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Natural numbers and prime numbers: a conjecture

May 5, 2020

Arnaud Mayeux

Abstract: We state a conjecture about natural and prime numbers. Let
I = {1,2,3,4,5,6,7, . . .} be the set of non zero natural integers. We �rst de�ne
a class of functions I → I called the natural functions, they are built using
addition, multiplication and elevation. Such functions are strictly increasing
if they are not constant. We conjecture that for every non constant natural
function f , we have f(I) /⊂ P where P ⊂ I is the set of prime numbers. This
conjecture, if it is true, generalizes a result of Euler about Fermat's numbers.
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Introduction

Fermat [3] conjectured that {22n + 1 ∣ n positive integers} ⊂ P. Euler [1] [2]
proved that this is wrong, i.e. {22n + 1 ∣ n positive integers} /⊂ P. We say
that a function f ∶ I → I with variable n is a natural function if it is built
using formal (and coherent) combinations of the symbols n,{a ∈ I},+,×,∧.
Here ∧ means elevation to the power. We prove that every natural function
is constant or strictly increasing. We then conjecture that for every natural
function f , we have f(I) /⊂ P. This conjecture generalizes Euler's result, since
n ↦ 22n + 1 = 2 ∧ (2 ∧ n) + 1 is a natural function. In this text we formally
introduce notation and de�nitions. Then we state our conjecture and prove
it in some cases. We also discuss implications of our conjecture.
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1 Notation and de�nition

Let
N = {0,1,2,3,4,5,6,7, . . .}

be the set of positive integers. Let

I = {1,2,3,4,5,6,7, . . .}

be the set of non zero positive integers. Let

P = {2,3,5,7,11,13,17, . . .}

be the set of prime numbers. Let F(I, I) be the set of functions from I to I.

De�nition 1.1. An elevation structure is a 4-uple (E,+,×,∧) where E is a

set and

1. + is a map E ×E → E sending a, b to a + b

2. × is a map E ×E → E sending a, b to a × b

3. ∧ is a map E ×E → E sending a, b to a ∧ b

such that ∀ a, b, c ∈ E the following hold

1. a + b = b + a

2. a + (b + c) = (a + b) + c

3. b × a = a × b

4. a × (b × c) = (a × b) × c

5. a × (b + c) = a × b + a × c

6. (a ∧ b) × (a ∧ c) = a ∧ (b + c)

7. (a ∧ b) ∧ c = a ∧ (b × c).

We write a1 ∧ a2 ∧ . . . ∧ an instead of a1 ∧ (a2 ∧ (. . . ∧ an)), be careful that

a∧(b∧c) /= (a∧b)∧c in general. We write often a
a⋰

an
2

1 instead of a1∧a2∧. . .∧an.
For example ab

c
means a ∧ (b ∧ c).

A morphism of elevation structure from (E,+,×,∧) to (F,+,×,∧) is a

map M ∶ E → F such that ∀ a, b ∈ E, we have M(a + b) = M(a) +M(b),
M(a×b) =M(a)×M(b) and M(a∧b) =M(a)∧M(b). We obtain a category.
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Example 1.2.

1. N,+,×,∧ is an elevation structure with a ∧ b ∶= ab.

2. I,+,×,∧ is an elevation structure.

3. F(I, I),+,×,∧ is an elevation structure with (f ∧ g)(n) ∶= f(n) ∧ g(n).

4. Let a ∈ I, then the evaluation map Ea ∶ F(I, I) → I, f ↦ f(a), is a

morphism of elevation structure from F(I, I),+,×,∧ to I,+,×,∧.

Let P(F(I, I)) be the set of all parts of F(I, I). Let Fs ∈P(F(I, I)) be
the part of functions constitued of the identity map n↦ n and the constant
maps n↦ a for every a ∈ I, we also call it the part of symbols.

We now de�ne some operators on P(F(I, I)).

De�nition 1.3.

1. Let A+ be the map sending P ∈P(F(I, I)) to

P ∪ {f ∈ F(I, I) ∣ ∃g ∈ P,∃h ∈ P and f = g + h}.

2. Let A× be the map sending P ∈P(F(I, I)) to

P ∪ {f ∈ F(I, I) ∣ ∃g ∈ P,∃h ∈ P and f = g × h}.

3. Let A∧ be the map sending P ∈P(F(I, I)) to

P ∪ {f ∈ F(I, I) ∣ ∃g ∈ P,∃h ∈ P and f = g ∧ h}.

We are now able to de�ne the set of natural functions FNatural. Let Σ
be the set of all �nite words with letters A+,A×,A∧.

De�nition 1.4. We put FNatural = ⋃
σ∈Σ

σ(Fs) ∈P(F(I, I)). The 4-uple

FNatural,+,×,∧ is an elevation structure.

Example 1.5.

1. Fs ⊂ FNatural

2. The set of polynomial functions on I FPolynomial is contained in FNatural.
More precisely it is contained in ⋃

j,k≥0
Aj+Ak×(Fs).

3. Fermat's function n↦ 22n + 1 is contained in FNatural. More precisely

it is contained in A+A2∧(Fs).
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4. The functions

n↦ nn + n + 1

n↦ 7n + 6

n↦ n4nn+n23+2n+8 + n + 3

n↦ 222
22

2n

+ 1

are natural functions.

Proposition 1.6. A natural function f ∈ Fnatural is constant or strictly

increasing.

Proof. By de�nition a function f is in Fnatural is and only if there exists
a �nite word σ in letters A+,A×,A∧ such that f ∈ σ(Fs). We need the
following de�nition.

De�nition 1.7. The length of a natural function f ∈ FNatural is the number

min{n ∈ N ∣ f ∈ σ(Fs) with σ a word of length n},

it is well de�ned.

Let us prove our result by induction on length. Consider the following
assertion.

Pn ∶ Proposition 1.6 is true for every f ∈ FNatural of length ≤ n.

Let us prove by induction that Pn is true for every n ∈ N. We need the
following Lemmas.

Lemma 1.8. Let h, g ∈ FNatural be strictly increasing, then h+ g, h× g, h∧ g
are strictly increasing.

Proof. Let i > j be integers in I, then h(i) > h(j) and g(i) > g(j). So
h(i) + g(i) > h(j) + g(j), consequently h + g is strictly increasing. Since
g(i) > g(j) ≥ 1 and h(i) > h(j) ≥ 1; we have h(i) × g(i) > h(j) × g(j) and
consequently h × g is strictly increasing; we also have h(i)g(i) > h(j)g(j) and
consequently h ∧ g is strictly increasing.

Lemma 1.9. Let h ∈ FNatural be strictly increasing and g ∈ FNatural be

constant, then h + g, h × g, h ∧ g are strictly increasing.

Proof. Let i > j be integers in I, then h(i) > h(j) and g(i) = g(j). So
h(i) + g(i) > h(j) + g(j), consequently h + g is strictly increasing. Since
g(i) = g(j) ≥ 1 and h(i) > h(j), we have h(i) × g(i) > h(j) × g(j) and
consequently h × g is strictly increasing. We have h(i)g(i) > h(j)g(j) and
consequently h ∧ g is strictly increasing.
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Lemma 1.10. Let h ∈ FNatural be strictly increasing and g ∈ FNatural be

constant, then g ∧ h is strictly increasing except if g = 1. If g = 1, g ∧ h is

constant.

Proof. Let i > j be integers in I. If g = 1 then g(i)h(i) = g(j)h(j) = 1 and g∧h
is constant. In the other case g(i) = g(j) > 1 and h(i) > h(j), consequently
g(i)h(i) > g(j)h(j). This ends the proof.

Now let us start our induction. If n = 0, then f is constant or the identity
map and thus satis�es P0. Now assume that Pn is true and let us prove that
Pn+1 is true. Let f of length n + 1. By de�nition, there are h, g of length
≤ n such that f = h + g or f = h × g or f = g ∧ h or f = h ∧ g. By induction
hypothesis h and g are constant or strictly increasing. Assume �rst both
are constant. Then f is obviously constant. If both are strictly increasing,
then f is strictly increasing by Lemma 1.8. If h is strictly increasing and g
is constant, then by Lemma 1.9, h+g , h×g and h∧g are strictly increasing,
and by Lemma 1.10, g ∧ h is strictly increasing or constant. If h is constant
and g is strictly increasing, we deduce, in the same way, that h + g , h × g,
h∧g and g∧h are strictly increasing or constant. Consequently, f is constant
or strictly increasing. This ends the induction and the proof of Proposition.

Remark 1.11. The map N → N, n ↦ nn is neither constant nor strictly

increasing since 00 = 11 ≠ 22. Its restriction to I is a strictly increasing

natural function.

2 Statement of the conjecture and proof of it in

some cases

2.1 Statement

We now state our conjecture.

Conjecture 2.1. Let f ∈ FNatural be a non constant natural function. Then

f(I) /⊂ P.

Proposition 2.2. Conjecture 2.1 is true in the following cases.

1. Let f ∈ FPolynomial, assume f is non constant, then f(I) /⊂ P.

2. Let a ∈ I>1, b ∈ N and f be n↦ an + b, then f(I) /⊂ P.

3. Let f be n↦ 22n + 1, the Fermat function. Then f(I) /⊂ P.
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Proof. 1. Since f is non constant, it is strictly increasing by 1.6, so there
exits n ∈ I such that f(n) > 1. Let p ∈ P such that p ∣ f(n). Then
f(n) = 0 mod p. Since f is polynomial, we have

f(n + p) = f(n) mod p.

So we have

p ∣ f(n) , p ∣ f(n + p) , 1 < f(n) < f(n + p).

This implies that f(n + p) is not a prime number. So f(I) /⊂ P.

2. Let n ∈ I>1. Then f(n) = an + b > 1. Let p ∈ P such that p ∣ f(n). Then
an + b = 0 mod p. Assume �rst that p ∤ a, then by Fermat's little
theorem

an+(p−1) + b = an + b = 0 mod p.

So we have

p ∣ f(n) , p ∣ f(n + (p − 1)) , 1 < f(n) < f(n + (p − 1)).

This implies that f(n+p−1) is not a prime number. Now if p ∣ a, then
p < f(n) and f(n) is not a prime number. So we have proved that
f(I) /⊂ P.

3. We have f(5) = 225 + 1 = 4294967297 = 641 × 6700417, as Euler [1] [2]
computed. So f(I) /⊂ P.

2.2 Reformulation: P is supernatural

An in�nite subset of I is said to be natural if it is of the form f(I) where f ∈

FNatural is non constant. An in�nite subset of I is said to be supernatural if
it does not contain any natural subset of I. Our conjecture is now equivalent
to the following statement: P is supernatural.

3 Implications and remarks

In this section we discuss implications of our conjecture and comment it.

Proposition 3.1. Assume Conjecture 2.1 is true. Let f ∈ FNatural non

constant, then {x ∈ f(I) ∣ x is not a prime number } is in�nite.

Proof. By 1.6, f is strictly increasing. It is enough to prove the following
statement. For all k ∈ I, there exists q ∈ N>k, such that f(q) is not a prime

number. So let k ∈ I. Let us consider the function g ∈ F(I, I) de�ned by
g(n) = f(n + k). The function g is natural. So there exists d ∈ I such that
g(d) is not a prime number. So q ∶= d + k is such that q > k and f(q) is not
a prime number. This ends the proof.
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Corollary 3.2. Assume Conjecture 2.1 is true. Then there are in�nitely

many composed (i.e. not prime) Fermat's numbers.

Proof. Apply 3.1 to Fermat's natural function n↦ 22n + 1.

Proposition 3.3. Assume Conjecture 2.1 is wrong. Then there exists a

computable formula giving arbitrary big prime numbers

Proof. If Conjecture 2.1 is wrong. There exists a non constant (and thus
strictly increasing) natural function giving only prime numbers. It is com-
putable.

Remark 3.4. In order to de�ne natural functions in De�nition 1.4, we have

used +,×,∧. One can de�ne with the same formalism a larger class of func-

tion using moreover Knuth's up arrow {↑n∣ n ≥ 1} notation for hyperoperation

(↑1= ∧). Then one can extend Conjecture 2.1 to this larger class of functions.
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