δ)

 

 

y
+
=90 y

+
=195 y

+
=305 y

+
=450 y

+
=630  −C

1
+C

2
(λ/δ)

−2

0.5 1 1.5 2 2.5 3 3.5 4
10

−3

10
−2

10
−1

10
0

10
1

λ/δ

P
D
F
(λ
/
δ)

 

 

y
+
=90 y

+
=195 y

+
=305 y

+
=450 y

+
=630  − C

1
 + C

2
 (λ/δ)

−2

FIG. 6: PDFs of streamwise lengths λ of wall-attached structures (see figure 4) at selected

wall distances for Reθ = 8100 (top) and Reθ = 20600 (middle). The fits shown in these top

and middle plots are for y+ = 198 at Reθ = 8100 and y+ = 195 at Reθ = 20600. The

bottom plot is a log-log reproduction of the middle plot’s data.
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Reθ 20600 8100

y+ 90 195 305 450 630 52 88 125 198 306

C1 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03

C2 0.32 0.35 0.35 0.37 0.37 0.32 0.35 0.35 0.35 0.33

TABLE I: Values of the constants C1 and C2 in the form −C1 + C2(λ/δ)
−2 of the PDF of

λ/δ. In the Reθ = 20600 case, the fit is over a range of λ/δ bounded from above by 3.8 and

from below by 0.49 (y+ = 90), 0.55 (y+ = 195), 0.54 (y+ = 305), 0.58 (y+ = 450) and 0.78

(y+ = 630). In the Reθ = 8100 case, the fit is over a range of λ/δ bounded from above by

3.4 and from below by 0.54 (y+ = 52), 0.53 (y+ = 88), 0.53 (y+ = 125), 0.56 (y+ = 198)

and 0.65 (y+ = 306).

power law exponent -2, i.e. D = 1, in all cases. Given the form of N(λ) hypothesised in

sections II and III, we fit the PDF of λ/δ with a functional form −C1 + C2(λ/δ)
−2 (where

C1/NM = C2/No). The fit is shown in figures 5 and 6 and is effectively the same for both

Reynolds numbers and all values of y+ in the mean flow’s approximate log region. The

constants C1 and C2 are reported in table I. They are indeed fairly constant over the range

of wall distances and for both Reynolds numbers. Identical results are obtained for wall-

attached structures with positive streamwise fluctuating velocity except that C1 ≈ 0.02 for

both Reynolds numbers and C2 ≈ 0.29 for Reθ = 8100 (see Table III in Appendix). It is

worth noting that the lower bound of the range where the PDF of λ/δ is well approximated

by −C1 + C2(λ/δ)
−2 seems to increase slightly with increasing y+.

D. Energy spectra

Figure 7 shows log-log plots of premultiplied energy spectra of streamwise fluctuating

velocities u(x) which have been obtained from our PIV data at various normalised wall

distances y+ for both Reynolds numbers. These plots might suggest that E11(kx) ∼ U2
τ k
−1
x

in a range of wavenumbers 2π/(4δ) . kx . 0.63/y for y+ larger than about 88 and smaller

than the value of y+ where this range of wavenumbers no longer exists. The apparent k−1x

wavenumber range is close to a decade long at y+ = 90 for Reθ = 20600 and shorter for

higher wall normal distances and for the lower Reynolds number (Reθ = 8100). One would
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FIG. 7: Log-log plots of pre-multiplied streamwise energy spectra at selected wall distances

for Reθ = 8100 above and Reθ = 20600 below. Vertical lines show y
2π
kx = (y/2π)(2π/δ) = y

δ

(corresponding to kx = 2π/δ) with the same color code as the legend of the figure.

be justified to conclude that this is indeed experimental support for the Townsend-Perry

k−1x spectrum if the only available theoretical glasses through which to look at these spectral

plots were those of the Townsend-Perry attached eddy model. However the situation is

subtler and, in effect, quite different.

A closer look at the spectra in the lin-log plot of figure 8 suggests the possibility for

small corrections to this conclusion, particularly at the lower of the two Reθ values, but the

result (10)-(11) of our model in section III may pave the way for a significantly different

interpretation. This model leads to E11(kx) ∼ (kxδ)
q with p + q = −1 if D = 1. Support
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FIG. 8: Same as figure 7 in lin-log plots.

for D = 1 has been obtained and reported in the previous subsection in the range of lengths

λ between about 0.5δ and 2δ. It is therefore worth taking a closer look at our energy

spectra in the corresponding wavenumber range. For our data, this wavenumber range

turns out, in fact, to be comparable to the wavenumber range 2π/(4δ) . kx . 0.63/y

mentioned in the previous paragraph as a candidate for Townsend-Perry scaling. Specifically,

kx/(2π) = 2/δ corresponds to kxy/(2π) = 0.25, 0.41, 0.58, 0.91 and 1.41 in increasing order

of the y+ values in figures 7 and 8 for Reθ = 8100; and to kxy/(2π) = 0.15, 0.33, 0.53,

0.78 and 1.1 in increasing order of the y+ values in figures 7 and 8 for Reθ = 20600. The

wavenumber range 0.5/δ ≤ kx/(2π) ≤ 2/δ where the analysis in the remainder of our paper

is carried out is therefore not radically different for our data from the wavenumber range
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2π/(4δ) < kx < 0.63/y where one would interpret our spectra to have a Townsend-Perry

scaling for y+ ≥ 88.

In figures 9 to 12 we plot a2 versus λ/δ where a2 is the average of α2/∆λ conditional on

the streamwise length of a labelled structure being between λ and λ + ∆λ (α and λ being

obtained as explained in the first paragraph of subsection V C). The upper values of λ/δ

in these plots are all below about 2.3 because we do not have enough samples of educed

structures beyond λ/δ ≈ 2.3 to obtain values of a2 which are statistically converged. The

lower values of λ/δ in these plots are all close to 1/2 because the range where the PDF of λ/δ

has been found in the previous subsection to be well approximated by −C1 + C2(λ/δ)
−2 is

bounded from below by about 1/2 in all our y+ and Reθ cases. In figures 9 to 12 we also plot

E11(kx) in the corresponding wavenumber range 0.25/δ ≤ kx/(2π) ≤ 2/δ which, as discussed

in the previous paragraph, may be close to the wavenumber range 2π/(4δ) < kx < 0.63/y

that one could interpret as a Townsend-Perry range. We do not have enough data and high

enough Reynolds numbers to clearly distinguish between these two ranges in the present

work.

As an aside for the moment, note that the large-scale motions (LSMs) and very large-scale

motions (VLSMs), which have been found to exist in the logarithmic and lower wake regions

of a turbulent boundary layer (see Kovasznay et al. [18], Brown & Thomas [19], Hutchins &

Marusic [20], Dennis & Nickels [21] and Lee & Sung [22]) generally refer to elongated regions

of streamwise velocity fluctuations having a streamwise extent from about 2δ to 3δ for LSMs

and larger than 3δ for VLSMs (see Kim & Adrian [23], Guala et al. [24] and Balakumar

& Adrian [25]). The LSMs near the wall and the VLSMs have been interpreted as being

responsible for the k−1x scaling range of the turbulence spectrum (Smits et al. [13]). The

range of scales we concentrate on, in figures 9 to 12, just about includes some LSMs at its

upper range.

Returning now to figures 9 to 12, we have included best fits of power law curves in the

plots of a2 versus λ/δ and of E11 versus kx. These best fits are indicated in the inserts of each

plot and provide an estimation of the exponents p and q in a2 ∼ (λ/δ)p and E11(kx) ∼ kqx.

Figure 13 summarizes the information with plots of p, q and p + q as functions of y+. It

is perhaps remarkable that p + q is very close to −1 (see figure 13) as predicted by (10)-

(11) for all examined values of y+ and for both Reynolds numbers Reθ. Whereas this

subsection’s initial interpretation in terms of the Townsend attached eddy model is limited
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to y+ larger or equal to 88 (based on the log-log plots of figure 7), the lin-lin plots of figures

9 to 12 present a different and consistent picture which covers both Reynolds numbers and

all our y+ positions, including y+ smaller than 88. This picture is confirmed by Hot Wire

Anemometry (HWA) data from a turbulent boundary layer in the same wind tunnel by

Tutkun et al. [26] and from the recent Direct Numerical Simulations (DNS) of a turbulent

channel flow at Reτ = 5200 by Lee & Moser [27]. Indeed, these HWA and DNS data show

the same variation of the spectral exponent q with y+ that we found from using (10)-(11)

on our PIV data; see figure 14, and also figure 13(b) where we collected the values of q

from different data. The HWA data, in particular, provide a confirmation of our PIV results

because they extend to a wider range at the lower end of wavenumbers (see figures 14(a)

and also figure 13(b) where it is shown that the HWA’s extended wavenumber range returns

effectively same values of q).

The much higher Reynolds number measurements of Vallikivi et al. [12] did not find

support for the Townsend-Perry k−1x spectrum either. However, these authors did find

some agreement with the k−1x log(8π/kxy) spectrum model of del Álamo et al. [28]. This

approximate agreement was found in a range of wall-normal distances where we find positive

values of p, i.e. in a region where the spectrum scales as k−1x k−px with values of p above but

close to 0. It is quite difficult to distinguish between such a weak power law and log(8π/kxy),

so the two models qualitatively agree in this range of wall-normal distances. However, the

model of del Álamo et al. [28] cannot account for the scaling of the energy spectrum at

closer distances to the wall where we find p ≤ 0, whereas our model fits the data in this

region too.

E. Discussion

It is important to stress that the support for (10)-(11) in figures 9 to 12 cannot be obtained

without the crucial last step of our structure detection algorithm in subsection V B which

discards structures that are not attached to the wall. The structures which do not touch the

wall are in fact less elongated and less intense (i.e. smaller a2) on average. We have checked

that if we only consider them, we do not find anything close to p+ q = −1, i.e. (11).

The attached eddy concept introduced by Townsend [1] is therefore important for ex-

plaining E11(kx) but the results of our analysis suggest that the Townsend-Perry model does
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FIG. 9: Lin-lin plots of a2 versus λ/δ (left) and streamwise energy spectra plotted at wall

distances y+ = 41, 64, 88 and 125 (from top to bottom) at Reθ = 8100.
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FIG. 10: Lin-lin plots of a2 versus λ/δ (left) and streamwise energy spectra plotted at wall

distances y+ = 150, 198, 246 and 306 (from top to bottom) at Reθ = 8100.
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FIG. 11: Lin-lin plots of a2 versus λ/δ (left) and streamwise energy spectra plotted at wall

distances y+ = 90, 158, 195 and 268 (from top to bottom) at Reθ = 20600.
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FIG. 13: From top to bottom: (a) Exponents p obtained from the best power-law fit of

a2 ∼ (λ/δ)p. (b) Exponents q obtained from the best power-law fit of E11 ∼ kqx for the

present PIV data, the HWA turbulent boundary layer data of Tutkun et al. [26] (see figure

14(a) and the DNS of turbulent channel flow data of Lee & Moser [27] (see figure 14(b).

(c) p+ q versus y+. All these fits are obtained over the range of scales investigated in

figures 9 to 12 (except for the HWA case in (b) where we have also included a fit over a

range of length-scales extended up to 7δ). The resulting exponents are plotted with the

95% confidence intervals for these fits.
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FIG. 14: From top to bottom: (a) Lin-log plots of pre-multiplied streamwise energy

spectra at selected wall distances obtained with HWA in the Reθ = 19100 turbulent

boundary layer of Tutkun et al. [26]. Least-square fits in a range bounded from above by

kxδ/(2π) = 2 but extended to wavenumbers as small as kxδ/(2π) close to 10−1. (b) Lin-log

plots of pre-multiplied streamwise energy spectra at selected wall distances from the

Reτ = 5200 turbulent channel flow DNS of Lee & Moser [27]. Least-square fits in the range

0.25 ≤ kx/(2π) ≤ 2.

not hold without some significant corrections because the turbulent kinetic energy content

in these wall-attached flow structures does not just scale with Uτ . (If it did, a2 would scale

with Uτ and p would be uniformly 0.) At different y inside such a structure, the level of tur-
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bulent kinetic energy depends both on Uτ and on the streamwise length of the structure at

that height. Furthermore, this dependence varies with height: a2 decreases with increasing

λ/δ very close to the wall, in the buffer layer, and increases with increasing λ further up.

As a2 transits smoothly from one dependence to the other, a particular height exists where

a2 is independent of λ and therefore depends only on Uτ . At that very particular height,

E11(kx) ∼ k−1x . However, strictly speaking, this is not a Townsend-Perry spectrum, it is just

the spectrum at that particular distance from the wall where the turbulent kinetic energy

inside the streaky structures transits from a decreasing to an increasing dependence on the

length of these structures. Our conclusion agrees with Nickels et al. [9] in their statement

that it is necessary to take measurements close to the wall to observe a k−1x behaviour, in

fact at y+ between 100 and 200 as they also found. However, these authors were not in

possession of (10)-(11) and therefore did not measure a2 at various heights and for various

values of λ/δ which now allows us to see that the k−1x behaviour at the edge of the buffer

layer is not the Townsend-Perry spectrum but just a transitional instance of a more involved

spectral structure. In fact, the spectral picture which emerges from our analysis is a unified

picture which brings together the buffer and inertial layers in a seemless way.

In figure 15 we plot examples of measured streamwise velocity fluctuations and the on-off

signals with which we model them at various heights from the wall. Our model on-off signals

are clearly a drastic simplification of the data but one gets the impression from these plots

that they capture the sharpest gradients in the signal and therefore much of its spectral

content at the length-scales considered here. The lengths of the non-zero parts of the model

signals correspond to λ and the actual values of the on-off signal in these non-zero parts

correspond to the average value α of the streamwise fluctuating velocity component inside

each part. We stress that it is enough that our on-off model agrees with the data in the way

it does in figures 9 to 12 for a certain range of thresholds uth (see subsection V B). Our model

does not need to work for any arbitrary threshold; it only needs to work for those thresholds

which effectively capture the spatial boundaries of the flow structure objects simulated by

our on-off functions as mentioned at the end of the first paragraph of section II.

It is clear that a wider range of Reynolds numbers needs to be examined to establish

the scalings of the lower and upper bounds of the range of wavenumbers where (10)-(11)

holds. One might expect the upper bound to scale as 1/y because of the recent evidence (see

Hultmark et al. [29] and Laval et al. [30]) that a Townsend-like approximately logarithmic
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FIG. 15: An example of a detected wall-attached flow structure for Reθ = 20600 and the

u(x) signal through this structure at three different y+ positions. The red line in the

repeated binary image indicates the y+ position where the signal u(x) is recorded

(y+ = 195, 450, 1110). The black/red line in the u(x) versus x/δ plots is the raw

(un-filtered) PIV fluctuating streamwise fluctuating velocity outside/inside the detected

flow structures. The dashed blue line is our model signal, equal to 0 outside and to the

average value of u inside the detected structures.
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(or very weak power law) dependence on y exists for the rms streamwise turbulent velocity

in the outer part of the inertial range of wall-distances. If one assumes the lower bound

to scale as 1/δ and therefore an energy spectrum E11(kx) of the form (i) E11(kx) ∼ U2
τ δ

for 0 ≤ kx ≤ B1/δ, (ii) E11(kx) ∼ U2
τ δ(kxδ)

−1−p for B1/δ ≤ kx ≤ B2/y (where B1 and

B2 are dimensionless constants and p may be a function of y as in figure 13(a) and (iii)

comparatively negligible energy at wavenumbers kx > B2/y, then we should have

(u′+)2 ∼ 1 +
Bp

1

p
(B−p1 − (B2δ/y)−p). (12)

This expression for (u′+)2 tends to

(u′+)2 ∼ 1 + (lnB1 − ln(B2δ/y)) (13)

as p → 0 which is the Townsend logarithmic dependence on y corresponding to p ≡ 0 (see

Townsend [1], Perry & Abell [7] and Perry et al [3]) . This logarithmic dependence (13)

results from the assumption that the upper bound of the range of wavenumbers where (10)-

(11) may hold with p ≡ 0 scales as 1/y. Slightly non-zero values of p give slight deviations

from this logarithmic dependence, of the form (12).

Using the values of p obtained in this work and plotted versus y+ in figure 13 for our

two values of Reθ, it is not possible to fit (12) to the data in the lower plot of figure 1 from

y+ = 41 to 306 in the Reθ = 8100 case and from y+ = 90 to 742 in the Reθ = 20600 case.

These are the y+ ranges where (10)-(11) has been established for our data and they should

therefore also be the ranges where (12) holds if the spectral model of the previous paragraph

is good enough. However, in spite of the three adjustable dimensionless constants (B1, B2

and an overall constant of proportionality), (12) cannot fit the entire y+ range for which this

model has been designed, that is a y+ range which includes both the p < 0 and the p > 0

regions.

A most suspect part of the spectral model used to derive (12) is its low wavenumber part.

Vassilicos et al. [31] showed that the second peak or plateau part of the u′+ profile can be

reproduced by a spectral range between the very low wavenumber range where E11(kx) ∼ U2
τ δ

and the wavenumber range where E11(kx) ∼ U2
τ δ(kxδ)

−1−p. In fact, Vassilicos et al. [31] also

showed that this extra intermediate spectrum is necessary for a sufficiently fast growth of

the integral scale with distance from the wall. A complete model of E11(kx) would therefore

require the spectral range introduced by Vassilicos et al. [31] as well as the spectral range

studied here.
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VI. CONCLUSION

We obtained well-resolved PIV data of a flat plate turbulent boundary layer in a large

field of view at two Reynolds numbers, Reθ = 8100 and Reθ = 20600. A direct inspection

of log-log plots of the streamwise energy spectrum would suggest E11(kx) ∼ U2
τ k
−1
x in the

range 2π/(4δ) < kx < 0.63/y. However, a closer look assisted by relation (10)-(11) reveals

a significantly subtler behaviour. This relation introduces a specific data analysis which

involves the extraction of wall-attached elongated streaky structures from PIV data. The

concurrent analysis of streamwise energy spectra and of the relation between the turbulence

levels inside streaky structures and the length of these structures offers strong support for

(10)-(11) over a significant range of wavenumbers and length-scales. This range covers LSMs

and is comparable to the range where one might have expected the Townsend-Perry attached

eddy model spectra to be present. Even though k−1x spectra are not, strictly speaking,

validated by our data, the streaky structures which account for the scalings of E11(kx) do

need to be wall-attached for relation (10)-(11) to hold. Our conclusions agree with the

experiments of Vallikivi et al. [12] which actually suggest that the Townsend-Perry k−1x

spectrum cannot be expected even at very high Reynolds numbers. The revised Townsend-

Perry streamwise energy spectral form (10)-(11) with p = p(y+) given by figure 13(a) appears

to extend the validity of the attached eddy concept and its revised consequences to a wider

range of Reynolds numbers and a wider range of wall distances.

Finally, we stress that relation (10)-(11) is predicated on these wall-attached streaky

structures being space-filling, i.e. D = 1 in the notation of section II. The pdf of the

streamwise length of the educed streaky structures does indeed follow a power law with

exponent −1 −D = −2 over the range of scales which corresponds to the one where (10)-

(11) holds.

Our work has shed some new light on the streamwise turbulence spectra of wall turbulence

by revealing that some of the inner structure of wall-attached eddies is reflected in the

scalings of these spectra via p(y+). An important implication of this structure is that

the friction velocity is not sufficient to scale the spectra. Future work must now further

probe the inner structure of wall-attached eddies, attempt to explain it and extend our

analysis to higher Reynolds numbers so as to establish with certainty the ranges of the power

laws (exponents p and q in (10)-(11)) discussed in this paper. When this will be done, a
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Reθ 20600 8100

−0.2u′300+ 13517 17338

−0.4u′300+ 14493 19576

−0.6u′300+ 13366 19290

TABLE II: Number of structures detected over a set of three negative thresholds for

Reθ = 20600 and Reθ = 8100

complete picture of streamwise energy spectra will also need to integrate the spectral model

of Vassilicos et al. [31].
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Appendix A: Effects of threshold levels and sign

Our results have no significant dependence on threshold uth in the range −0.2u′300+ to

−0.6u′300+ . An example of this lack of threshold dependence can be seen in the PDFs of λ/δ

which we plot in figure 16. We also report in table II the number of structures educed by

the algorithm described in subsection V B for the three negative threshold values −0.2u′300+ ,

−0.4u′300+ and −0.6u′300+ . Figures 9 to 13 have been obtained for uth = −0.4u′300+ but

we checked that they remain very similar without deviations from our conclusions if the

threshold uth is chosen in the range −0.2u′300+ to −0.6u′300+ .

As mentioned in subsection V B, this paper’s analysis can be repeated equally well on

structures of positive streamwise fluctuating velocity. We provide examples of results ob-

tained with uth = 0.4u′300+ in figure 17 and table III. There are indeed no significant differ-

ences in the results for the low and high speed attached flow regions, except for a lower but
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FIG. 16: PDFs of streamwise lengths λ of wall-attached structures at y+ = 195 for

Reθ = 20600 (top) and y+ = 125 for Reθ = 8100 (bottom) over a set of thresholds

consistent value of C1 and for a consistently lower value of C2 in the lower Reθ case. Figures

9 to 13 can be reproduced for this positive threshold uth = 0.4u′300+ and show the exact

same trend with p increasing while q is decreasing with increasing y+. However, whereas p

takes values similar to those for uth = −0.4u′300+ in the lower Reθ case, it does not do so in

the higher Reθ case. As a result p+ q is quite close to −1 in the lower Reθ case but less so,

and in fact closer to −1.1 on average, for the higher Reθ (see figure 18).
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FIG. 17: PDFs of streamwise lengths λ of wall-attached structures of positive streamwise

fluctuating velocity with uth = u′300+ at selected wall distances for Reθ = 20600 (top) and

Reθ = 8100 (bottom). The fits shown here are for y+ = 195 at Reθ = 20600 and y+ = 198

at Reθ = 8100.

Reθ 20600 8100

y+ 90 195 305 450 630 52 88 125 198 306

C1 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.02

C2 0.35 0.36 0.34 0.38 0.37 0.28 0.29 0.28 0.31 0.29

TABLE III: Values of the constants C1 and C2 in the form −C1 + C2(λ/δ)
−2 of the PDF

of λ/δ.
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FIG. 18: From top to bottom: (a) Exponents p obtained from the best power-law fit of

a2 ∼ (λ/δ)p. (b) p+ q versus y+. These fits are obtained over the range of scales

investigated for the high-speed regions and the resulting exponents are plotted with the

95% confidence intervals for these fits. The y+ positions and the two Reynolds numbers

Reθ are those in figures 9 to 12.
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