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Multidrug resistance is a globally increasing problem that has become an alarming threat to antibiotic therapy. A principal resistance mechanism that
prokaryotic organisms have evolved is active multidrug efflux, whereby antibiotics and other xenobiotics are exported to the external environment by
transport proteins in the cell membrane. Such proteins are especially abundant in Gram-negative bacteria that are responsible for a large proportion of
hospital-acquired infections. Based on amino acid sequence similarity, substrate specificity and the energy source used for exporting substrates,
prokaryotic organisms contain seven major families of distinct multidrug efflux transporters (ABC, MFS, RND, SMR, MATE, AbgT, PACE). Efflux
proteins also have roles in biofilm formation, quorum sensing, resistance to heavy metals and biocides, cell homeostasis and in bacterial pathogenicity
and virulence. Prokaryotic efflux proteins are therefore highly important targets for advancements in antibiotic therapy and for ongoing experimental
characterisation of their structures, functions, molecular mechanisms and regulation.
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INTRODUCTION

1l over the world, the rate of multidrug resistance is

dramatically increasing and the mechanisms of
resistance are varied and complicated. Diverse mechanisms
contribute to intrinsic, acquired and phenotypic resistance to
antimicrobial compounds. Active multidrug efflux systems are
one of the major mechanisms of bacterial resistance to drugs and
are an alarming threat to antibiotic therapy.""" Gram-negative
bacteria (e.g. Acinetobacter baumannii, Escherichia coli,
Klebsiella pneumonia, Pseudomonas aeruginosa) are commonly
intrinsically more resistant to many antibiotics and biocides as a
result of their cell structure and the activity of multidrug efflux
pumps™*"* and they are responsible for over 30% of hospital-
acquired infections."*”Efflux pumps are proteinaceous
transporters that can extrude antibiotics and other xenobiotics
from the cytoplasm or surrounding membranes of cells to the
outside environment. They are found in all microorganisms,
including both Gram-negative and Gram-positive bacteria”'>"
and also in eukaryotic organisms.”*” The active transport
mechanism of efflux pumps is driven by an energy source. In this
respect, primary active transporters exploit ATP hydrolysis,
whilst secondary active transporters use the electrochemical
potential difference created by proton pumping or sodium ions.
These transporters may be highly specialised for one compound
or may be highly promiscuous, transporting a broad range of
structurally dissimilar substrates.

FAMILIES OF MULTIDRUG EFFLUX PROTEIN

In the prokaryotic kingdom there are currently seven major
families of distinct bacterial multidrug efflux transporters:
adenosine triphosphate (ATP)-binding cassette (ABC)
superfamily, major facilitator superfamily (MFS), resistance-
nodulation-division (RND) family, small multidrug resistance
(SMR) family, multidrug and toxic compound extrusion (MATE)

family, p-aminobenzoyl-glutamate transporter (AbgT) family,
proteobacterial antimicrobial compound efflux (PACE)
family(Figure 1).These families are classified on the basis of their
amino acid sequence similarity, substrate specificity and the
energy source used to export their substrates. Protein structural
organisation in the large majority of the families, including the
number of transmembrane helices (TMH),has been confirmed by
high resolution structure determination for at least one member.

[33-36]

ABC superfamily proteins are the only primary
transporters, usingenergy from ATP hydrolysis to expel
substrates. They are comprised of a transmembrane domain that
forms the extrusion pathway and a cytoplasmic nucleotide-
binding domain that binds and hydrolyses ATP. Ahomodimeric
structural organisation (2 x 6TMH) in bacterial ABC proteins is
represented by multidrug efflux transporter Sav1866 from
Staphylococcus aureus(PDB 2HYD)."”

All ofthe other families are secondary transporters that use the
proton or sodium gradient as the energy source in an antiport
manner. The MFS proteins™*’have 12 or 14 TMH and are
structurally described by E. coli multidrug resistance transporter
MdfA (PDB 4ZOW), which confers resistance to
chloramphenicol.”! MFS transporters are proton-driven and
typically contain a 12TMH core consisting of two pseudo-
symmetrical six-helix domains. A central cavity between these
two domains forms the substrate-transport path and the protein
undergoes a rocker-switch mechanism that involves cycling
between outward-facing and inward-facing conformations.
RND family proteins'**’are proton-driven and function in a
tripartite assembly with an outer membrane protein and a
periplasmic adapter protein that connects them together.
Structural organisation in RND proteins is represented by AcrB
from E. coli (PDB 2DRD),”"*” which functions in complex with
AcrA and TolC. Each AcrB protomer consists of a 12TMH
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Fig. 1: Schematic illustration for the energisation and structural organisation of seven distinct families of multidrug efflux protein
found in bacteria. The large oval represents a bacterial cell. An electrochemical H' gradient (proton-motive-force) across the
cytoplasmic membrane is generated by respiration (green). Energy from the proton-motive-force drives secondary active transport
proteins, such as those in the MFS, RND, SMR and AbgT (super)families. PACE family transporters are also likely to be driven by the
H' gradient. Sodium/proton antiporters (orange) exploit the proton-motive-force to generate a Na' gradient that drives transport by
other multidrug efflux proteins, including those in the MATE family. ATP production by ATP-synthase (red) is also driven by the
proton-motive-force and ATP is used to drive transport by primary active transporters of the ABC superfamily. The structural
organisation in each family is illustrated by a picture of a crystal structure of a representative protein as follows: ABC Sav1866 from
Staphylococcus aureus (PDB 2HYD); MFS MdfA from Escherichia coli (PDB 4ZOW); RND AcrB from Escherichia coli (PDB
2DRD); SMR EmrE from Escherichia coli (PDB 3B5D); MATE NorM from Vibrio cholerae (PDB 3MKT); AbgT MtrF from
Neisseria gonorrhoeae (PDB 4R11); PACE no structure available;. Structures were drawn using the relevant PDB entry and PDB
Workshop 3.9. The number of TMH based on structural characterisation is also given.

Na'/H

ABUNDANCE AND
PROTEINS

transmembrane domain and a headpiece that protrudes into the MULTIPLE ROLES OF EFFLUX
periplasm. SMR family proteinsare proton-driven and highly
hydrophobic.”*  They have a homodimeric structural
organisation (2 x 4TMH),described by EmrE from E. coli (PDB
3B5D),”"in which a single membrane-embedded and highly
conserved charged residue (Glul4 in TM1) is essential for
transportactivity. MATE family proteins™ “are driven by either
the sodium or proton gradient and their 12TMH structural
organisation is represented by NorM from Vibrio cholerae (PDB

3MKT) or by DinF from Bacillus halodurans(PDB 4L.Z6)."**"

Up t030% of all the genes in most sequenced genomes encode
membrane proteins.”” In prokaryotic genomes, up to 50% of
these are transport proteins’'and a large proportion of these
encode efflux proteins, further reflecting their importance. Efflux
proteins not only play a key role in drug resistance but also
perform many other physiological functions in bacteria.””™
“Efflux proteins are highly active in bacterial biofilms and they
are involved in the formation and maintenance of biofilms.""*"

The two most recently identified types of bacterial multidrug
efflux transporters are from the AbgT family, which confer
resistance to sulfonamide antimetabolite drugs®*” and from the
PACE family, which confer resistance to the bisbiguanide
antiseptic chlorhexidine.””  AbgT transporters are proton-
driven and their homodimeric structural organisation(2 x 9TMH)
has been described by crystal structures of YdaH from
Alcanivorax borkumensis (PDB 4R0C) and MtrF from Neisseria
gonorrhoeae (PDB 4R 11).""™ PACE family proteins are likely to
be proton-driven and they putatively contain 4TMH that probably
function as an oligomer. High-resolution structural information
is yet to be obtained for any member of the PACE family.

Simultaneous expression of members from all seven families
in the same organism is entirely feasible and a significant
challenge for overcoming multidrug resistance.

For example, there is a potential role of the AdeFGH efflux pump
in the synthesis and transport of autoinducer molecules during
biofilm formation of Acinetobacter baumannii.*™ Related to
biofilm formation, there is interdependence between efflux
proteins and bacterial quorum sensing. Efflux proteins can
transport out quorum sensing molecules that can induce
expression of genes relating to processes such as biofilm
formation and virulence."”” For example, active efflux
influences the potency of quorum sensing inhibitors in
Pseudomonas aeruginosa.”” Efflux proteins also contribute to
heavy metal resistance in prokaryotes.”**” This is exemplified by
the structurally characterised RND-type E. coli CusC(F)BA
complex, which exports and confers resistance to copper(I) and
silver(I) ions involving a methionine shuttle.””"” There is a
developing understanding about co-selection of resistance
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mechanisms in bacteria to antibiotics, biocides and metals that
includes efflux proteins."" "™ Other transport proteins capable of
exporting metal ions also contribute to metal ion homeostasis in
prokaryotes' """ and this includes members of the ABC, RND,
CDF (cation diffusion facilitator),"”""” MntX (transporter
mediating manganese export)'"” and CorA (cobalt resistance
protein A)""""*transporter families. Efflux proteins also have
wider roles in bacterial pathogenicity and virulenceto humans,
other animals and plants.™ "

CONCLUSION

The high importance of prokaryotic efflux proteins, not least
in the global problem of antibiotic resistance, makes them prime
targets for drug development and this requires a rigorous ongoing
characterisation and understanding of their structures, functions,
molecular mechanisms and regulation using genetic approaches
and by application ofchemical, biochemical, biophysical and
computational techniques.  Proper high-resolution three-
dimensional structure elucidation(using X-ray crystallography,
NMR spectroscopy, electron microscopy) in the first instance
requires successful gene cloning and amplified expression of the
target protein in E. coli,"*""** followed by production of sufficient
quantities of high quality membranes and/or stable and active
purified protein. Such studiescontribute information that could
lead to increased susceptibility to antibiotics (e.g. by inhibition of
multidrug efflux pumps), development of new antibiotics or the
reversal of bacterial resistance mechanisms.
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