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TOPOLOGICAL INVARIANTS OF PARABOLIC G-HIGGS BUNDLES

GEORGIOS KYDONAKIS, HAO SUN AND LUTIAN ZHAO

Abstract. For a semisimple real Lie group G, we study topological properties of moduli
spaces of polystable parabolic G-Higgs bundles over a Riemann surface with a divisor of
finitely many distinct points. For a split real form of a complex simple Lie group, we com-
pute the dimension of apparent parabolic Teichmüller components. In the case of isometry
groups of classical Hermitian symmetric spaces of tube type, we provide new topological
invariants for maximal parabolic G-Higgs bundles arising from a correspondence to orbifold
Higgs bundles. Using orbifold cohomology we count the least number of connected com-
ponents of moduli spaces of such objects. We further exhibit an alternative explanation of
fundamental results on counting components in the absence of a parabolic structure.

1. Introduction

Parabolic vector bundles over Riemann surfaces with marked points were introduced by C.
Seshadri in [42] and similar to the Narasimhan-Seshadri correspondence, there is an analo-
gous correspondence between stable parabolic bundles and the unitary representations of the
fundamental group of the punctured surface with fixed holonomy class around each punc-
ture [34]. Later on, C. Simpson in [43] provided a non-abelian Hodge correspondence in
the non-compact case. The analysis on the non-compact algebraic curve has to presume the
appropriate growth of the harmonic metric at the punctures, a notion called by C. Simpson
tameness. In a particular case, parabolic Higgs bundles are in bijection with meromorphic flat
connections, whose holonomy around each puncture defines a conjugacy class of an element
in the unitary group described by the weights in the parabolic structure of the bundle. These
connections correspond to representations of the fundamental group of the punctured surface
in the general linear group, which send a small loop around each parabolic point to an element
conjugate to a unitary element. Chern classes for parabolic bundles were constructed by I.
Biswas in [6]; one can also define Chern characters of parabolic bundles in the rational Chow
groups (see [25]).

In this article, we study connected components of moduli spaces of polystable parabolic G-
Higgs bundles for a semisimple real Lie group G. These objects were explicitly defined in [4],
where a Hitchin-Kobayashi correspondence was also established. Moreover, P. Boalch in [12]
provided a local Riemann-Hibert correspondence for logarithmic connections on G-bundles
and parabolic G-bundles on a curve. In the case when G is a split real form of a complex
simple Lie group, there exists a topologically trivial connected component in the moduli space,
extending N. Hitchin’s classical result from the non-parabolic case [23]. To be more precise,
we show:
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Theorem. 4.1 Let X be a compact Riemann surface of genus g and let D = {x1, . . . xs} a
divisor of s-many distinct points on X, such that 2g− 2 + s > 0, that is, the surface X can be
equipped with a metric of constant negative curvature (-4). Let G be the adjoint group of the
split real form of a complex simple Lie group with Cartan decomposition in the Lie algebra
g = h⊕m. The space of homomorphisms from the fundamental group of X into G with fixed
conjugacy class of monodromy around the points in D has a component of real dimension
2 (g − 1) dimRG+ 2s · rkE

(
mC).

An important tool towards studying the topology of moduli spaces of parabolic Higgs
bundles over a Riemann surface X with a divisor D is provided by the correspondence of
these objects to orbifold Higgs bundles over a finite Galois covering Y of X, ramified along D.
I. Biswas in [8] provided a correspondence between a parabolic vector bundle and an orbifold
vector bundle, that is, a vector bundle on a variety equipped with a finite group action
together with a lift of the action of the group to the bundle. In his work, I. Biswas explicitly
constructs a class of parabolic bundles using the “Covering Lemma” of Y. Kawamata [26]; the
correspondence depends on the choice of the parabolic weights, whereas the Galois covering
Y is constructed to have the same dimension as X. A similar correspondence without such
restrictions was provided by I. Mundet i Riera in [37]. In the Higgs bundle case, for a finite
group Γ acting as a group of automorphisms on a smooth projective variety Y , such that
the quotient X = Y/Γ is also a smooth variety, I. Biswas, S. Majumder and M. Wong in
[11] provide a bijective correspondence between parabolic Higgs bundles on X and Γ-Higgs
bundles on Y .

When the parabolic weights are rational, an equivalence between parabolic bundles and
holomorphic bundles over V -surfaces (that means 2-dimensional orbifolds) provides an effec-
tive method to study the moduli problem, developing a Yang-Mills-Higgs theory on Riemann
V -surfaces and calculating the cohomology of the gauge group of a V -bundle. The correspon-
dence between V -bundles and parabolic bundles was first studied by H. Boden in [13] and by
M. Furuta and B. Steer in [16] using similar methods. Subsequently, B. Nasatyr and B. Steer
in [38] introduced Higgs V -bundles as a straightforward extension of the original approach
of N. Hitchin to orbifold Riemann surfaces studying solutions of the U(2) - Yang-Mills-Higgs
equations on orbifold Riemann surfaces and their reinterpretation as SL(2,C)-representations
of the orbifold fundamental group. Moreover, the Teichmüller space in the orbifold case was
studied in [38], as well as the topology of the moduli space of Higgs bundles in the orbifold
situation for rank 2 bundles.

Under the correspondence between parabolic Higgs bundles and Higgs V -bundles, we map
a parabolic Higgs bundle over a Riemann surface X with trivial filtration over each puncture
pk, for 1 ≤ k ≤ s, and weight either 0 or 1

2 to a Higgs V -bundle over a V -manifold M with
s many marked points around which the isotropy group is Z2, whereas X is the underlying
surface of M . V -cohomology with coefficients in Z2 is now used to describe new topological
invariants and thus compute the least number of connected components of moduli of maximal
parabolic G-Higgs bundles for semisimple Lie groups G, when the homogeneous space G/H
is a Hermitian symmetric space of tube type, where H ⊂ G is a maximal compact subgroup.
Note here that maximality is provided by a general Milnor-Wood type inequality established in
[4]. Calculations in orbifold cohomology provide the rank of the cohomology groups where the
topological invariants of the corresponding Higgs V -bundles live as Stiefel-Whitney classes;
we deduce the following theorems by counting all possible numbers of these invariants for
parabolic Sp(2n,R)-Higgs bundles with maximal degree.
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Theorem. 7.9, 7.10. Let X be a smooth Riemann surface of genus g and let D be a reduced
effective divisor of s many points on X, such that 2g − 2 + s > 0.

(1) The moduli space Mmax
par (Sp (2,R)) of maximal polystable parabolic Sp (2,R)-Higgs

bundles over the pair (X,D) has at least 22g+s−1 connected components.
(2) The moduli spaceMmax

par (Sp(4,R)) of maximal polystable parabolic Sp (4,R)-Higgs bun-

dles over the pair (X,D) has at least (2s + 1)22g+s−1 + 2s(2g− 3 + s) connected com-
ponents.

(3) The moduli space Mmax
par (Sp (2n,R)) of maximal polystable parabolic Sp (2n,R)-Higgs

bundles over the pair (X,D), for n ≥ 3, has at least (2s + 1)22g+s−1 connected com-
ponents.

We subsequently study the topological invariants for the moduli space when the parabolic
structure α is fixed, but not necessarily involving all weights equal to 1

2 . We introduce the
notation Mmax,α

par (Sp(2n,R)) to mean polystable parabolic Sp(2n,R)-Higgs bundles, where α
is a given parabolic structure, which is fixed and it is the same for all parabolic Sp(2n,R)-Higgs
bundles inMmax,α

par (Sp(2n,R)), this means, they have the same filtration over each x ∈ D with
the same weight α(x), for every x ∈ D. Note that the moduli space Mmax,α

par (Sp(2n,R)) is a
subspace of Mmax

par (Sp(2n,R)) considered earlier.
In this case, the monodromy around the points in the divisor needs special attention. To

be more precise, the V -fundamental group is described by

π1V (M) = {a1, b1, ..., ag, bg, σ1, ..., σs | σ1...σs[a1, b1]...[ag, bg] = 1, σ2i = 1, for1 ≤ i ≤ s},
where σi describe the monodromy around the point xi. By the correspondence between line
V -bundles and parabolic line bundles, the monodromy around xi corresponds to the weight of
the corresponding parabolic line bundle over the point xi. Thus fixing a parabolic structure α
is equivalent to fixing the monodromy around xi, for 1 ≤ i ≤ s. However, not every parabolic
structure corresponds to a well-defined element in Hom(π1V (M),Z2). Indeed, the relation
σ1...σs[a1, b1]...[ag, bg] = 1 implies that the number of nontrivial σi is even. Equivalently, if
the cardinality of the set {x ∈ D|α(x) = 1

2} is even, then the parabolic structure corresponds

to an element in Hom(π1V (M),Z2), and such a parabolic structure could be a choice for the
square root of K(D)2. Thus we say that the parabolic structure α is even (resp. odd) if
the cardinality of the set {x ∈ D|α(x) = 1

2} is even (resp. odd). Recall that the divisor D
contains an integer number of s-many points. Our result which includes this extra analysis is
the following.

Proposition. 7.11 Let X be a smooth Riemann surface of genus g and let D be a reduced
effective divisor of s many points on X, such that 2g − 2 + s > 0. Consider the moduli
space Mmax,α

par (Sp(2n,R)) of maximal polystable parabolic Sp(2n,R)-Higgs bundles, where α
is a given parabolic structure, which is fixed for all Higgs bundles in the moduli space, this
means, the parabolic Higgs bundles have the same filtration over each x ∈ D with the same
weight α(x), for every x ∈ D. Then,

i. If α is even, the moduli spaceMmax,α
par (Sp(4,R)) has at least 22g+s−1+(2g−3+s)+22g

connected components.
ii If α is odd, the moduli space Mmax,α

par (Sp(4,R)) has at least 22g+s−1 + (2g − 3 + s)
connected components.

iii. If α is even, the moduli space Mmax,α
par (Sp(2,R)) has at least 22g connected compo-

nents, and the moduli space Mmax,α
par (Sp(2n,R)) has at least 22g+s−1 + 22g connected

components.
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iv. If α is odd, there are no maximal polystable parabolic Sp(2,R)-Higgs bundles with fixed
parabolic structure α, and the moduli space Mmax,α

par (Sp(2n,R)) has at least 22g+s−1

many connected components.

Using the component count method above for the Lie group G = Sp (4,R) via the cor-
respondence to orbifold Higgs bundles, we provide a minimum component count for moduli
spaces of maximal polystable parabolic G-Higgs bundles analogously to the non-parabolic
case [15]. Our results are summarized in Tables 1, 2, 3 appearing at the end of the main body
of this article.

The classical tool in order to provide an exact count of the number of connected components
of the moduli spaces considered in Table 1 involves the analysis of a particular moment map
on the moduli space, which is also a Morse-Bott function. For parabolic G-Higgs bundles
for a real Lie group G, this was pioneered in the dissertation of M. Logares [32] in the case
G = U(p, q) following analogous methods from non-parabolic cases. This problem for groups
other than U(p, q) is addressed in our subsequent article [30], where we develop the relevant
Morse theoretic machinery to show that for Sp(2n,R) the above numbers of components are
in fact the exact ones (and the same follows for the rest of the groups appearing in Table 1).
Therefore, we deduce that the topological invariants introduced in this article are fine enough
to distinguish the connected components of polystable parabolic G-Higgs moduli spaces in
the cases above.

Yet, an alternative method for counting components of moduli spaces of (non-parabolic) G-
Higgs bundles, especially for a split real form G, is by studying orbits of the monodromy group
on the first mod2 cohomology of the fibers of the Hitchin fibration; this was first described
by L. Schaposnik in [40] for the case SL(2,R), and subsequently the method was applied also
for non split real cases as well (see [1], [2], [24]). These techniques in the parabolic G-Higgs
setting are also developed in an ensuing article [31].

It is interesting at this point to compare the results of Table 1 with the analogous results in
the non-parabolic case from [44], [15], [17], [21] and [23], thus providing further applications of
our study of the topological invariants for parabolic G-Higgs bundles, as well as the methods
developed for finding those. In [44], T. Strubel using Fenchel-Nielsen coordinates showed that
the moduli spaceRmax (Σg,m, Sp (2n,R)) of maximal representations of the fundamental group
of a topological surface Σg,m of genus g and m ≥ 1 boundary components into Sp (2n,R),
has exactly 22g+m−1 connected components for every n ≥ 1. We explain how one can use
the method involving the V -manifold correspondence to obtain an alternative description of
T. Strubel’s result. Furthermore, we exhibit maximal non-parabolic G-Higgs bundles as V -
bundles equipped with a trivial action, an interpretation which leads to an explanation of the
component counts established by S. Bradlow, O. Garćıa-Prada, P. Gothen and I. Mundet i
Riera, and are summarized in [15], as special cases of our parabolic case component count,
when there is only one puncture considered.

This article involves the study of topological properties of moduli of polystable G-Higgs
bundles equipped with a parabolic structure, building on the general parabolic G-Higgs defini-
tions from [4]. Section 2 contains the basic definitions for parabolic GL (n,C)-Higgs bundles,
while the more general definitions for any semisimple Lie group G are put in an Appendix.
In this Appendix we also work out particular examples to demonstrate the relation between
the general stability condition for any group G and the classical one for GL (n,C). In Section
3 we adapt the deformation theory from the non-parabolic case to provide a calculation of
the expected dimension of the moduli space of polystable parabolic G-Higgs bundles. Section
4 contains the construction of parabolic Teichmüller components in full generality for any
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split real form G of a complex simple Lie group; a proof of the parabolic Higgs analog of
N. Hitchin’s main theorem in [23] is presented here and is a generalization of the argument
in [9]. From Section 5 on, we are dealing with the cases when the group G is Hermitian
symmetric. After introducing the parabolic Toledo invariant for parabolic Sp (2n,R)-Higgs
bundles, we prove a Milnor-Wood type inequality, which allows one to introduce the notion
of maximality. Section 6 is again preparatory and contains no new results; we review here the
correspondence to orbifold Higgs bundles in a way that should fit into our needs. In Section
7 we introduce the topological invariants induced by this correspondence and calculate the
total number of invariants in the case G = Sp (2n,R). In Section 8 we continue applying this
component count method for the rest Hermitian symmetric Lie groups of tube type. Lastly,
Section 9 contains a realization of classical results from the non-parabolic case formulated in
terms of our V -bundle correspondence method.

Notation. Throughout the article, we will be making use of the following notation for the
corresponding moduli spaces we shall be considering:

• Mα
par(G): moduli space of polystable parabolic G-Higgs bundles with fixed parabolic

structure α; all parabolic bundles have the same filtration over each x ∈ D with the
same weight α(x), for every x ∈ D.
• Mn

par(G) = ∪α∈ 1
n
tMα

par(G): the points in Mα
par(G) for α ∈ 1

n t, where t is the Lie

algebra of a maximal torus of H which is a maximal compact subgroup of G.
• Mpar(G): the moduli space M2

par(G).

• Mmax,α
par (G): the points in Mα

par(G) with maximal parabolic Toledo invariant.

• Mmax
par (G): the points in M2

par(G) with maximal parabolic Toledo invariant.

2. Definitions

In this preliminary section, we review the basic definitions for parabolic GL (n,C)-Higgs
bundles; further details may be found in [7], [14], or [19]. Parabolic G-Higgs bundles for
a non-compact real reductive group G were introduced in [4], where a Hitchin-Kobayashi
correspondence was also established. We have included these more general definitions in an
Appendix at the end of this article, where we exhibit the cases G = GL(n,C) and G =
Sp(2n,R) as well as the stability condition in detail.

Definition 2.1. Let X be a closed, connected, smooth Riemann surface of genus g ≥ 2 and
D = {x1, . . . , xs} a divisor of s-many distinct points on X; denote this pair by (X,D). A
parabolic vector bundle E over (X,D) is a holomorphic vector bundle E → X with parabolic
structure at each x ∈ D (weighted flag on each fiber Ex):

Ex = Ex,1 ⊃ Ex,2 ⊃ . . . ⊃ Ex,r(x)+1 = {0}
0 ≤ α1 (x) < . . . < αr(x) (x) < 1.

We usually write (E,α) to denote a vector bundle equipped with a parabolic structure
determined by a system of weights α (x) = (α1 (x) , . . . , αn (x)) at each x ∈ D. Moreover,
set ki (x) = dim (Ex,i/Ex,i+1 ) be the multiplicity of the weight αi (x). We can also write the
weights repeated according to their multiplicity as

0 ≤ α̃1 (x) ≤ . . . ≤ α̃n (x) < 1

where now n = rkE. A weighted flag shall be called full, if ki (x) = 1 for every i and x ∈ D.
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Given a pair of parabolic vector bundles the basic constructions for a parabolic subbundle,
direct sum, dual and tensor product have been described in [7] and [19]; we will be making
frequent use of these constructions.

Definition 2.2. A holomorphic map f : E → E′ of parabolic vector bundles (E,α) , (E′, α′)
is called parabolic if αi (x) > α′j (x) implies f (Ex,i) ⊂ E′x,j+1, for every x ∈ D.
Furthermore, we call such map strongly parabolic if αi (x) ≥ α′j (x) implies f (Ex,i) ⊂ E′x,j+1

for every x ∈ D.

Definition 2.3. A notion of parabolic degree and parabolic slope of a vector bundle equipped
with a parabolic structure can be defined as follows

pardeg (E) = degE +
∑
x∈D

r(x)∑
i=1

ki (x)αi (x)

parµ (E) =
pardeg (E)

rk (E)

Definition 2.4. A parabolic vector bundle will be called stable (resp. semistable), if for every
non-trivial proper parabolic subbundle F ≤ E, it is parµ (F ) < parµ (E), (resp. ≤).

Definition 2.5. Let K = Ω1
X be the canonical bundle over X and E a parabolic vector

bundle. Let D = {x1, . . . , xs}. The bundle morphism Φ : E → E ⊗ K (D) will be called a
parabolic Higgs field, if it preserves the parabolic structure at each point x ∈ D:

Φ |x (Ex,i) ⊂ Ex,i ⊗K (D) |x
In particular, we call the Higgs field Φ strongly parabolic, if

Φ |x (Ex,i) ⊂ Ex,i+1 ⊗K (D) |x ,
in other words, Φ is a meromorphic endomorphism valued 1-form with at most simple poles
along the divisor D, whose residue at x ∈ D is nilpotent with respect to the filtration. Note
that the divisor D is always considered to be an effective divisor, and since K (D) does not
carry a weighted filtration, the parabolic structure on E ⊗K (D) is induced only by the one
on E.

After these considerations we define parabolic Higgs bundles as follows.

Definition 2.6. Let K be the canonical bundle over X and E be a parabolic vector bundle
over X. A parabolic Higgs bundle over (X,D) is given by a pair (E,Φ), where Φ : E →
E ⊗K (D) is a parabolic Higgs field.

Analogously to the non-parabolic case, we may define stability as follows.

Definition 2.7. A parabolic Higgs bundle will be called stable (resp. semistable), if for every
Φ-invariant parabolic subbundle F ≤ E it is parµ (F ) < parµ (E) (resp. ≤). Furthermore, it
will be called polystable, if it is the direct sum of stable parabolic Higgs bundles of the same
parabolic slope.

In [46] and [47] K. Yokogawa has constructed the moduli space of semistable K (D)-pairs
Pα, that is, pairs (E,Φ) with Φ parabolic, using geometric invariant theory and has shown
that it is a normal, smooth at the stable points, quasi-projective variety of dimension

dimPα = (2g − 2 + s)n2 + 1, (2.8)
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for fixed n = rkE, d = pardeg(E) and weight type α. Moreover, in [28] H. Konno constructed
the moduli space of stable parabolic Higgs bundles Nα as a hyperkähler quotient. It is contained
in Pα as a closed subvariety of dimension

dimNα = 2 (g − 1)n2 + 2 + 2
∑
x∈D

fx, (2.9)

where fx = 1
2

(
n2 −

r(x)∑
i=1

(ki (x))2
)

is the dimension of the associated flag variety.

Parabolic G-Higgs bundles for a real reductive Lie group G were first introduced in full
generality in [4]; in the Appendix we include a brief review of these general definitions along
with a detailed description of some examples. In particular, we check that the general def-
inition of a parabolic G-Higgs bundle along with the (poly)stability condition in the case
G = GL (n,C) coincides with the definition included in this preliminary section. For a given
parabolic structure, which we shall still denote by α, we define Mα

par(G) to be the moduli
space of polystable parabolic G-Higgs bundles with fixed parabolic structure α. In particular,
when α ∈ 1

n t with t the Lie algebra of a maximal torus of H which is a maximal compact
subgroup of G, we denote Mn

par(G) = ∪α∈ 1
n
tMα

par(G). On the other hand, the standard

notation Mpar(G) will always mean in this article the moduli space in the special case when
n = 2, that is, polystable parabolic G-Higgs bundles with fixed parabolic structure α ∈ 1

2 t.

Remark 2.10. The moduli spaces Pα and Nα considered above may be viewed as particular
subspaces of Mα

par(GL (n,C)).

3. Deformation theory

The deformation theory for parabolic K(D)-pairs was studied by K. Yokogawa in [47]. We
now adapt results from that article to the case of parabolic G-Higgs bundles for G semisimple,
analogously to the non-parabolic case studied in §3.3 of [18]. For a semisimple Lie group G,
let H ⊂ G be a maximal compact subgroup and let g = h⊕m be a Cartan decomposition so
that the Lie algebra structure of g satisfies

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.

Let gC = hC ⊕ mC be the complexification of the Cartan decomposition and consider the
sheaves PE

(
mC) of parabolic sections of E

(
mC) and NE

(
mC) of strongly parabolic sections

of E
(
mC); for the full definition, see the Appendix at the end of this article .

Definition 3.1. Let (E,ϕ) be a parabolic G-Higgs bundle over (X,D). The deformation
complex of the parabolic G-Higgs bundle (E,ϕ) is the following complex of sheaves

C•P (G,E, ϕ) : PE
(
hC
)

[−,ϕ]−−−→ PE
(
mC
)
⊗K (D) ,

where [−, ϕ] : hC → End
(
mC) is the commutator ψ 7→ ψϕ− ϕψ.

Assuming now that (E,ϕ) is strongly parabolic, the deformation complex of the strongly
parabolic G-Higgs bundle (E,ϕ) is the complex of sheaves

C•N (G,E, ϕ) : PE
(
hC
)

[−,ϕ]−−−→ NE
(
mC
)
⊗K (D) .

The above definition makes sense, since for instance in the parabolic case ϕ is a meromorphic
section of PE

(
mC)⊗K (D) and

[
mC
α, h

C
α

]
⊆ mC

α for any α ∈
√
−1Ā; we refer to the definitions

in the Appendix for details. An analogous statement is true also in the strongly parabolic
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Higgs bundle case. Whenever there would be no ambiguity, we shall use the notation C•i (E,ϕ)
for the deformation complex, where i = P,N .

Proposition 3.2. The space of infinitesimal deformations of a parabolic G-Higgs bundle
(E,ϕ) is naturally isomorphic to the hypercohomology group H1 (C•P (E,ϕ)). Analogously, the
space of infinitesimal deformations of a strongly parabolic G-Higgs bundle (E,ϕ) is naturally
isomorphic to the hypercohomology group H1 (C•N (E,ϕ)).

Proof. The proof follows exactly the same arguments as the proof of statement (3.2) from [45]
of M. Thaddeus, who described the infinitesimal deformations of parabolic Higgs bundles. �

For any parabolic G-Higgs bundle (E,ϕ) there is a natural long exact sequence

0→ H0 (C•P (E,ϕ))→ H0
(
PE

(
hC
))

[−,ϕ]−−−→ H0
(
PE

(
mC
)
⊗K (D)

)
→ H1 (C•P (E,ϕ))→ H1

(
PE

(
hC
))

[−,ϕ]−−−→ H1
(
PE

(
mC
)
⊗K (D)

)
→ H2 (C•P (E,ϕ))→ 0.

The Serre duality theorem for parabolic sheaves (Proposition 3.7 in [47]) provides that
there are natural isomorphisms for i = P,N :

Hi (C•i (E,ϕ)) ∼= H2−i(C•i (E,ϕ)∗ ⊗K (D))
∗
,

where the dual of the deformation complex C•i (E,ϕ) is defined as

C•P (E,ϕ)∗ : NE
(
mC
)
⊗ (K (D))−1

[−,ϕ]−−−→ NE
(
hC
)
,

while the dual of the deformation complex for strongly parabolic pairs is respectively

C•N (E,ϕ)∗ : PE
(
mC
)
⊗ (K (D))−1

[−,ϕ]−−−→ NE
(
hC
)
.

An important special case is when G is a complex group:

Proposition 3.3. Assume that G is a complex semisimple Lie group. Then there is a natural
isomorphism

H2 (C•N (E,ϕ)) ∼= H0(C•N (E,ϕ))∗.

Proof. When G is complex, ad : g→ g and the Cartan decomposition of g is g = u+ iu, where
u = Lie (U) for U ⊂ G a maximal compact subgroup. Thus, in this case ϕ ∈ NE (g)⊗K (D).
Moreover, for a complex group G the deformation complex is dual to itself, except for a sign
in the map, which does not affect cohomology:

C•N (E,ϕ)∗ ⊗K (D) : PE (g)
−ad(ϕ)−−−−→ NE (g)⊗K (D) .

The result now follows from Serre duality. �

The proof of the next proposition is immediate, since NE
(
hC
)
⊕ NE

(
mC) = NE

(
gC
)
,

given the Cartan decomposition gC = hC ⊕mC. The Corollary that follows is also immediate
from Serre duality:

Proposition 3.4. Let G be a real semisimple group and let GC be its complexification. Let
(E,ϕ) be a strongly parabolic G-Higgs bundle. Then there is an isomorphism of complexes

C•N (GC, E, ϕ) ∼= C•N (G,E, ϕ)⊕ C•N (G,E, ϕ)∗ ⊗K (D) ,

where C•N
(
GC, E, ϕ

)
denotes the deformation complex of (E,ϕ) viewed as a strongly parabolic

GC-Higgs bundle, while C•N (G,E, ϕ) denotes the deformation complex of (E,ϕ) viewed as a
strongly parabolic G-Higgs bundle.
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Corollary 3.5. With the same hypotheses as in the previous Proposition, there is an isomor-
phism

H0
(
C•N (GC, E, ϕ)

)
∼= H0 (C•N (G,E, ϕ))⊕H2(C•N (G,E, ϕ))∗.

Consider now for a semisimple Lie group G, a stable and simple parabolic G-Higgs bundle
(E,ϕ). As in the non-parabolic case [18], if a (local) universal family exists then the dimension
of the component of the moduli space containing the pair (E,ϕ) is equal to the dimension of
the infinitesimal deformation space H1 (C• (E,ϕ)); this dimension is referred to as the expected
dimension of the moduli space. In this situation, H0

(
C•i
(
GC, E, ϕ

))
= 0 and so

H0 (C•i (G,E, ϕ)) = 0 = H2 (C•i (G,E, ϕ)) ,

for G semisimple and i = P,N . The long exact sequence then provides that

dimH1 (C•i (E,ϕ)) = −χ (C•i (E,ϕ)) ,

where for simplicity we are keeping the same notation (C•i (E,ϕ)) for the complex of sheaves
for the group G and i = P,N . The expected dimension of the moduli space Mspar (G) of
polystable parabolic G-Higgs bundles can be calculated using the Hirzebruch-Riemann-Roch
formula and is independent of the choice of (E,ϕ):

Proposition 3.6. For a semisimple Lie group G, the moduli space Mα
par (G) of polystable

parabolic G-Higgs bundles with parabolic structure α and H2(C•P (E,ϕ)) = 0 for generic (E,ϕ)
has expected dimension

−χ(C•P (E,ϕ)) = (g − 1) dimGC + s · rk
(
E
(
mC
))

+
∑
i

{
dim

(
E
(
hC
)
xi
/h−αi

)
− dim

(
E
(
mC
)
xi
/m−αi

)}
, (3.7)

where g is the genus of the Riemann surface X and s is the number of points in D. Here h−αi,

m−αi means the part of h, m that is bounded by the Pαi-action as in Definition A.7. Moreover,
the moduli space of polystable strongly parabolic G-Higgs bundles with parabolic structure α
Mα

spar (G) has expected dimension

−χ(C•N (E,ϕ)) = (g − 1) dimGC + s · rk
(
E
(
mC
))

+
∑
i

{
dim

(
E
(
hC
)
xi
/h−αi

)
− dim

(
E
(
mC
)
xi
/m<0

αi

)}
, (3.8)

where m<0
αi is defined as in Definition A.9.

Note that the calculation for the expected dimension is based on a Riemann-Roch theorem
argument, and thus we always mean here the complex dimension.

Proof. Let (E,ϕ) be any stable parabolic G-Higgs bundle. By definition we have

χ(C•P (E,ϕ)) = χ
(
PE

(
hC
))
− χ

(
PE

(
mC
)
⊗K(D)

)
.

The short exact sequence A.18 provides that

χ
(
PE

(
hC
))

= χ
(
E
(
hC
))
−
∑
i

χ

(
E
(
hC
)
xi
/h−αi

)
.
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On the other hand, it is

χ
(
PE

(
mC
)
⊗K(D)

)
= χ

(
E
(
mC
)
⊗K(D)

)
−
∑
i

χ

(
E
(
hC
)
xi
/m−αi

)
.

The Killing form now induces the isomorphisms E
(
mC) ∼= E

(
mC)∗ and E

(
hC
) ∼= E

(
hC
)∗

,

and hence degE
(
mC) = degE

(
hC
)

= 0. Also, since E
(
mC) and E

(
hC
)

are vector bundles,
one has by Riemann-Roch that

χ
(
PE

(
hC
))

= deg
(
E
(
hC
))

+ rk
(
E
(
hC
))

(1− g)−
∑
i

χ

(
E
(
hC
)
xi
/h−αi

)
= rk

(
E
(
hC
))

(1− g)−
∑
i

dim

(
E
(
hC
)
xi
/h−αi

)
,

as well as

χ
(
PE

(
mC
)
⊗K(D)

)
= deg

(
E
(
mC
)
⊗K(D)

)
+ rk

(
E
(
mC
))

(1− g)−
∑
i

χ

(
E
(
mC
)
xi
/m−αi

)
= rk

(
E
(
mC
))

(2g − 2 + s) + rk
(
E
(
mC
))

(1− g)−
∑
i

dim

(
E
(
mC
)
xi
/m−αi

)
= rk

(
E
(
mC
))

(g − 1) + rk
(
E
(
mC
))
· s−

∑
i

dim

(
E
(
mC
)
xi
/m−αi

)
.

In conclusion we get

−χ(C•P (E,ϕ)) = (g − 1) dimGC + s · rk
(
E
(
mC
))

+
∑
i

{
dim

(
E
(
hC
)
xi
/h−αi

)
− dim

(
E
(
mC
)
xi
/m−αi

)}
. (3.9)

Similarly, for strongly parabolic Higgs bundles we only need to change from PE
(
mC) to

NE
(
mC). Thus, we get

−χ(C•N (E,ϕ)) =(g − 1) dimGC + s · rk
(
E
(
mC
))

+
∑
i

{
dim

(
E
(
hC
)
xi
/h−αi

)
− dim

(
E
(
mC
)
xi
/m<0

αi

)}
. (3.10)

The proof of the proposition is complete. �

In the case when G is a complex Lie group, m ∼= h, as so the last term in the summation
for the parabolic deformation complex cancels out. We thus obtain the following:

Corollary 3.11. For a complex semisimple Lie group G, the moduli space of parabolic G-
Higgs bundles is a smooth complex variety with expected dimension

2(g − 1) dimCG+ s · rk
(
E
(
mC
))

.
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Notice that this calculation will give us real dimension

4(g − 1) dimCG+ 2s · rk
(
E
(
mC
))

= 2(g − 1) dimRG+ 2s · rk
(
E
(
mC
))

.

The case for strongly parabolic will depend on the choice of parabolic structure. We can
deduce part of the classical result for G = GL(n,C) in the following example:

Example 3.12. Let G = GL(n,C). As in previous calculation, we compute the Euler char-
acteristic

χ(C•P (E,ϕ)) = −n2(2g − 2 + s).

This does not provide directly the dimension of the moduli space, since when G = GL(n,C),
we will have nonzero H0(C•P (E,ϕ)), as G is not semisimple. Indeed, dimH0(C•P (E,ϕ)) = 1,
because there is an automorphism given by the identity. We would expect H2(C•P (E,ϕ)) = 0
for a smooth point in the moduli space, then the expected dimension is

dimMα
par(GL(n,C)) = n2(2g − 2 + s) + 1.

This calculation coincides with formula 2.8, which is also the result of Theorem 5.2 in [47].
In the case of strongly parabolic Higgs bundles, for a flag with grading such that kj(xi) =
dimExi,j − dimExi,j+1 as in Example A.22, we get

dim

(
E
(
hC
)
xi
/h−αi

)
− dim

(
E
(
mC
)
xi
/m<0

αi

)
= −

∑
j

kj(xi)
2.

Therefore, the Euler characteristic for the strongly parabolic Higgs bundle deformation com-
plex will be

−χ(C•N (E,ϕ)) = n2(2g − 2) +
∑
i

n2 −∑
j

kj(xi)
2

 .

In this situation, we have the Serre duality as in Corollary 3.3, which provides that

dimH0(C•N (E,ϕ)) = dimH2(C•N (E,ϕ)) = 1.

Thus, one has

dimMα
spar(GL(n,C)) = n2(2g − 2) +

∑
i

n2 −∑
j

kj(xi)
2

+ 2.

In the case of a generic flag, which means that kj(xi) = 1 for all possible i, j, the expected
dimension is

dimMα
spar(GL(n,C)) = n2(2g − 2) + s · n(n− 1) + 2.

This is in accordance with formula 2.9, elaborated also in Proposition 2.4 in [19]. In a more
general situation where we do not assume semisimplicity, we will be able to compute the
dimension of H0 from the dimension of the center of HC and derive a formula similar to
Theorem II of [3], but we will not be discussing this here.

Remark 3.13. Notice that when the number of punctures s is zero, this dimension count
coincides with the dimension count in Proposition 3.19 of [18] in the non-parabolic case as
there is no contribution from parabolic points.
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4. Parabolic Teichmüller components

In his seminal article [23], N. Hitchin demonstrated the existence of topologically trivial
connected components, which he then called Teichmüller components, in the moduli space
Hom+ (π1 (Σ) , G) of reductive fundamental group representations into the adjoint group G
of the split real form of a complex simple Lie group GC, for a compact oriented surface
Σ of genus g ≥ 2. Recall that the split real forms of the classical groups are the groups
SL (n,R), SO (n+ 1, n), Sp (2n,R) and SO (n, n). These components, in reality Euclidean
spaces of dimension 2 (g − 1) dimRG, from the point of view of stable G-Higgs bundles are
parameterized by fixed square roots of the canonical line bundle over the Riemann surface,
for a choice of complex structure on Σ.

Later on, in [9] the authors have extended N. Hitchin’s results for a Riemann surface
with s-many punctures and the group G = SL (k,R). In particular, for a compact Riemann
surface X of genus g and a divisor of s-many distinct points D = {x1, . . . , xs} such that
2g− 2 + s > 0, they showed that Fuchsian representations of π1 (X\D) into PSL (2,R) are in
one-to-one correspondence with parabolic SL (2,R)-Higgs bundles of the form (E, θ), satisfying
the following:

(1) E := (L⊗ ξ)∗ ⊕ L,
where L is a line bundle with L2 = KX and ξ = OX (D) is the line bundle over the
divisor D; the bundle E is equipped with a parabolic structure given by a trivial flag
Exi ⊃ {0} and weight 1

2 for every 1 ≤ i ≤ s.

(2) θ :=

(
0 1
a 0

)
∈ H0 (X,End (E)⊗K (D)),

for a meromorphic quadratic differential a ∈ H0
(
X,K2 (D)

)
.

Considering the (k − 1)-symmetric product of the parabolic vector bundle E, an extension of
this result was provided also in [9] for representations into PSL (k,R), for k > 2. Fuchsian
representations of π1 (X\D) into PSL (k,R) correspond to parabolic SL (k,R)-Higgs bundles
(Wk, θ (a2, . . . , ak)), satisfying the following:

(1) Wk = Sk−1 (E) ⊗ ξm(k), where m (k) =

{
k
2 − 1, k : even
k−1
2 , k : odd

, equipped with the trivial

flag (Wk)xi ⊃ {0} with weight β =

{
1
2 , forkeven
0, forkodd

, for every 1 ≤ i ≤ s.

(2) θ (a2, . . . ak) =


0 1 0

0 0
. . . 0

...
. . . 1

ak · · · a2 0

, for merom. differentials aj ∈ H0
(
X,Kj ⊗ ξj−1

)
.

Lastly, it was shown in [9] that there exists a connected component of real dimension
2 (g − 1)

(
k2 − 1

)
+s
(
k2 − k

)
in the moduli space of representations of π1 (X\D) into SL (k,R)

with fixed conjugacy class of monodromy around the punctures. In the sequel, we extend these
results for general split real G.

Using an irreducible representation φ : SL(2,R) → G for a split real group G, which
sends copies of a maximal compact subgroup of SL(2,R) into copies of a maximal compact
subgroup of G, one can provide the existence of a parabolic Teichmüller component similarly
to the classical method by N. Hitchin. This was discussed in §8 of [4] . In particular, the
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representation φ considered induces a decomposition gC =
l
⊕
i=1

Vi into irreducible pieces. For

a standard sl2 basis (H,X, Y ), with H =
√
−1u1, take e1 = φ (X) and e−1 = φ (Y ). There

exists a basis p1, . . . , pl of invariant polynomials on gC of degrees mi + 1, where 2mi + 1 is
the dimension of Vi, or equivalently mi is the eigenvalue of ad(H) on a highest weight vector
ei ∈ Vi, for 1 ≤ i ≤ l, with the property that for elements of the form

f = e−1 + f1e1 + . . .+ flel

it is pi (f) = fi. Analogously to the non-parabolic case of N. Hitchin [23], one obtains a
section ψ of the map

p :Mpar (G)→
l
⊕
i=1

H0
(
X,Kmi+1 ⊗ ξmi

)
consisted of a family of parabolic G-Higgs bundles (φ (E) , ϕ), where:

(1) E = (L⊗ ξ)∗ ⊕ L, for L2 = KX and ξ = OX (D), and φ (E) is equipped with the
trivial flag (φ (E))xi ⊃ {0} with weight 1

2 , for every 1 ≤ i ≤ s, and
(2) The Higgs field is considered to be given by

ϕ = e−1 + a1e1 + . . . alel

with aj ∈ H0
(
X,Kmi+1 ⊗ ξmi

)
, for 1 ≤ j ≤ l.

The Higgs field ϕ is meromorphic with simple poles at the points xi in the divisor D and the
residue Resxiϕ = e−1 is nilpotent with l-dimensional centralizer, where l = rkgC. The section
ψ thus provides the existence of a parabolic Teichmüller component.

In fact, these components are parameterized by parabolic square roots of the line bundle
K (D) of degree 2g − 2 + s, that is, line bundles L0 → X with degL0 = g − 1 equipped
with a trivial flag (L0)xi ⊃ {0} and parabolic weight 1

2 on each fiber (L0)xi , for 1 ≤ i ≤ s.
Notice that, for such objects, pardegL0 = g − 1 + s

2 . In §7.2 later on, we show that there are

22g+s−1 many non-isomorphic such parabolic square roots of K (D), thus there exist 22g+s−1

parabolic Teichmüller components ofMpar (G) for a split real group G. We finally apply the
Riemann-Roch formula to compute the dimension of these components:

Theorem 4.1. Let X be a compact Riemann surface of genus g and let D = {x1, . . . xs} a
divisor of s-many distinct points on X, such that 2g− 2 + s > 0, that is, the surface X can be
equipped with a metric of constant negative curvature (-4). Let G be the adjoint group of the
split real form of a complex simple Lie group with Cartan decomposition in the Lie algebra
g = h⊕m. The space of homomorphisms from the fundamental group of X into G, with fixed
conjugacy class of monodromy around the points in D, has a component of real dimension
2 (g − 1) dimRG+ 2s · rkE

(
mC).

Proof. In [12], P. Boalch established a correspondence between parabolic connections and G-
filtered fundamental group representations, thus extending the non-abelian Hodge correspon-
dence over non-compact curves of C. Simpson [43] for GL(n,C). As in N. Hitchin’s classical
approach, this correspondence identifies the subfamily defined by the parabolic Hitchin section
ψ with the moduli space of completely reducible flat G-connections on X\D, meromorphic
at xi ∈ D and whose holonomy is G-conjugated to an element U ∈ H, where H ⊂ G is a
maximal compact subgroup of G.
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From the Riemann-Roch formula, one obtains that the real dimension of the vector space
l
⊕
i=1

H0
(
X,Kmi+1 ⊗ ξmi

)
is equal to

2

[
l∑

i=1

(2mi + 1) (g − 1) +mis

]
= 2 (g − 1) dimRG+ 2s

l∑
i=1

mi.

For the family of parabolic Higgs bundles we have considered, the residue of the Higgs field
Resxiϕ = e−1 is regular, nilpotent.

On the other hand, π1 (X) =

〈
c1, d1, . . . , cg, dg, e1, . . . , es

∣∣∣∣∣ g∏j=1
[cj , dj ]

s∏
j=1

ej = id

〉
, where cj , dj

are simple loops around the handles of X and ej are simple loops around the points xi in the
divisor. The image of the elements cj , dj via a representation ρ : π1 (X)→ G depends on dimG
different parameters. Moreover, for each loop ej , the relations for weights and monodromies in
Table 1 of [4] provide that the image of ej via a representation ρ : π1 (X\D)→ G is a regular
unipotent element Ej . Let Uj be the set of all conjugacy classes of Ej . To calculate the number
of parameters for the image of ej is equivalent to calculating the number of parameters for the
set Uj . Clearly, any element in Uj can be written as AEjA

−1, where A ∈ G/I , and where I
is the centralizer of the unipotent and regular element Ej . This means that dim I = l, where

l = rkgC, thus the total number of parameters for the image ρ ([ej ]) is dimCg
C − l =

l∑
i=1

2mi.

We deduce that the real dimension of the space of fundamental group representations into G
with the monodromy around the points in D lying in the conjugacy class of an element in H,

is equal to 2dimRG (g − 1)+2s
l∑

i=1
mi. This coincides with the dimension count for the vector

space
l
⊕
i=1

H0
(
X,Kmi+1 ⊗ ξmi

)
, which can be written as

2dimRG (g − 1) + 2s · rkE
(
mC
)

since for the weights in the family of Higgs bundles in the Hitchin section, it holds in particular
that

(
E
(
mC))

xi
' mC. �

Remark 4.2. Note that the calculation here coincides with the calculation of expected real
dimension of the moduli space from Corollary 3.11. Moreover, in the absence of punctures,
the dimension of a Teichmüller component coincides with the one from [23].

5. Maximal Parabolic components

Distinguished components of the moduli space Mα
par(G) also exist when the homogeneous

space G/H is a Hermitian symmetric space of noncompact type, where H ⊂ G is a maximal
compact subgroup. For the classical groups, this means considering the Lie groups SU(p, q),
Sp(2n,R), SO∗(2n) and SO0(2, n). In this case, h = Lie (H) has a 1-dimensional center and
there is a decomposition of mC into its ±i-eigenspaces mC = m+⊕m−. For a parabolic G-Higgs
bundle (E,ϕ) with the Higgs field ϕ decomposing accordingly as ϕ = ϕ+ + ϕ−, the authors
in [4] define a Toledo invariant τ (E) analogously to the non-parabolic case and provide a
general inequality of Milnor-Wood type.
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Proposition 5.1 (O. Biquard, O. Garćıa-Prada, I. Mundet i Riera [4]). For a semistable
parabolic G-Higgs bundle (E,ϕ) on a Riemann surface with a divisor (X,D), it holds that

−rk
(
ϕ+
)

(2g − 2 + s) ≤ τ (E) ≤ rk
(
ϕ−
)

(2g − 2 + s) .

In the sequel of this section, we study explicitly the case when G = Sp(2n,R), while
some further details are moved to the Appendix. Then, in §6 and §7 we describe topological
invariants for maximal parabolic G = Sp(2n,R)-Higgs bundles. The analysis for the case
G = Sp(2n,R) can be then readily adapted for the study of maximal parabolic G-Higgs
bundles also for the other Hermitian symmetric spaces G/H.

5.1. Maximal Parabolic Sp (2n,R)-Higgs bundles. A maximal compact subgroup of G =
Sp (2n,R) is H = U (n) and HC = GL (n,C), thus the parabolic structure on a GL (n,C)-
principal bundle is in this case defined by a weighted filtration. We will first fix some notation
before giving the precise definitions.

Let X be a compact Riemann surface of genus g and let the divisor D := {x1, . . . , xs} of
s-many distinct points on X, assuming that 2g − 2 + s > 0. Let K denote, as usual, the
canonical line bundle over X of degree 2g − 2, and ξ := OX (D) the line bundle on X given
by the divisor D. The degree of the line bundle K ⊗ ξ is 2g− 2 + s, where s is the number of
points in the divisor considered.

Let V be a rank n holomorphic bundle over X. Equip this with a parabolic structure given
by a weighted flag on each fiber Vxi :

Vxi ⊃ Vxi,2 ⊃ . . . ⊃ Vxi,n+1 = {0}
0 ≤ α1 (xi) ≤ . . . ≤ αn (xi) < 1

(2)

for each xi ∈ D. The parabolic degree of the parabolic bundle (V, α) is given by the rational
number

pardeg V = deg V +
∑
xi∈D

n∑
j=1

αj (xi)

For a parabolic principal HC = GL (n,C)-bundle E, let E
(
mC) denote the (parabolic)

bundle associated to E via the isotropy representation and, as a bundle,

E
(
mC
)

= Symn (V )⊕ Symn (V ∗)

for V the rank n bundle associated by the standard representation. The definition of a
parabolic Sp (2n,R)-Higgs bundle according to the authors in [4] specializes to the following:

Definition 5.2. Let X be a compact Riemann surface of genus g and let the divisor D :=
{x1, . . . , xs} of s-many distinct points on X, assuming that 2g − 2 + s > 0. A parabolic
Sp (2n,R)-Higgs bundle is defined as a triple (V, β, γ), where

• V is a rank n bundle on X, equipped with a parabolic structure given by a weighted
flag as in (2), and
• The maps β : V ∨ → V ⊗ K ⊗ ξ and γ : V → V ∨ ⊗ K ⊗ ξ are parabolic symmetric

morphisms.

The parabolic structures on V and V ∨ now induce a parabolic structure on the parabolic
sum E = V ⊕ V ∨, for which pardegE = 0. We define alternatively a parabolic Sp (2n,R)-
Higgs bundle on (X,D) as a parabolic Higgs bundle (E,Φ), where E = V ⊕ V ∨ and Φ =(

0 β
γ 0

)
: E → E ⊗ K (D); the stability condition for such pairs (E,Φ) will be the one

considered in Definition 2.4.
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Definition 5.3. The parabolic Toledo invariant of a parabolic Sp (2n,R)-Higgs bundle is
defined as the rational number

τ = pardeg (V ) .

Moreover, we may obtain a Milnor-Wood type inequality for this topological invariant:

Proposition 5.4. Let (E,Φ) be a semistable parabolic Sp (2n,R)-Higgs bundle. Then

|τ | ≤ n
(
g − 1 +

s

2

)
,

where s is the number of points in the divisor D.

Proof. Consider parabolic bundles N = ker (γ) and I = Im (γ)⊗ (K ⊗ ξ)−1 ≤ V ∨.
We thus get an exact sequence of parabolic bundles

0→ N → V → I ⊗K ⊗ ξ → 0

and so

par deg (V ) = par deg (N) + par deg (I ⊗K ⊗ ξ)
= par deg (N) + par deg (I) + rk (I) (2g − 2 + s) (3)

using the formula that gives the parabolic degree for the tensor product and the fact that
par deg (K ⊗ ξ) = 2g − 2 + s.

I is a subsheaf of V ∨ and I ↪→ V ∨ is a parabolic map. Let Ĩ ⊂ V ∨ be its saturation, which is
a subbundle of V ∨ and endow it with the induced parabolic structure. So N,V ⊕ Ĩ ⊂ E are
Φ-invariant parabolic subbundles of E. The semistability of (E,Φ) now implies parµ (N) ≤
parµ (E) and parµ (V ⊕ I) ≤ parµ

(
V ⊕ Ĩ

)
≤ parµ (E). However,

parµ (E) =
pardeg (E)

rk (E)
= 0,

thus we have
pardeg (N) ≤ 0

and
pardeg (V ) + pardeg (I) ≤ 0.

Equation (3) provides that

pardeg (V ) ≤ −pardeg (V ) + rk (I) (2g − 2 + s) ,

thus

τ ≤ n
(
g − 1 +

s

2

)
.

The map (V, β, γ) 7→ (V ∨ ⊗ ξ, γ, β) defines an isomorphismM−τ ∼=Mτ providing the minimal
bound −τ ≤ n

(
g − 1 + s

2

)
, where Mτ denotes the subspace consisted of the pairs with fixed

parabolic Toledo invariant τ . �

Definition 5.5. The polystable parabolic Sp (2n,R)-Higgs bundles with fixed parabolic struc-
ture α and parabolic Toledo invariant τ = n

(
g − 1 + s

2

)
will be called maximal and we shall

denote the subspace of the moduli space containing those by Mmax,α
par (Sp(2n,R)). We define

Mmax
par (Sp(2n,R)) to be the union ofMmax,α

par (Sp(2n,R)) with α ∈ 1
2 t, i.e. Mmax

par (Sp(2n,R)) =

∪α∈ 1
2
tM

max,α
par (Sp(2n,R)).

It can be shown that this subspace is non-empty (see [29]).
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6. The correspondence to orbifold Higgs bundles

The topology of parabolic semistable G-Higgs bundle moduli spaces has been studied so
far in the case when G = GL(n,C) in [19], G = U (2, 1) in [33] and G = U (p, q) in [20], [32],
which pioneered the study of irreducible components of parabolic Higgs bundles for a real
Lie group. In the case G = Sp (2n,R), we are fixing the parabolic degree d = pardeg(V )
of the bundle and the weight type α, where we assign weight equal to either 0 or 1

2 for the

trivial flag on each fiber Vxi , xi ∈ D; let Md
par (Sp (2n,R)) be the moduli space of polystable

parabolic Sp (2n,R)-Higgs bundles of degree d and the weight type described above. We note
that the parabolic structures we consider in the rest of the paper lie in 1

2 t. In other words,
any parabolic weight can be written as a fraction with denominator 2.

The reason why we are fixing these particular parabolic structures for parabolic Higgs
bundles in the moduli space Md

par (Sp (2n,R)) will become clear in what follows. In the
case when the weights in the parabolic structure of the bundle are rational numbers, we use a
correspondence between parabolic Higgs bundles and orbifold Higgs bundles in order to define
appropriate topological invariants and count connected components. Under the assumption
that the choices of the weights are either 0 or 1

2 , any weight can be written as a fraction with
denominator 2. Thus, we may construct a special V -manifold from the data (X,D, 2), where
m = 2 describes the cyclic group action around the points in the divisor D and it precisely
corresponds to the denominator “2”. The topological invariants of the corresponding Higgs
V -bundles we are interested in will be conceived as characteristic classes in V -cohomology
groups with Z2-coefficients. In this section, we review -for the most part- the correspondences
from [8], [16] and [38]. In particular, we construct an orbifold Higgs field for a bundle of any
rank following closely the constructions in the aforementioned references.

6.1. Orbifold Higgs bundles. Let Y be a closed, connected, smooth Riemann surface and
let Aut (Y ) be the group of algebraic automorphisms of Y . Assume that the finite group Γ acts
faithfully on Y , in other words, there is an injective homomorphism h : Γ→ Aut (Y ). Denote
by [Y/Γ] the orbifold and let E be a vector bundle over Y . We say that E is Γ-equivariant,
if there is a group action on E, ρ : Γ × E → E, such that φ ◦ ρ(γ, z) = h(γ)(φ(z)), where
φ : E → Y is the projection.

Definition 6.1. An orbifold sheaf on [Y/Γ] is a torsion free coherent sheaf E on Y together
with a lift of the action of Γ to E, such that the automorphism of the space of stalks for the
action of any g ∈ Γ is a coherent sheaf isomorphism between E and ρ

(
g−1
)∗
E; when E is

locally free, it is called an orbifold bundle.

Definition 6.2. The degree of an orbifold bundle E on [Y/Γ] is defined to be

degorb(E) =
1

|Γ|

∫
Y
c1(E),

where c1(E) is the first Chern class of E as a holomorphic bundle on Y .
The orbifold slope will be given by the fraction

µorb(E) =
deg(E)

rk(E)
.

Recall that a Higgs field Φ of a holomorphic bundle E over Y is a holomorphic section of
End(E)⊗K, where K is the canonical line bundle over Y . We define next the orbifold Higgs
field:
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Definition 6.3. An orbifold Higgs field Φ over the orbifold bundle E is a Higgs field such
that it is equivariant with respect to the action of Γ, i.e., ρ(g−1)∗Φ = Φ.

Definition 6.4. A Higgs bundle over the orbifold [Y/Γ] is a pair (E,Φ), where E is an orbifold
bundle and Φ is an orbifold Higgs field.

An orbifold bundle E is called orbifold stable (resp. semistable), if for any Γ-invariant stable
(resp. semistable) subbundle F of E with 0 < rankF < rankE, the inequality µorb(F ) <
µorb(E) (resp. µorb(F ) ≤ µorb(E)) holds. An orbifold Higgs bundle (E,Φ) will be called
orbifold stable (resp. semistable), if for any orbifold Higgs field Φ and Γ-invariant subbundle
F , the above inequality holds; further details can be found in [16], [38] and [8].

In this article, we are interested in the global quotient [Y/Γ] where the underlying space X
is a compact Riemann surface.

6.2. Local Picture of an Orbifold Higgs Bundle. Let M̃ be a k-dimensional manifold
with s-many marked points x1, ..., xs. For each marked point, there is a linear representation
σi : Γi → Aut(Rk) of a cyclic group Γi = 〈σi〉, 1 ≤ i ≤ s, where Γi acts freely on Rk\{0}
together with an atlas of coordinate charts

φi : Ui → Dk/σi, 1 ≤ i ≤ s;

φp : Up → Dk, p ∈ M̃\{x1, ..., xs}.

We get the orbifold M by gluing all local coordinate charts above, while M̃ is the underlying
manifold of M . The example we are interested in is M = [Y/Γ], where Y is a closed,
connected, smooth Riemann surface and Γ is a finite group acting effectively on Y . In this

case, the underlying space M̃ is exactly the underlying space X of [Y/Γ]. In [16], M. Furuta
and B. Steer consider this construction to define a V -manifold ; we review some properties of
V -manifolds in §7 later on.

Definition 6.5. A holomorphic orbifold bundle E of rank n over M is defined locally on
the charts as above with a collection of isotropy representations τi : Γi → Aut(Cn) and local
trivializations θi : E|Ui → Dk × Cn/σi × τi, for 1 ≤ i ≤ s.

Forgetting the group action, we get a well defined holomorphic vector bundle Ẽ over the

underlying space M̃ . We say that a local trivialization Θi : Ẽ|Dk → Dk × Cn is compatible
with the orbifold structure (with respect to E), if Θi is Γi-equivariant, where the Γi action
comes from the local trivialization θi. Notice that Definition 6.5 is the local description of
Definition 6.1.

We now give an example of the local chart of a rank n holomorphic orbifold bundle E over

M = [U/Zm], where m ≥ 2. A local trivialization Θ : Ẽ → U × Cn is Zm-equivariant with
respect to the following action

t(z; z1, z2, ..., zn) = (tz; tk1z1, t
k2z2, ..., t

knzn),

where k1, ..., kn are integers such that k1 ≤ k2 ≤ ... ≤ kn ≤ m. We can take local holomorphic

sections f1, ..., fn of Ẽ such that {f1(x), ..., fn(x)} is a basis of (Ẽ)x consisting of eigenvectors.
Then, we can set

Θ = (t−k1(t · f1), ..., t−kn(t · fn)),

where t · fi(x) = tkifi(x).
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Let now Φ be a Higgs field over E. In our example, Φ can be written with respect to the
local chart [U/Zm] as follows:

Φ = (φij)1≤i,j≤n,

where

φij =

{
zki−kj φ̂ij(z

m)dzz ifki ≥ kj
0 ifki < kj ,

(4)

and φ̂ij are holomorphic functions on Ẽ. We explain why Φ can in fact be written this way
in the following two remarks.

Remark 6.6. In general, Φ ∈ H0(End0(E)⊗K) is Zm-equivariant, where End0(E) denotes the
traceless homomorphisms of E and the action of Zm on End0(E)⊗K is conjugation. Under
the conjugation action, we have

φij =

{
zki−kj φ̂ij(z

m)dzz ifki ≥ kj
zki−kj φ̂ij(z

m)dzz ifki < kj .

If ki ≤ kj , then zki−kj is a negative number, which means possibly a meromorphic section,
not holomorphic. Hence, we may define φij as in (4).

Remark 6.7. In the next subsection, we construct the correspondence between an orbifold
Higgs bundle and a parabolic Higgs bundle. Under this correspondence, Φ = (φij) is a Higgs
field, and the fact that Φ is a “lower triangular matrix” means that Φ preserves the filtration
(cf. Definition 2.5), hence Φ is a well-defined parabolic Higgs field.

6.3. Orbifold Higgs bundle vs. Parabolic Higgs bundle. We construct a parabolic
Higgs bundle over an underlying surface from a given orbifold Higgs bundle and show that
this construction is precisely a one-to-one correspondence. This provides that given any
parabolic Higgs bundle over the underlying surface, we can recover the orbifold Higgs bundle.
We discuss the local construction in detail for both the holomorphic bundle and the Higgs
field; this local construction can be glued naturally. The construction follows very closely
[16], [38], and we are adding one more condition on the Higgs field which should be a lower
triangular matrix; see also p. 624 in [38].

In this section, all parabolic structures are assumed to have rational weights.

6.3.1. Holomorphic bundle. We briefly review the construction by M. Furuta and B. Steer
for the holomorphic bundle (cf. [16]). Since we work on the local chart, let E be a rank n
holomorphic orbifold bundle over the orbifold surface M = [U/Zm], where m ≥ 2, with local

trivialization Θ : Ẽ → U × Cn. The local trivialization Θ is Zm-equivariant with respect to
the action

t(z; z1, z2, ..., zn) = (tz; tk1z1, t
k2z2, ..., t

knzn).

Now we consider a bundle map f (k1, . . . , kn) : U\ {x} × Cn → U\ {x} × Cn defined by

f =

z
k1

. . .

zkn

 .
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Let Θ̃ = f(k1, . . . , kn)−1Θ. It is not hard to check that

Θ̃ (t · z) =

z
k1−k1

. . .

zkn−kn

 Θ̃ (z) = Θ̃ (z) . (5)

Hence, we define E (k1, . . . kn) to be the holomorphic orbifold bundle by patching E
∣∣
U\{x} and

U×Cn via Θ̃ = f(k1, . . . kn)−1Θ. From Equation (5), we also know the isotropy representation
is trivial, thus E (k1, . . . kn) is a well-defined holomorphic bundle over the underlying space U .
To define the filtration corresponding to the orbifold bundle (E,Θ), we have to make another
assumption on the numbers ki: We say the local trivialization Θ is good, if

k1 ≤ k2 ≤ . . . ≤ kn.

Let r be the number of distinct ki and let κ1, . . . , κr be the respective multiplicities of each
of those distinct numbers. We define the parabolic structure on F = E (k1, . . . kn) at a point
p by the following filtration

Fp = F1 ⊃ F2 ⊃ . . . ⊃ Fr+1 = {0} ,

where Fi =

ji−1︷ ︸︸ ︷
0⊕ · · · ⊕ 0⊕

r−ji−1︷ ︸︸ ︷
C⊕ · · · ⊕ C, with weight

kjs
m and js = κ1 + . . .+ κs. Clearly, F is a

parabolic vector bundle over the underlying space.

Theorem 6.8 (Theorem 5.7 in [16]). The construction from E to F = E (k1, . . . kn) gives
a bijective correspondence between isomorphism classes of holomorphic orbifold bundles with

good trivialization (E,Θ) and isomorphism classes of parabolic bundles
(
F, Θ̃

)
.

Remark 6.9. Recall that this correspondence is established assuming rational weights in the
parabolic structure.

6.3.2. Higgs field. We now describe the correspondence for the Higgs fields for (E,Θ) and(
F, Θ̃

)
. M. Furuta and B. Steer have constructed this correspondence in the rank 2 case. We

construct the Higgs field for any rank in a similar way. The difference is that our construction
of the Higgs field preserves the filtration of a parabolic bundle (Definition 2.5).

Recall that Equation (4) gives the local description of the orbifold Higgs field on M =
[U/Zm]. Under the correspondence E → F described in §6.3.1, the corresponding Higgs field

Φ̃ over the underlying space Ũ should be the conjugation of Φ by the matrix f (k1, . . . kr).
Hence, we have

φ̃ij = zkj−ki φ̂(zm)ij
dz

z

=

{
φ̂ij(w)
mw dw ifki > kj

0 ifki ≤ kj ,

where we change the coordinate by w = zm in the second equality above. From this

calculation, it is implied that Φ̃ =
(
φ̃ij

)
is a section with at most simple pole at p in

H0 (End0 (F )⊗K (p)), in other words, Φ̃ : F → F ⊗K (p).
Since the trivialization Θ is good, that is, k1 ≤ k2 ≤ . . . ≤ kr, the orbifold Higgs field Φ

is a lower-triangular matrix and the same is true for Φ̃, thus Φ̃ preserves the filtration. In
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conclusion, Φ̃ is a parabolic Higgs field. It is now not hard to recover the orbifold Higgs field
Φ from Φ̃, giving a one-to-one correspondence. In summary, we have the following theorem:

Theorem 6.10. The above construction gives a bijective correspondence between isomor-
phism classes of holomorphic orbifold Higgs bundles with good trivialization (E,Θ,Φ) and

isomorphism classes of parabolic Higgs bundles
(
F, Θ̃, Φ̃

)
.

Given this theorem, the next step is to show that this correspondence holds in the semistable
(resp. stable) case. The following theorem gives us a way to calculate the degree of an orbifold
line bundle.

Theorem 6.11 (Kawasaki-Riemann-Roch [27]). If E is a holomorphic orbifold line bundle

over [Y/Γ] with isotropy σβii at xi, 1 ≤ i ≤ s, then

dimH0(M,E)− dimH1(M,E) = 1− g + deg(E)−
s∑
i=1

βi
αi
, (6)

where deg(E) is the degree of E as an orbifold bundle over [Y/Γ], which is a rational number,
and αi is the order of the group generated by σi.

We remind the reader that deg(E) −
∑s

i=1
βi
αi

is an integer. Under the correspondence of
Theorem 6.8, we have

deg(F ) = deg(E)−
s∑
i=1

βi
αi
,

whereas Formula (6) implies that deg(E) = pardeg(F ). In conclusion, the equality of the
degree provides the following proposition:

Proposition 6.12 (Proposition 5.9 in [16]). We have a bijective correspondence between
isomorphism classes of holomorphic semistable (resp. stable) orbifold Higgs bundles with good
trivialization (E,Θ,Φ) and isomorphism classes of semistable (resp. stable) parabolic Higgs

bundles
(
F, Θ̃, Φ̃

)
.

The above correspondence is also established assuming rational weights in the parabolic
structure.

Remark 6.13. For the special maximal parabolic G-Higgs bundles we are considering, we have
seen that the defining parabolic bundle data for those can be reinterpreted as a direct sum of
parabolic vector bundles (as is E = V ⊕ V ∨ in the Sp(2n,R) case), thus the correspondence
of Proposition 6.12 can be used into our setting.

7. Topological Invariants of Maximal Parabolic Sp(2n,R)-Higgs bundles

Under the correspondence described in the last section, we use the V -cohomology to de-
scribe the topological invariants of the maximal Sp(2n,R)-parabolic Higgs bundles. In [41],
an explanation is provided on how to construct the fundamental group of the orbifold, and on
p. 426-427 of the same article the homology group is defined and the character is calculated.
From this, we can clearly define the orbifold cohomology H1(M) in our case. The V -manifold
we discuss in this section is exactly an orbifold. The terminology V -manifold comes from [16]
and [38]. We first review some basic properties of a V -manifold.
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7.1. V -manifold. The V -manifold is an orbifold. We review the definition of an orbifold and
a holomorphic bundle over an orbifold from the last section.

Let M̃ be a k-dimensional manifold with s-many marked points x1, ..., xs. For each marked
point, there is a linear representation σi : Γi → Aut(Rk) of a cyclic group Γi = 〈σi〉, 1 ≤ i ≤ s,
where Γi acts freely on Rk\{0} together with an atlas of coordinate charts

φi : Ui → Dk/σi, 1 ≤ i ≤ s;

φx : Ux → Dk, x ∈ M̃\{x1, ..., xs}.

An orbifold M is obtained by gluing all local coordinate charts above, while M̃ is the un-
derlying manifold of M . We call M the V -manifold in this section. The V -bundle E of
rank l over M (or vector bundle over the V -manifold M) is defined locally on the charts as
above with a collection of isotropy representations τi : Fi → Aut(C l) and local trivializations

θi : E|Ui → Dk × C l/σi × τi, 1 ≤ i ≤ s. We are interested in the case when the manifold M̃
is X = Y/Γ, where Y is a compact Riemann surface and Γ is a finite group acting effectively
on Y . The following theorem gives us the condition when the V -manifold M can be written
in the form [Y/Γ].

Theorem 7.1 (Theorem 1.2 in [16]). Let αi denote the order of the cyclic group generated by
the linear representation σi described above. Any compact oriented V -surface M , with s ≥ 3
or s = 2 and α1 6= α2 if g = 0, has the form Y/Γ, where Y is a compact Riemann surface
with genus g and Γ is a finite group acting effectively.

Theorem 7.2 (Theorem 1.3 in [16]). If the compact oriented V -manifold M has the form
Y/Γ, then there is a bijective correspondence between isomorphism classes of complex V -
bundles over M and equivariant isomorphism classes of complex vector bundles over Y with
a Γ-action.

We now define V -cohomology as follows. Recall that M is a union of Y \{x1, ..., xs} and∐
Ui, where Ui = Di/Zαi , 1 ≤ i ≤ s. Then MV is defined as the union of Y \{x1, ..., xs} and∐
EZαi ×Zαi Di.

Definition 7.3. The V -cohomology H∗V (M) is defined as the cohomology

H∗V (M) = H∗(MV ).

The following theorem is the basic tool in order to calculate the cohomology group H∗V (M):

Theorem 7.4 (Theorem 2.2 in [16]). We have the following isomorphism about the first
V -cohomology group

H1
V (M,Z) ∼= H1(M,Z).

7.2. Line V-bundles. Let M be an V -manifold. Line V -bundles are line bundles over the
V -manifold M . Note that the V -manifold is also an orbifold. Thus the line V -bundles can be
considered as line bundles over the orbifold.

Definition 7.5. Under the tensor product, the topological isomorphism classes of line V -
bundles form a group, which shall be denoted by PicV (M).

The topological classification of the bundles on a V -Riemann surface is already done by M.
Furuta and B. Steer [16]. Recall that there is a canonical line bundle Li at each point xi such
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that Lkii = O(xi), and this bundle has isotropy e
2π
√
−1 1

ki at each point xi. Thus, if we have a
V -bundle L with isotropy ((β1, k1), . . . , (βs, ks)), we define the desingularization |L| to be

|L| = L⊗ L−β11 ⊗ . . .⊗ L−βss

and it turns out that these completely classify the line bundles topologically.

Theorem 7.6 (Proposition 1.4 in [16]). There is a bijective correspondence between isomor-

phism classes of complex V-bundles and isotropy classes σβ11 , . . . , σ
βs
s over points x1, . . . , xs

respectively, as well as the first Chern class of a line bundle on the underlying manifold M̃ .
Thus

PicV (M) = Pic(M̃)⊕
s⊕
i=1

Zki .

The idea of the proof is the following: We recall that on an ordinary Riemann surface, two
line bundles L1 and L2 are topologically equivalent, if and only if c1(L1) = c1(L2). Now we

can use the desingularization to define line bundles |L1| and |L2| over M̃ . The line V -bundles
are equivalent if and only if c1(|L1|) = c1(|L2|) and their isotropy classes coincide under some
trivialization.

The class (c1(|L|), (β1, k1), . . . , (βs, ks)) is called the Seifert invariant of this bundle. Note
that this invariant depends on the local trivialization of each neighborhood.

We have more invariants if we would like to classify the holomorphic bundle instead of the
topological bundle. From the classical Narasimhan-Seshadri correspondence, there is a corre-
spondence between unitary representations of the fundamental group and rank n polystable
bundles E with trivial first Chern class and trivial c2(E) · c1(L)n−1 with the polystable Higgs
bundle, where L is an ample line bundle on a Kähler manifold. I. Biswas and A. Hogadi in
[10] generalized this correspondence for a compact orbifold of any dimension and any rank:

Theorem 7.7 (Theorem 1.2 in [10]). Let M be a complex projective orbifold of dimension n
and E a vector bundle over X with L an ample line bundle. Then E is polystable with respect
to L if and only if it corresponds to a unitary representation of an orbifold line bundle.

Thus, in particular, in the case of a line bundle over an orbifold Riemann surface, the
stability condition is trivial. We know that Pic0V (M) := Hom(π1V (M),C∗). We see that in
the case of s-many marked points, since C∗ is commutative, it is

Pic0V (M) := Hom(〈ai, bi, σi|σkii = 1,

s∏
k=1

σi = 1〉, U(1)) ∼= (S1)2g ×
⊕s

i=1 Zki
(1, 1, . . . , 1)

.

We deduce that in our case, that is, considering the trivial parabolic structure with weight
1
2 over each point in the divisor D, in other words, with Z2-isotropy at the s-many marked
points on the genus g Riemann surface M , we have the identification

Pic0V (M) ∼= (S1)2g ⊕ Zs−12 .

For bundles of higher degree, we can get a degree 0 bundle by tensoring with a degree −d
bundle, thus this also reduces to the degree 0 case as the stability condition is trivial. We
finally imply the following:

Proposition 7.8. Let X be a Riemann surface with genus g. Denote by M the V -manifold
with s-many marked points x1, ..., xs, around which the isotropy group is Z2, such that X is
the underlying surface of M . Let π : M → X be the natural map. Given any line bundle L
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over X, the line bundle π∗L has 22g+s−1 many square roots over M . In particular, let K be
the canonical line bundle over X. The line V -bundle π∗K over M has 22g+s−1 many square
roots over M .

Let L be a line bundle over X. Sometimes we abuse the notation L, to mean the corre-
sponding line V -bundle π∗L over M in the rest of the paper.

7.3. Calculations in orbifold cohomology. We consider the following special V -manifold

M = U1

⋃
U2, U1 = X\{x1, ..., xs}, U2 =

s∐
i=1

D/Z2,

MV = V1
⋃
V2, V1 = X\{x1, ..., xs}, V2 =

s∐
i=1

D ×Z2 EZ2,

where D is a disk around the punctures xi and X is a compact Riemann surface of genus g.
We only calculate the rank of the V -cohomology group H∗V (M) with coefficients Z2.

By the Mayer-Vietoris sequence, we have

0→ H0(MV )→ H0(V1)
⊕

H0(V2)→ H0(V1
⋂
V2)

j1−→ H1(MV )→ H1(V1)
⊕

H1(V2)→ H1(V1
⋂
V2)

j2−→ H2(MV )→ H2(V1)
⊕

H2(V2)→ H2(V1
⋂
V2).

(1) Clearly, V1
⋂
V2 =

∏s
i=1 S

1. We have

rk(H0(V1
⋂
V2)) = s,

rk(H1(V1
⋂
V2)) = s,

rk(H2(V1
⋂
V2)) = 0.

(2) For the cohomology group of V1 = X\{p1, ..., ps} we check that

rk(H0(V1)) = 1,

rk(H1(V1)) = 2g + s− 1,

rk(H2(V1)) = 0.

(3) We use the Leray spectral sequence to calculate the cohomology group of V2. We have
the following fibration

BZ2 → D ×Z2 EZ2 → D,

where BZ2 is the classifying space of Z2 and EZ2 is the universal bundle over BZ2.
By Leray spectral sequence, we have

H∗(BZ2, H
∗(D))⇒ H∗(D ×Z2 EZ2).
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We know

H i(D) =

{
Z, i = 0

0, otherwise.

Hence, we have

H i(D ×Z2 EZ2) =

{
Z2, i = 0, 1, 2

0, otherwise,

where H i(D×Z2 EZ2) is the Z2-cohomology. Based on the calculation above, we have

rk(H0(V2)) = s,

rk(H1(V2)) = s,

rk(H2(V2)) = s.

From the calculation of the ranks of the cohomology groups, we induce that the map j1
in the Mayer-Vietoris sequence is injective, while the map j2 is an isomorphism. Since MV

is connected, it is implied that rk(H0(MV )) = 1. The Mayer-Vietoris sequence now provides
that

rk(H1(MV )) = 2g + s− 1,

rk(H2(MV )) = s.

7.4. Topological Invariants of Parabolic Sp(2n,R)-Higgs Bundles inMmax
par (Sp(2n,R)).

In this subsection, we study the topological invariants of parabolic Sp(2n,R)-Higgs bundles in
Mmax

par (Sp(2n,R)). For a parabolic Higgs bundle (E,Φ) ∈Mmax
par (Sp(2n,R)), the denominator

of its parabolic weight α(x) is 2, for every x ∈ D (with the same notation as in Definition
2.1). In other words, the parabolic weight α(x) can be either 0 or 1

2 . We want to remind the
reader one more time that the denominator 2 of the weight corresponds to the group action
Z2 around the punctures in D; if the denominator is n, then the group action is Zn. To study
the topological invariants of parabolic Higgs bundles, we consider parabolic Higgs bundles as
Higgs V -bundles under the correspondence we studied in §6. Thus we take the topological
invariants of the corresponding Higgs V -bundles to define invariants for parabolic Higgs bun-
dles. In this subsection, we slightly abuse terminology between parabolic Higgs bundles and
Higgs V -bundles; when we discuss topological invariants this should always refer to the Higgs
V -bundles.

We first study the Sp(4,R)-case. Recall that the definition of a parabolic Sp(4,R)-Higgs
bundle over X with divisor D = {x1, ..., xs} involves a pair (E,Φ), where E = V ⊕ V ∨ is a

rank 4 parabolic vector bundle over X and Φ =

(
0 β
γ 0

)
: E → E⊗K(D) is a parabolic Higgs

field. From Proposition 5.4, the maximal parabolic degree of the parabolic vector bundle V is
2g−2+s. In this maximal case, the proof of Proposition 5.4 implies that γ is an isomorphism.
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Fix a square root L0 of K(D) (as a line V -bundle) and define W := V ⊗ L−10 . Clearly, we
have

c = γ ⊗ 1L−1
0

: W = V ⊗ L−10 → V ∨ ⊗K(D)⊗ L−10 = W∨,

φ = (β ⊗ 1L0) ◦ (γ ⊗ 1L−1
0

) : W = V ⊗ L−10 → V ⊗ L
3
2
0 = W ⊗K(D)2,

where the first map c is an isomorphism. Given a parabolic Sp(4,R)-Higgs bundle with maxi-
mal degree (E,Φ), we consider the associated triple (W, c, φ) when we discuss the topological
invariants. It is easy to check that the parabolic structure of E uniquely determines the
parabolic structure of W . Thus we use the same notation α for the parabolic structure of W .

From the correspondence between the orbifold bundle (V -bundle) and the parabolic bundle
we studied in §6, the parabolic Higgs bundle E = V ⊕ V ∨ over X is equivalent to a Higgs
V -bundle over M , where M is the V -manifold with s-many marked points x1, ..., xs, around
which the isotropy group is Z2, and X is the underlying surface of M .

Under this correspondence, c induces a quadratic form on the V -bundle W . Hence, the
structure group of W is O(2,C). Also, note that the Sp(4,R)-Higgs bundle E has the real
structure. More precisely, E can be written as E = ER⊗C, where ER is a real vector bundle.
Similarly, we can write W as WR⊗C. Therefore the structure group of WR is O(2). In parallel
to the definition of a Stiefel-Whitney class, the corresponding class w1 of WR in H1

V (M,Z2)
is a well-defined topological invariant for W . By Theorem 7.7 and the calculations in §7.3,
we deduce that the number of different elements in H1

V (M,Z2) is 22g+s−1.
An alternative description of this cohomology group is given by the fundamental group

H1
V (M,Z2) = Hom(π1V (M),Z2),

where π1V (M) is the V -fundamental group with presentation

π1V (M) = {a1, b1, ..., ag, bg, σ1, ..., σs | σ1...σs[a1, b1]...[ag, bg] = 1, σ2i = 1, 1 ≤ i ≤ s},

where a1, b1, ..., ag, bg are generators of the underlying surface X and σi are represented by
small loops around the points xi, 1 ≤ i ≤ s.

We discuss the topological invariants for maximal parabolic Sp(4,R)-Higgs bundles based
on the cohomology group H1

V (M,Z2). Let w1 ∈ H1
V (M,Z2) and w2 ∈ H2

V (M,Z2). We
distinguish the following cases:

(1) If w1 6= 0, every pair (w1, w2) is a topological invariant for WR. Thus the pair (w1, w2)
can be considered as the topological invariant of W . The number of topological
invariants in this case is 2s(22g+s−1 − 1).

(2) If w1 = 0, then the structure group can be reduced to SO(2,C) ⊂ O(2,C). From the
identification SO(2,C) ∼= C∗, W can be decomposed as the direct sum W = L

⊕
L∨.

Now, stability for the map φ : W →W⊗K(D)2, provides the existence of a non-trivial
holomorphic map L → L∨ ⊗K(D)2, therefore it holds necessarily that pardeg(L) ≤
2g − 2 + s.

a. If pardeg(L) 6= 2g − 2 + s, then every value of the parabolic degree gives a
topological invariant and there are at least 2g − 2 + s different values. But the
parabolic degree is not enough to give all possible topological invariants of L.
Recall from the definition of parabolic degree that the parabolic degree “pardeg”
can be written as the sum of the classical degree “ deg ” and the weight “w”,
which is the sum of the weights over each point x ∈ D. Note that w is uniquely
determined by the parabolic structure of L. If we fix the parabolic structure of
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L, there are 2g−2+s many choices for the part of the classical degree “ deg ”. At
the same time, we have 2s many choices for the parabolic structures of L. Thus
the number of topological invariants in this case is 2s(2g − 2 + s).

b. If pardeg(L) = 2g − 2 + s, then L2 ∼= K(D)2. This describes parabolic Sp(4,R)-
Higgs bundles (E = V ⊕ V ∨,Φ) with V = N ⊕N∨K (D), for a line bundle N =

K(D)
3
2 . Thus, square roots of K (D) parameterize components containing such

Higgs bundles, and this contributes to at least 22g+s−1 topological invariants by
Proposition 7.8.

The discussion above implies our main theorem:

Theorem 7.9. The moduli space Mmax
par (Sp(4,R)) of maximal polystable parabolic Sp (4,R)-

Higgs bundles over a compact Riemann surface X of genus g with a divisor D of s-many
distinct points on X, such that 2g − 2 + s > 0, has at least (2s + 1)22g+s−1 + 2s(2g − 3 + s)
connected components.

For n ≥ 3, the structure group of the V -bundle W above is O(n,C) and the classification
of O(n,C)-bundles does not provide the extra invariant pardeg(L) in this case. Moreover,
for every n ≥ 1 in general, there are 22g+s−1 connected components of the moduli space
Mmax

par (Sp (2n,R)) parameterized by the square roots of the canonical line bundle K(D) (the
parabolic Teichmüller components). This provides the following:

Theorem 7.10. The moduli spaceMmax
par (Sp (2,R)) of maximal polystable parabolic Sp (2,R)-

Higgs bundles over a compact Riemann surface X of genus g with a divisor of s-many distinct
points on X, such that 2g − 2 + s > 0, has at least 22g+s−1 connected components and the
moduli space Mmax

par (Sp (2n,R)) for n ≥ 3 has at least (2s + 1)22g+s−1 connected components.

7.5. Topological Invariants of Parabolic Sp(2n,R)-Higgs Bundles inMmax,α
par (Sp(2n,R)).

In this subsection, we study the topological invariants of parabolic Sp(2n,R)-Higgs bundles in
Mmax,α

par (Sp(2n,R)), where α is a given parabolic structure. Note that the parabolic structure
was not fixed for parabolic Higgs bundles in Mmax

par (Sp(2n,R)) earlier. In this subsection, all

parabolic Sp(2n,R)-Higgs bundles inMmax,α
par (Sp(2n,R)) are assumed to have the same fixed

parabolic structure α. More precisely, they have the same filtration over each x ∈ D with the
same weight α(x), for every x ∈ D. The moduli space Mmax,α

par (Sp(2n,R)) is a subspace of
Mmax

par (Sp(2n,R)), studied in §7.4.
We shall still deal with the case of parabolic Sp(4,R)-Higgs bundles. With the same

notation as we used in §7.4, a parabolic Sp(4,R)-Higgs bundle (E = V ⊕ V ∨,Φ =

(
0 β
γ 0

)
)

with maximal degree corresponds to a triple (W, c, φ), where c is an isomorphism and φ is a
parabolic K(D)2-twisted Higgs field. In §7.4, we study the topological invariants of (W, c, φ),
which gives the topological invariants of parabolic Higgs bundle (E,Φ). Now we use the same
approach to study the topological invariants of parabolic Sp(4,R)-Higgs bundles with a given
parabolic structure α.

By considering the real structure of W = WR ⊗ C, the first and second V -cohomology
H1
V (M,Z2), H

2
V (M,Z2) are considered as our topological invariants. Similar to the classical

case, there is natural map PicV (M)→ H2
V (M,Z2). By the calculation in §7.3, we know that

rkH2
V (M,Z2) = s. Thus the total number of elements in H2

V (M,Z2) is 2s. In fact, there is
a one-to-one correspondence between H2

V (M,Z2) and the torsion points in PicV (M). Note
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that, for MV , the exact sequence

0→ Z→ OMV
→ O∗MV

→ 0,

provides that

H1(MV , OMV
)→ H1(MV , O

∗
MV

)
$−→ H2

V (M,Z).

The first cohomology H1(MV , O
∗
MV

) is exactly the V -Picard group PicV (M). Therefore, there
is a morphism

$ : PicV (M)→ H2
V (M,Z).

By taking the Z2-coefficient, it is easy to see that the morphism $ induces the isomorphism
s⊕
i=1

Z2
∼= H2

V (M,Z).

This gives the one-to-one correspondence between H2
V (M,Z2) and the torsion points in

PicV (M). In our case, this correspondence is precisely between the second V -cohomology
H2
V (M,Z2) and parabolic structures of W . Thus fixing a parabolic structure α is equivalent

to fixing an element in the second V -cohomology H2
V (M,Z2).

Now suppose that w1 is trivial. The parabolic bundle W can be written as the sum of
parabolic line bundles L⊕L∨ such that 0 ≤ pardeg(L) ≤ 2g− 2 + s. As we discussed in Case
(2a) in §7.4, if we fix a parabolic structure α and assume that pardeg(L) 6= 2g − 2 + s, the
parabolic degree is the only topological invariant. In other words, the parabolic structure of L
is uniquely determined by that of W . We still use the notation α for the parabolic structure
of L.

In this paragraph, we consider α as the parabolic structure of the line bundle L. If
pardeg(L) = 2g − 2 + s, the topological invariants are described by the square roots of
K(D)2. In other words, L is a square root of K(D)2, however, its parabolic structure is
not arbitrary. Only a line bundle L with even parabolic structure can be a square root of
K(D)2. We will explain this property and define even (resp. odd) parabolic structure in this
paragraph. As we discussed in §7.2, there are 22g+s−1 many square roots, which correspond
to Hom(π1V (M),Z2). Recall that

π1V (M) = {a1, b1, ..., ag, bg, σ1, ..., σs | σ1...σs[a1, b1]...[ag, bg] = 1, σ2i = 1, 1 ≤ i ≤ s},
where the σi describe the monodromy around the point xi. By the correspondence between line
V -bundles and parabolic line bundles, the monodromy around xi corresponds to the weight of
the corresponding parabolic line bundle over the point xi. Thus fixing a parabolic structure
α is equivalent to fixing the monodromy around xi, 1 ≤ i ≤ s. However, not every parabolic
structure corresponds to a well-defined element in Hom(π1V (M),Z2). Indeed, the relation
σ1...σs[a1, b1]...[ag, bg] = 1 implies that the number of nontrivial σi is even. Equivalently, if
the cardinality of the set

{x ∈ D|α(x) =
1

2
}

is even, then the parabolic structure corresponds to an element in Hom(π1V (M),Z2), and such
a parabolic structure could be a choice for the square root of K(D)2. Thus we say that the
parabolic structure α is even (resp. odd) if the cardinality of the set

{x ∈ D|α(x) =
1

2
}
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is even (resp. odd).
Here is an easy example. Let s = 1 and D = {x}. The parabolic structure α of a parabolic

line bundle L is uniquely determined by the weight α(x), which is either 0 or 1
2 . In this case,

the parabolic structure is even if and only if the weight α(x) = 0, and the parabolic structure
is odd if and only if α(x) = 1

2 .
Based on the above discussion, the topological invariants of parabolic Sp(4,R)-Higgs bun-

dles with a fixed parabolic structure α are given as follows.

(1) If w1 6= 0, each element w1 ∈ H1
V (M,Z2) is a topological invariant. The number of

topological invariants in this case is 22g+s−1 − 1.
(2) Suppose that w1 = 0.

a. If pardeg(L) 6= 2g − 2 + s, the topological invariants are given by the parabolic
degree. The number of topological invariants in this case is 2g − 2 + s.

b. If pardeg(L) = 2g−2+s, the topological invariants are given by the square roots.
Note that the parabolic degree of any square root is an integer. In other words,
the number of points with nontrivial monodromy is even.
µ. If the parabolic structure α is even, the number of topological invariants is

22g.
ν. If the parabolic structure α is odd, the square roots are not well-defined.

The discussion above implies the following proposition.

Proposition 7.11. Let X be a smooth Riemann surface of genus g and let D be a reduced
effective divisor of s many points on X, such that 2g − 2 + s > 0. Consider the moduli
space Mmax,α

par (Sp(2n,R)) of maximal polystable parabolic Sp(2n,R)-Higgs bundles, where α
is a given parabolic structure, which is fixed for all Higgs bundles in the moduli space, this
means, the parabolic Higgs bundles have the same filtration over each x ∈ D with the same
weight α(x), for every x ∈ D. Then,

i. If α is even, the moduli spaceMmax,α
par (Sp(4,R)) has at least 22g+s−1+(2g−3+s)+22g

connected components.
ii If α is odd, the moduli space Mmax,α

par (Sp(4,R)) has at least 22g+s−1 + (2g − 3 + s)
connected components.

iii. If α is even, the moduli space Mmax,α
par (Sp(2,R)) has at least 22g connected compo-

nents, and the moduli space Mmax,α
par (Sp(2n,R)) has at least 22g+s−1 + 22g connected

components.
iv. If α is odd, there are no maximal polystable parabolic Sp(2,R)-Higgs bundles with fixed

parabolic structure α, and the moduli space Mmax,α
par (Sp(2n,R)) has at least 22g+s−1

many connected components.

8. Other Lie groups

The topological invariants and component count method developed for the case G =
Sp(2n,R) in the previous section hint towards counting the minimum number of maximal
components of moduli of polystable parabolic G-Higgs bundles also in other cases in which
G/H is a Hermitian symmetric space. We directly adapt the treatment followed by the
authors in [15] in the non-parabolic case. We will restrict to the cases when the bounded
symmetric domain corresponding to the Hermitian symmetric space G/H is of tube type.
For the classical semisimple Lie groups this means we will be interested in the groups SU(n, n),
SO∗(2n) for even integer n, SO0(2, n) and E−257 (cf. [15] for a more detailed description).
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In the sequel, (X,D) will always denote a compact Riemann surface X of genus g together
with a divisor D := {x1, . . . , xs} of s-many distinct points on X, assuming that 2g−2+2s > 0.

8.1. G = SU(n, n).

Definition 8.1. A parabolic SU(n, n)-Higgs bundle over (X,D) is a parabolic Higgs bundle
(E,Φ), such that

(1) E = V ⊕W , where V and W are parabolic vector bundles of rank n with pardeg V =
−pardegW .

(2) Φ =

(
0 β
γ 0

)
: E → E ⊗K (D), where β : W → V ⊗K (D) and γ : V → W ⊗K (D)

are parabolic morphisms.

A parabolic Toledo invariant for a parabolic SU(n, n)-Higgs bundle is defined by τ =
pardeg V = − pardegW and similarly to the proof of Proposition 5.4 one can establish the
Milnor-Wood bound

|τ | ≤ n
(
g − 1 +

s

2

)
.

Maximality for the Toledo invariant provides that γ : V →W ⊗K (D) is a parabolic isomor-

phism. This, together with the condition detW = (detV )−1 for the corresponding V -bundles
V,W imply that

(detW )2 '
(
(K (D))∨

)n
.

Choosing a square root L0 of K (D) and defining W̃ = W ⊗ L0, we have
(

det W̃
)2
' O.

Therefore, the topological invariant for det W̃ is defined by the choices of a square root of the
trivial line V -bundle, which can take 22g+s−1 different values. We deduce the following:

Theorem 8.2. The minimal number of connected components of the moduli spaces of parabolic
Higgs bundles Mmax

par (SU(n, n)), Mmax,α
par (SU(n, n)) is given as follows

Moduli Space M #π0 (M)

Mmax
par (SU(n, n)) 22g+s−1

Mmax,α
par (SU(n, n)), α is even 22g

Mmax,α
par (SU(n, n)), α is odd −

Remark 8.3. The preceding analysis coincides with the analysis for Sp(2,R) ' SU(1, 1). Note,
however, that for n 6= 1 there are no Teichmüller components, since SU(n, n) is not a split
real form.

8.2. SO∗(2n), for n even.

Definition 8.4. A parabolic SO∗(2n)-Higgs bundle over (X,D) for n = 2m is a parabolic
Higgs bundle (E,Φ), such that

(1) E = V ⊕ V ∨, where V is a parabolic vector bundle of rank n, and

(2) Φ =

(
0 β
γ 0

)
: E → E ⊗K (D), where β : V ∨ → V ⊗K (D) and γ : V → V ∨⊗K (D)

are skew-symmetric parabolic morphisms.

A parabolic Toledo invariant for a parabolic SO∗(2n)-Higgs bundle is defined by τ =
par deg V , for which:

|τ | ≤ n
(
g − 1 +

s

2

)
.
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Again the maximal case for τ will imply that γ is an isomorphism and for a fixed square root
L0 of K (D), and W̃ = V ∨ ⊗ L0, the homomorphism

ω := γ ⊗ IL∨0 : W̃∨ → W̃

is a skew-symmetric isomorphism defining a symplectic structure on the V -bundle W̃ , in

other words,
(
W̃ , ω

)
is an Sp(2n,C)-holomorphic V -bundle. Thus, the moduli space of

maximal parabolic SO∗(2n)-Higgs bundles is homeomorphic to the moduli space of principal
HC-bundles for H ' Sp(n), and Sp(n) is simply connected. Note that the moduli space of
symplectic vector bundles is connected [39]. Thus if we fix a parabolic structure α of E, i.e. a

parabolic strucutre of W̃ , the moduli space of pairs
(
W̃ , ω

)
, where W̃ is of parabolic structure

α, is connected. The above discussion provides the following theorem.

Theorem 8.5. The moduli space Mmax
par (SO∗(2n)) of maximal polystable parabolic SO∗(2n)-

Higgs bundles has at least 2s many connected components. The moduli spaceMmax,α
par (SO∗(2n))

has at least one connected component.

8.3. SO0(2, n).

Definition 8.6. A parabolic SO0(2, n)-Higgs bundle over (X,D) is a parabolic Higgs bundle
(E,Φ), such that

(1) E = V ⊕W , where V = L⊕ L∨ for a parabolic line bundle L and W corresponds to
a rank n orthogonal V -bundle.

(2) Φ =

 0 0 β
0 0 γ
−γt −βt 0

 : E → E ⊗K (D), where β : W → L ⊗K (D) and γ : W →

L∨ ⊗K (D) are parabolic morphisms.

A parabolic Toledo invariant for a parabolic SO0(2, n)-Higgs bundle is defined by τ =
par degL and a Milnor-Wood bound is described by

|τ | ≤ 2g − 2 + s.

Maximality for the Toledo invariant provides that γ : V → L∨⊗K (D) has maximal rank one
at all points and hence is surjective. Define F = ker γ and consider the short exact sequence

0→ F →W → L∨ ⊗K (D)→ 0.

Then the sequence splits and F inherits an O (n− 1,C)-structure. Consider the line bundle
L0 := L∨ ⊗K (D). From the exact sequence we deduce that L0 ⊗ detF ' O, hence L2

0 ' O.

This, in turn, implies that L2 ' (K (D))2. From this point on, we further distinguish two
cases:
Case 1: n ≥ 4. In this case, the only topological invariants we obtain are the Stiefel-Whitney
classes for the O (n− 1,C)-bundle. This provides a minimum of 2s · 22g+s−1 connected com-
ponents for Mmax

par (SO0(2, n)).
Case 2: n = 3. In this case, F is an O (2,C)-bundle and the treatment is similar to the
Sp(4,R)-case. There is a distinguished component for every value of (w1, w2), for w1 6= 0,
where w1 ∈ H1

V (M,Z2) and w2 ∈ H2
V (M,Z2); this provides at least 2s

(
22g+s−1 − 1

)
connected

components.
For w1 = 0, there is a decomposition F = M ⊕M−1 for a line V -bundle M . As in the

case of Sp(4,R), one can show that there is a non-trivial holomorphic map M → (K (D))2,
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which provides that 0 ≤ pardeg(M) ≤ 4g− 4 + 2s. For each value of the degree pardeg(M) <
4g − 4 + 2s, there is a distinguished connected component for each fixed parabolic structure
α. Note here that in contrast to the Sp(4,R)-case, when pardeg(M) = 4g − 4 + 2s, there is

an isomorphism M ' (K (D))2. Thus, there are no further invariants coming from this case.
We conclude to the following:

Theorem 8.7. The minimal number of connected components of the moduli spaces of maximal
polystable parabolic Higgs bundles Mmax

par (SO0(2, n)), Mmax,α
par (SO0(2, n)) is given as follows

Moduli Space M #π0 (M)

Mmax
par (SO0(2, 3)) 2s

(
22g+s−1 − 1

)
+ 2s(4g − 3 + 2s)

Mmax,α
par (SO0(2, 3)) 22g+s−1 + (4g − 3 + 2s)

Mmax
par (SO0(2, n)), n ≥ 4 22g+2s−1

Mmax,α
par (SO0(2, n)), n ≥ 4 22g+s−1

8.4. E−257 . The general Milnor-Wood type inequality established in [5] provides a description

of maximal G-Higgs bundles also in the exceptional tube case when G = E−257 . In this case,

a maximal compact subgroup is H = E−786 ×Z3U (1) and rk (G/H ) = 3. For the Toledo
invariant τ = τ (E) as defined in [4] in this full generality in the parabolic case, the Milnor-
Wood inequality is given by

|τ | ≤ 3
(
g − 1 +

s

2

)
.

In the maximal case for τ , following the non-parabolic treatment of [5], we get that a maximal

parabolic E−257 -Higgs bundle corresponds to an H ′ = F4×Z2-holomorphic V -bundle W̃ . The

group H ′C is not connected and the short exact sequence

1→ H ′0
C → H ′

C → π0

(
H ′

C
)
∼= Z2 → 1

provides the homomorphism in the induced long exact sequence in V -cohomology

H1
V

(
M,H ′

C
)
→ H1

V (M,Z2) ∼= (Z2)
2g+s−1.

The associated invariants in H1
V (M,Z2) provide the following:

Theorem 8.8. The minimal number of connected components of the moduli spaceMmax
par

(
E−257

)
is 22g+s−1.

Remark 8.9. Theorem 8.8 gives the least number of components for the corresponding moduli
space for the group E−257 . We leave open the possibility of having more topological invariants
coming from the second cohomology group H2

V (M,Z2).

Summarizing the results of the theorems in the previous sections on the minimum number of
connected components of the moduli spaces of polystable maximal parabolic G-Higgs bundles
for the classical Hermitian symmetric Lie groups G, one has Tables 1, 2 and 3 included at the
end of the main body of this article.

9. Two Special Cases

In this section, we discuss how one can obtain the classical component counts in [44],
[15],[17], [21] and [23] as special cases of the Theorems in §7.4 and §8.
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9.1. Punctured Riemann Surface. In [44], T. Strubel defined Fenchel-Nielsen coordinates
on the moduli space of maximal representations of the fundamental group of a topological
surface Σg,m of genus g and m ≥ 1 boundary components into Sp (2n,R). Using these
coordinates and counting parameters for gluing pairs of pants to obtain a surface with m-
boundary components, he showed that the moduli space Rmax (Σg,m,Sp (2n,R)) has exactly
22g+m−1 connected components for every n ≥ 1. Note that for such representations there is
no assumption on the monodromy around the boundary components.

From our point of view, let X be a compact Riemann surface of genus g and {p1, . . . , ps}
a collection of s-many distinct points on X. We may use the method from §7 to compute
the number of topological invariants, however, in this case, we do not have to construct the
V -manifold:

Let M = U1 = X\{p1, ..., ps} be a punctured Riemann surface without any action on the
Γ-equivariant bundle, in other words, without a construction of a V -bundle. The calculations
from §7.3 now adapt to give the following

rk(H0(M)) = 1,

rk(H1(M)) = 2g + s− 1,

rk(H2(M)) = 0.

Moreover, since H2(M) is trivial, the number of topological invariants of maximal parabolic
Sp(4,R)-Higgs bundles over the punctured Riemann surface M is only determined by the first
cohomology group H1(M), thus is exactly 22g+s−1. This is Case (1) as we discussed in §7.4.
We further notice that when the first cohomology u ∈ H1(M) is trivial, one can decompose
W = L

⊕
L∨ as the direct sum of line bundles and this line bundle L is over a punctured

Riemann surface, which is an affine space, and there is only one line bundle over an affine
space, the trivial one. As a result, there are no extra topological invariants coming from Cases
2(a) and 2(b), therefore the minimum number of connected components over M is 22g+s−1.

Remark 9.1. The same argument provides the number 22g+s−1 also in the cases for Sp(2,R)
and Sp(2n,R) for n ≥ 3 from Theorem 7.10; this gives an alternative explanation to T.
Strubel’s main result from [44].

9.2. The case when s=1. The number of connected components of moduli of maximal G-
Higgs bundles (non-parabolic) for the classical Hermitian symmetric spaces G/H has been
determined in [15] and the references therein. For the reader’s convenience the basic results
from that article are included in Table 9.2.1.

For a line V -bundle L̃, consider a local chart U/Z2 around a single point p ∈ D. The
cohomology group for the V -manifold M is described by

H1
V (M,Z2) = Hom(π1V (M),Z2),

where

π1V (M) = {a1, b1, ..., ag, bg, σ | σ[a1, b1]..[ag, bg] = 1, σ2 = 1}.

For a well-defined morphism ρ ∈ Hom
(
π1V (M) ,Z2

)
, the first relation for the fundamental

group provides that det (ρ (σ [a1, b1] . . . [ag, bg])) = 1. But det (ρ([ai, bi])) = 1 for 1 ≤ i ≤ g,
since Im ρ lies in Z2. Thus det (ρ (σ)) = 1, that is, in terms of the construction included in

§7.2 the Z2-isotropy around the point p is trivial. Hence, L̃→M is a holomorphic line bundle
over the Riemann surface (non-parabolic); denote the latter by L → X, and there are 22g
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Table 9.2.1. Number of connected components of the non-parabolic moduli
space Mmax (G).

Lie group G #π0 (Mmax (G)) Teichmüller components

Sp(2,R) = SL(2,R) 22g 22g

Sp(4,R) 3 · 22g + 4g − 4 22g

Sp(2n,R), for n ≥ 3 3 · 22g 22g

SU(n, n) 22g - (22g if n = 1)

SO∗(2n), for n: even 1 -
SO0(2, 3) 22g+1 + 8g − 4 1

SO0(2, n), for n ≥ 4 22g+1 -
E−257 22g -

many non-isomorphic square roots of the canonical line bundle, when s = 1. This implies
the non-parabolic component count for G = Sp(2n,R) when n 6= 2, SU(n, n), E−257 , SO∗(2n)
when n is even, and SO0(2, n) when n ≥ 4.

The component count for Sp(4,R). The topological invariants that distinguish the con-
nected components of Mmax

par (Sp(4,R)) are w1 ∈ H1
V (M,Z2), w2 ∈ H2(M,Z2), the parabolic

structure of a parabolic line bundle L (equivalently a line bundle over M) and its parabolic
degree pardeg(L) such that

0 ≤ pardeg(L) ≤ 2g − 2 + s

as we discussed in §7.4. Their values distinguish connected components as follows:

2s
(
22g+s−1 − 1

)︸ ︷︷ ︸
w1 6=0,w2

+ 2s(2g − 2 + s)︸ ︷︷ ︸
pardeg(L)=0,1,...,2g−3+s

+ 22g+s−1︸ ︷︷ ︸
pardeg(L)=2g−2+s

Now, as we have already checked, when s = 1, H1
V (M,Z2) ' Z2g

2 and this space is param-
eterizing non-isomorphic holomorphic line bundles L → M , where M is a V -manifold as
considered in §7. Thus, we get accordingly the invariants:

2
(
22g − 1

)︸ ︷︷ ︸
w1 6=0,w2

+ 2(2g − 2 + 1)︸ ︷︷ ︸
pardeg(L)

+ 22g︸︷︷︸
pardeg(L)=2g−1

.

Now we consider the non-parabolic case of K(D)-twisted Sp(4,R)-Higgs bundles, where D
includes a single point. The component count is given as follows [2]

2(22g − 1) + (2g − 2 + 1) + 22g.

Compared to the parabolic case, the difference comes from the middle part (2g− 2 + 1). The
reason is that we have to consider the parabolic structure of the line bundle L as we discussed
in §7.4. If we forget the parabolic structure (or consider the parabolic structure with weight
0), we revoke the classical K(D)-twisted case: 3 · 22g + 2g − 3.

The component count for SO0(2, 3). Quite similarly, the topological invariants that dis-
tinguish the connected components of Mmax

par (SO0(2, 3)) are u, v, the parabolic structure of
a line bundle M and its parabolic degree pardeg(M). As we discussed in §8.3, if w1 = 0,
there is a decomposition of the rank 3 bundle W = M ⊕ O ⊕M−1, where M is a parabolic
line bundle with 0 ≤ pardeg(M) ≤ 4g − 4 + 2s. Connected components are distinguished as
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follows:

2s
(
22g+s−1 − 1

)︸ ︷︷ ︸
w1 6=0,w2

+ 2s(4g − 3 + 2s)︸ ︷︷ ︸
pardeg(M)

When s = 1, for the parabolic line bundle M , we have

2
(
22g − 1

)︸ ︷︷ ︸
w1 6=0,w2

+ 2(4g − 3 + 2)︸ ︷︷ ︸
pardeg(M)

,

where pardeg(M) has 4g− 3 + 2 many choices and 2 is the number of choices of the parabolic
structures.

Now we consider the non-parabolic case of K(D)-twisted SO0(2, 3)-Higgs bundles, where
D includes a single point. The component count is similar to the SO0(2, 3)-case, and we have

2(22g − 1) + (4g − 3 + 2).

Compared to the parabolic case under the assumption s = 1, the difference comes from the
part (4g − 3 + 2). The reason is the same as we discussed for the case of Sp(4,R). More
precisely, we have to consider the parabolic structure of the line bundle M . If we forget the
parabolic structure, we will go back to the non-parabolic K(D)-twisted case: 3 · 22g + 4g− 3.

Remark 9.2. The description of how the component count specializes to the non-parabolic
case when s = 1 for G = Sp(4,R) and G = SO0(2, 3), points out an important difference
between parabolic and non-parabolic bundles. As we have seen already, all degree zero line
bundles on an orbifold surface can be naturally lifted to a compact Riemann surface. The
extra 2s-many choices of the invariants of the line V -bundle L for G = Sp(4,R) are coming
from tensoring with the square roots of O (pi), where pi are the points in the divisor.

Remark 9.3. When s = 1, we note that there is an element σ ∈ π1V (M). By the discussion
above, it seems that the calculation of connected components does not depend on the mon-
odromy action, which means that the connected components should be the same for all p ≥ 2
such that σp = 1. We want to remind the reader that p also corresponds to the denominator
of the weight in the parabolic structure.

If we change the monodromy action with σp = 1, we use the following local charts U2 =∏s
i=1D/Zp and V2 =

∏s
i=1D ×Zp EZp to construct MV . Here we follow the notation from

§7.3. We use the Leray spectral sequence to calculate the cohomology of V2,

H∗(BZp, H∗(D))⇒ H∗(V2),

where BZp is the classifying space of Zp. The Z-coefficient cohomology H i(BZp,Z) is well-
known (see for instance [22]):

H i(BZp,Z) =


Z, for i = 0,

Z/pZ, for 2|i,
0, otherwise.

Since H∗(V2) is Z2-cohomology, we consider the following two cases:

(1) When p is odd, H1(V2) = H2(V2) = 0. In this case, rk(H1(MV )) = 2g + s − 1 and
rk(H2(MV )) = s, which is the same as what we calculated in §7.

(2) When p is even, H1(V2) = 0 while H2(V2) 6= 0. Note that in this case, rk(H1(MV ))
and rk(H2(MV )) do not coincide with our calculation in §7.
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In conclusion, when the monodromy group is the cyclic group Zp with p an odd integer, then
the number of connected components coincides with the Z2 case. If p is an even number, it
does not.
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Table 1. Minimum number of connected components of Mmax
par (G).

Lie group G #π0
(
Mmax

par (G)
)

Teichmüller components

Sp(2,R) = SL(2,R) 22g+s−1 22g+s−1

Sp(4,R) (2s + 1) 22g+s−1 +2s(2g−3+s) 22g+s−1

Sp(2n,R), for n ≥ 3 (2s + 1) 22g+s−1 22g+s−1

SU(n, n) 22g+s−1 - (22g+s−1 if n = 1)

SO∗(2n), for n: even 2s -
SO0(2, 3) 2s

(
22g+s−1 − 1

)
+2s(4g−3+2s) 1

SO0(2, n), for n ≥ 4 22g+2s−1 -
E−257 22g+s−1 -

Table 2. Minimum number of connected components of Mmax,α
par (G) with even α.

Lie group G #π0 (Mmax,α
par (G)) Teichmüller components

Sp(2,R) = SL(2,R) 22g 22g

Sp(4,R) 22g+s−1 + (2g − 3 + s) + 22g 22g

Sp(2n,R), for n ≥ 3 22g+s−1 + 22g 22g

SU(n, n) 22g - (22g if n = 1)

SO∗(2n), for n: even 1 -
SO0(2, 3) 22g+s−1 + (4g − 3 + 2s) 1

SO0(2, n), for n ≥ 4 22g+s−1 -

Table 3. Minimum number of connected components of Mmax,α
par (G) with odd α.

Lie group G #π0 (Mmax,α
par (G)) Teichmüller components

Sp(2,R) = SL(2,R) - -
Sp(4,R) 22g+s−1 + (2g − 3 + s) -
Sp(2n,R), for n ≥ 3 22g+s−1 -
SU(n, n) - -
SO∗(2n), for n: even 1 -
SO0(2, 3) 22g+s−1 + (4g − 3 + 2s) 1

SO0(2, n), for n ≥ 4 22g+s−1 -
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Appendix A. Stability Condition for Parabolic G-Higgs Bundles

In this appendix, we review the definition by O. Biquard, O. Garćıa-Prada and I. Mundet
i Riera [4] for a general parabolic G-Higgs bundle and the definition of parabolic degree for
parabolic principal bundles. We start from the basic Lie algebra background and claim that
for G = U(n) and GC = GL(n,C), the definition of parabolic degree coincides with the one
defined earlier in §2.1. Moreover, for G = Sp(2n,R), the general definitions also reduce to the
ones considered in §5.

Let G be a real reductive group, thus one has a Cartan decomposition of the Lie algebra
g = h ⊕ m, where h is the Lie algebra of the maximal compact subgroup H of G. This
decomposition has the property that [h,m] ⊂ m and [m,m] ⊂ h. Now, the right action of
H defines the symmetric space H\G. The stabilizer to [1] ∈ H\G is H, so we can identify
T[1]H\G with h\g ∼= m and is stabilized by the adjoint action of H. Thus any metric on
m defines an H-invariant Riemannian metric on the symmetric space H\G. This H\G is
a symmetric of negative curvature, whose boundary could be defined by the geodesic rays
denoted by ∂∞(H\G). This can be described in terms of a parabolic group as follows:

Definition A.1. A subgroup P of G is called parabolic, if there exists s ∈ m such that

P = Ps := {g ∈ G|d([etsge−ts], [1]) is bounded when t→∞}.
and the parabolic subalgebra of g is then defined as

ps := {x ∈ g|Ad(ets)x is bounded when t→∞}.
We call s ∈ m to be the antidominant element for P , if P = Ps.

For a choice of s ∈ m and g ∈ G, we may write g = ph for some p ∈ Ps and h ∈ H. We
then set

s · g := Ad(h−1)(s).

Note that the element coming from this action still stays in m.
We define the geodesic ray in H\G to be a morphism of the form γ : [0,∞) → H\G by

γ(t) = [ets · g] for some s ∈ h and g ∈ G. Here ets · g is the ordinary product in G and [g]
means the representative in H\G.

Now we define the equivalence of two geodesics as follows:

Definition A.2. Let d be the distance function between points in H\G. We say two geodesic
rays γ1, γ2 are equivalent if d(γ1(t), γ2(t)) is bounded and independent of t.

Now the boundary at infinity of the symmetric space is defined by

∂∞(H\G) = {geodesic rays}/ ∼ .

Remark A.3. The parabolic group Ps is actually the stabilizer of the element γ(t) = [ets · g].

For any s ∈ m\{0}, the ordinary geodesic ηs(t) : t 7→ [ets · 1] provides an element in
∂∞(H\G). The claim is that for all possible s, then ηs enumerates all elements in ∂∞(H\G).
Indeed, one has the following lemma:

Lemma A.4. There is an equivalence between [ets · g] and [etu], where u is determined as
follows: If g has the decomposition g = ph with p ∈ Ps, h ∈ H, then u = s · g := Adh−1(s).

Proof. One has d([ets·g], [etu]) = d([etsge−tu], [1]) = d([etspe−tsetshe−tu], [1]), thus the distance
is bounded if and only if etshe−tu is bounded. On the other hand, we know that etsh =
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hetAdh−1 (s) from the Baker-Hausdorff formula. It follows that in order to have boundedness,
we may just let u = Adh−1(s). This calculation also shows that the following limit exists:

lim
t→∞

1

t
log(ets · g) = Adh−1(s).

Here the log is defined to be log(g) = v if g has the Cartan decomposition g = kev for k ∈ H
and v ∈ m. �

We deduce that for every element γ in ∂∞(H\G) and for every element x ∈ H\G, we can
find an element s in m such that γ(t) = [x · ets]. We call v(x, γ) := s ∈ m ∼= Tx(H\G).

The Tits distance between γ, γ′ ∈ ∂∞(H\G) is defined by

dT its(γ, γ
′) = sup

x∈H\G
Angle(v(x, γ), v(x, γ′)),

where the angle is in [0, π]; it measures the maximal possible angle from the same initial point
to the required boundary γ and γ′.

Let P be the parabolic group Ps associated to s ∈ m and Q = Qσ the parabolic for σ ∈ m.
Then we define the relative degree as

deg((P, s), (Q, σ)) := |s| · |σ| · cos dT its(η(s), η(σ)).

The definition can be seen from the topology of ∂∞(H\G). We are measuring the inner
product of the tangent vector associated to η(s) := γs(t) = [ets] and ησ := γσ(t) = [etσ]
and are trying to determine the maximum possible degree. An alternative characterization is
given by the function

µs : m→ R, µs(σ) = lim
t→+∞

〈s · e−tσ, σ〉.

Lemma A.5. For |s| = |σ| = 1, we can identify s and σ with the corresponding element in
∂∞(H\G)

µs(σ) = cos dT its(s, σ).

This lemma follows directly from our previous calculation identifying [ets] with [x · etu].
The proof can be found in [4] Proposition B.1.

Using these definitions, we can describe several examples in further detail; the following
example is worked out based on [36] and [35].

Example A.6 ( G = GL(n,C), H = U(n)). In this situation, h is the set of anti-Hermitian
matrices and m is the set of Hermitian matrices. We also claim that the map m\{0} →
∂∞(H\G) sending s ∈ m to the geodesic γ(t) = [ets] defines a bijection. Indeed, we can
describe the structure of parabolic group explicitly. For an element s ∈ m, s is a Hermitian
matrix and thus it can be diagonalized. Moreover, the matrix s has real eigenvalues, say
λ1 < λ2 < . . . < λr. We denote Vj = ker(λjI − s) to be the eigenspaces associated to each
eigenvalue. We let Wk = V1 ⊕ . . . Vk and now the group

Ps = {g ∈ GL(n,C)|g(Wk) ⊂Wk,∀k ∈ [1, n]}
is parabolic, considering etsge−ts. We can diagonalize es and the eigenspaces are exactly the
Vj ’s and ets acts on Vj by multiplying by eλjt. It follows that in order to have a bounded
etsge−tsv for v ∈ Vj , then it must be g(v) ⊂Wj .

Now the relative degree can also be calculated by the choice of two antidominant elements.
In fact, for two choices of s, σ ∈ m, we just need to calculate µs(σ).
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For any g ∈ GL(n,C), we first compute s · g. Recall that s · g = Ad(h−1)(s) for g = ph,
where p ∈ Ps and h ∈ H. Since s can be diagonalized, s(v) = λjv for v ∈ Vj . We also see
that g−1(Wk) = h−1(Wk) by preservation of flags. Then the claim is that

s · g =
k∑
j=1

λjπg−1(Wj)∩g−1(Wj−1)⊥ =
k∑
j=1

(λj − λj+1)πg−1Wj
,

where πWj is the projection of vector onto Wj .
Then we can use this claim to compute the relative degree, knowing that for two s, σ there

are λ1, . . . , λk for s and µ1, . . . , µl for σ, as well as eigenspaces V1, . . . , Vk for s and A1, . . . , Al
for σ. Also, we let Wj = V1 ⊕ . . .⊕ Vj and Bj = A1 ⊕ . . .⊕Aj and then a calculation shows

deg((Ps, s), (Pσ, σ)) =

k∑
i=1

l∑
j=1

(λi − λi+1)(µj − µj+1) dim(Wi ∩Bj).

Here we assumed that λk+1 = 0.

We can now define the stability condition for parabolic principal bundles from the previous
definition for the degree.

In [4] the authors introduce parabolic G-Higgs bundles over a punctured Riemann surface
X for a non-compact real reductive Lie group G and establish a Hitchin-Kobayashi type
correspondence for such pairs. This definition involves a choice for each puncture of an
element in the Weyl alcove A of a maximal compact subgroup H ⊂ G.

Let (X,D) be as earlier, a pair of a compact connected Riemann surface X and D =
{x1, . . . , xs} a divisor of s-many distinct points on X. Let also HC be a reductive, complex
Lie group. Fix a maximal compact subgroup H ⊂ HC, and a maximal torus T ⊂ H with Lie
algebra t. For an HC-principal holomorphic bundle E over X, and for any set W on which
HC acts on the left, we denote by E(W ) the twisted product E ×HC W , that is, the product
quotient out the equivalence relation E ×W/ ∼ with the latter defined by (e, hw) ∼ (eh,w).
If W is the representation of HC, we can always associate a vector bundle E(W ).

The following argument for the definition of a stability condition is analogous to the non-
parabolic case (see [18]). For a representation into a Hermitian vector space ρ : H → U(B),
let us denote the holomorphic extension still by ρ : HC → GL(B). Given a parabolic subgroup
Ps we can define the subspace

B−s = {v ∈ B|ρ(ets)v is bounded when t→∞} (A.7)

and the invariant subspace under the Levi subalgebra

B0
s = {v ∈ B|ρ(ets)v = v for any t.} (A.8)

We can also define the difference between these two, namely the bounded but not fixed part

B<0
s = {v ∈ B−s |v 6∈ B0

s} (A.9)

Remark A.10. There is a one-to-one correspondence between an antidominant element s and
an antidominant character χ (see [35]). In the sequel, we shall be making use of the subspaces
B−χ and B0

χ in accordance to [4].

A holomorphic reduction of structure group to a parabolic subgroup P is a section of the
principal bundle E(HC/P ). Since canonically E(HC/P ) ∼= E/P , a holomorphic reduction σ :
X → E/P together with the quotient map E → E/P gives a P -principle bundle Eσ := σ∗(E).
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This is exactly where the term “reduction” is coming from. It then follows immediately that
E(B) ∼= Eσ ×P B and we have the vector bundle

E−σ,χ(B) := Eσ ×Pχ B−χ ,

where Pχ is the parabolic subgroup associated to the antidominant character χ.
Following Lemma 2.12 from [18] we imply the definition for the degree of a principal bundle

associated to a holomorphic reduction σ and an antidominant character χ.

Definition A.11. For a holomorphic reduction σ ∈ Γ(E(HC/P )) for a parabolic subgroup
P and an antidominant character χ for P , we can associate the antidominant element sχ.
Moreover, for a representation ρW : H → U(W ) for some Hermitian vector space W , then
ρW (sχ) diagonalizes with real eigenvalues λ1 < λ2 < . . . < λr. Let Vj = ker(λjIdW − ρW (sχ))
and Wj = V1 ⊕ . . . ⊕ Vj , for j = 1, . . . , r and W = Wr. Suppose that the associated vector
bundles Wj = E(Wj) and W = E(W ) are all holomorphic, then the degree of E is defined as

degE(σ, χ) = λk degW +
r−1∑
i=1

(λi − λi+1) degWj .

We now include into our study the parabolic structure at each point. We fix an alcove
A ⊂ t of H containing 0 ∈ t and for αi ∈

√
−1Ā where Ā is the closure of A, and we let

Pαi ⊂ HC be the parabolic subgroup defined by the αi coming from definition A.1.

Remark A.12. In fact, we can choose any element in t and define the corresponding parabolic
structure. But according to Lemma 3.3 in [4] one can always choose a shift in the cocharacter
lattice Λcochar and get a 1-1 correspondence between the local holomorphic sections. It is
therefore more convenient to restrict to the alcoves, instead of the whole maximal toric algebra.

Definition A.13. A parabolic structure of weight αi on E over a point xi is defined as the
choice of a subgroup Qi ⊂ E

(
HC)

xi
with an antidominant character αi for Qi.

Remark A.14. In order to be compatible with Definition 2.1, a small modification for the

choice of the αji is necessary here. Indeed, we need a decreasing sequence of weights

αri > αr−1i > . . . > α1
i ,

so that the increasing filtration is then

Er ⊂ Er−1 ⊂ . . . E1 = Exi .

If this is written as a decreasing filtration, it will recover the original filtration at the point.
This now provides

deg((Ps, s), (Qi, αi)) =
s∑
i=1

r∑
j=1

(λi − λi+1)(α
r+1−j
i − αr−ji ) dim(Wi ∩ Er+1−j)

=
s∑
i=1

r∑
j=1

(λi − λi+1)(α
j
i − α

j−1
i ) dim(Wi ∩ Ej).

Note that we have assumed here that α0
i = 0.

The definition for the parabolic degree of a parabolic principal bundle now combines the
last two definitions:
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Definition A.15. Consider a parabolic principal HC-bundle E together with a holomorphic
reduction σ : X → E/Pχ and an antidominant character χ. We define the parabolic degree of
E with respect to σ and χ to be the real number

pardegE(σ, χ) := degE(σ, χ) +

s∑
i=1

deg((Eσ, χ), (Qi, αi)). (A.16)

Remark A.17. In [4] the authors take the minus sign in the term including the contribution
from the weights in the expression of the parabolic degree. We take a plus sign here instead,
coming from the increasing sequence of weights that we considered above; this shall ensure
that when examining the case when G = GL(n,C) later on, the definition for the parabolic
degree will coincide with Definition 2.3.

For a real reductive Lie group G with a maximal compact subgroup H, let g = h⊕m be the
Cartan decomposition of the Lie algebra into its ±1-eigenspaces, where h = Lie (H) and let
E
(
mC) be the bundle associated to E via the isotropy representation. Choose a trivialization

e ∈ E near the point xi, such that near xi the parabolic weight lies in αi ∈
√
−1Ā. In the

trivialization e, we can decompose the bundle E
(
mC) under the eigenvalues of ad (αi) acting

on mC as

E
(
mC
)

= ⊕
µ
mC
µ .

In particular, take αi ∈
√
−1A′g, where A′g is the space of α ∈ Ā such that the eigenvalues

of ad(α) have modulus smaller than 1 on the entire g, and consider for α ∈
√
−1h the subspaces

of mC similar to definition of B−α and B0
α. We can define mi := (mC)−αi as well as m0

i = (mC)0αi
according to equation A.7 and A.8. The decomposition implies that mi = m0

i ⊕ni for some ni.
We define the sheaf PE

(
mC) of parabolic sections of E

(
mC) as the sheaf of local holomorphic

sections ψ of E
(
mC) such that ψ (xi) ∈ mi. Similarly, the sheaf NE

(
mC) of strongly parabolic

sections of E
(
mC) is defined as the sheaf of local holomorphic sections ψ of E

(
mC) such that

ψ (xi) ∈ ni. The following short exact sequences of sheaves are then realized

0→ PE
(
mC
)
→ E

(
mC
)
→
⊕
i

E
(
mC
)
xi
/mi → 0, (A.18)

0→ NE
(
mC
)
→ E

(
mC
)
→
⊕
i

E
(
mC
)
xi
/ni → 0. (A.19)

Definition A.20. Let (X,D) be a pair of a compact connected Riemann surface X and
D = {x1, . . . , xs} a divisor of s-many distinct points on X. A parabolic G-Higgs bundle over
(X,D) is a pair (E,Φ) such that E is an HC-principal bundle over X and Φ is a holomorphic
section of PE(mC)⊗K(D). A strongly parabolic G-Higgs bundle (E,Φ) over (X,D) involves
Φ ∈ Γ(NE(mC)⊗K(D)).

We have the following three notions of stability. Note that the parameter α in the fol-
lowing definition should not be confused with the parabolic structure α in previous settings
(Definition 2.1).

Definition A.21 (Stability conditions). Let (E,Φ) be a parabolic G-Higgs bundle, and let
α ∈ ih ∩ z, where z is the center of hC. Also, let 〈·, ·〉 be a nondegenerate bilinear pairing on
hC.
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(1) We say the parabolic G-Higgs bundle (E,Φ) is α-semistable, if for any subgroup
P ⊂ HC, any anti-dominant character χ of P and any holomorphic reduction σ ∈
Γ(HC/P ) such that Φ ∈ H0(E(mC)−σ,χ ⊗K(D)), one has

pardegE(σ, χ)− 〈α, χ〉 ≥ 0.

(2) We say the parabolic G-Higgs bundle is α-stable, if the above inequality is strict.
(3) We say the parabolic G-Higgs bundle is α-polystable, if it is semistable and if for

σ, χ as earlier such that Φ ∈ H0(E(mC)−σ,χ ⊗K(D)), it is

pardegE(σ, χ)− 〈α, χ〉 = 0,

then there is a holomorphic reduction σLs ∈ Γ(Eσ(P/Ls)) where Ls is the Levi sub-
group such that Φ ∈ H0(E(mC)0σLs ,χ ⊗K(D)) ⊂ H0(E(mC)−σ,χ ⊗K(D)).

(4) If the parameter α = 0 above, we just call the corresponding Higgs bundle semistable,
stable and polystable respectively.

This abstract definition can be unraveled considering particular examples, and indeed it
turns out that it coincides with Definition 2.3 in the case G = GL(n,C). We describe this in
detail in the following:

Example A.22 ( G = GL(n,C), H = U(n)). For a vector space Cn and a representation HC

acting on V , there is an identification of a parabolic G = GL(n,C)-bundle with a parabolic
vector bundle W . Thus E(mC) is in fact End(W ) and Φ ∈ H0(End(W )⊗K(D)). Moreover,
one has to check that ResxiΦ ∈ mi := m−α .

We already know that the parabolic structure (Qi, αi) involves a choice of real eigenvalues
from 0 to 1 from Example A.22 and Remark A.12. Thus this corresponds to a choice of real

numbers −1
2 ≤ α

1
i ≤ α2

i ≤ . . . ≤ αni ≤ 1
2 and thus the subspaces Aj = ker(αji Id− αi) and also

Bj = An ⊕An−1 ⊕ . . .⊕Aj . Moreover,

Γ(PE(mC)⊗K(D)) = {Φ ∈ Hom(E,E ⊗K(D))|Φ(Bj) ⊂ Bj ⊗K(D)},

which corresponds to the classical definition of a parabolic Higgs bundle.
We next check the α-stability condition. For the group G = GL(n,C), its center is the

set of diagonal matrices. Therefore, a choice of α in fact involves a choice of a real number.
Indeed, since χ can be diagonalized with real eigenvalues λ1 < . . . < λr with eigenspaces of
dimension dimV1, . . .dimVr, then 〈α, χ〉 = α

∑r
i=1 λi dimVi.

For every classical group G and any G-principal bundle P , one can associate a vector bundle
W by considering the fundamental representation W = P ×GW where W is the fundamental
representation of G and the Higgs field will be a section of the vector bundle P ×Ad mC. If
G = GL(n,C), the associated vector bundle will be the vector bundleW and Φ will be section
of End(W)⊗K(D), thus we have the following claim:

Lemma A.23. With the same notation from Definition A.11, a parabolic GL(n,C)-Higgs
bundle (E,Φ) is µ-semistable/stable/polystable if and only if the associated parabolic Higgs

bundle (W,ΦW) is semistable/stable/polystable. Here µ := µ(W) = pardegW
n .

Proof. (⇐) Let P ⊂ HC be a parabolic subgroup, χ an antidominant character of P and
σ ∈ Γ(HC/P ) a holomorphic reduction such that Φ ∈ H0(E(mC)−σ,χ ⊗K(D)).

We may consider the case where there is only one point in the divisor D and then generalize
the argument. Consider the antidominant character χ of P and the representation ρW :
H → U(W ) with the real eigenvalues λ1 < . . . < λr. Then by Definition A.11, if we set
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Vi = ker(λjIdW − ρW (sχ)), Wi = V1 ⊕ . . .⊕ Vr and W = Wr, one can calculate the parabolic
degree as follows

pardegE(σ, χ)− 〈α, χ〉 =

=

r∑
k=1

(λk − λk+1)(degWk − µrk(Wk)) +
∑
k,j

(λk − λk+1)(α
j
i − α

j−1
i ) dim(Wk ∩Bj)

=
r∑

k=1

(λk − λk+1)

degWk − µrk(Wk) +
n∑
j=1

(αji − α
j−1
i ) dim(Wk ∩Bj)


= λr(pardegW − µrk(W)) +

r−1∑
k=1

(λk − λk+1)(pardegWk − µrk(Wk)) ≥ 0.

The last inequality follows since the Higgs bundle preserves the flag, Φ(Wj) ⊂ Φ(Wj)⊗K(D),

thus the slope inequality for stable/semistable parabolic Higgs bundle yields pardegWk
rank(Wk)

≤
µ(W) = pardegW

n , so pardegWk ≤ µrk(Wk) if we rearrange the terms in the equation. More-
over, λk − λk+1 is less than 0 by definition.

Note that Φ ∈ H0(E(mC)−σ,χ ⊗K(D)) actually says that Φ(Wk) ⊂ Wk ⊗K(D). Together
with the assumption about parabolic structure from Φ(Bj) ⊂ Bj ⊗K(D) we derive a strong
restriction on the possible W ’s that are allowed.

Now we have to show that the polystability conditions are corresponding to each other. But
this just comes from the fact that our Higgs bundle W = V1 ⊕ V2 and Φ ∈ H0(Hom(V1, V1 ⊗
K(D)) ⊕ Hom(V2, V2 ⊗ K(D))), thus for any parabolic subgroup that preserves the flag of
W we can reduce it to the subgroup GL(dimV1,C) × GL(dimV2,C), the Levi subgroup of
parabolic reduction will be straightforward as well.

(⇒) Let (E(W ),ΦW ) be a µ-semistable parabolic G-Higgs bundle. For any subbundle V
of W , one can associate the filtration 0 ⊂ V ⊂W and the associated parabolic subgroup that
preserves this flag. For any antidominant character χ of the associated parabolic and any
holomorphic reduction σ one has that

pardegE(σ, χ)− 〈µ, χ〉 = (λ1 − λ2)(pardeg V − µ(W)rk(V )) ≥ 0, (A.24)

which provides that pardeg V
rk(V ) ≤ µ(W). The polystability condition is checked similarly. �

We now come to our key example G = Sp(2n,R), for which we shall examine in detail what
it means to be semistable, stable or polystable. The treatment is similar to Section 4.3 of [18].

Example A.25 (G = Sp(2n,R), H = U(n)). For the group G = Sp(2n,R), it is HC =
GL(n,C), and for the fundamental representation V of GL(n,C) one has the isotopy repre-
sentation

mC = Sym2V⊕ Sym2V∗.
Following Section 4.3 in [18] and replacing the degree by the parabolic degree, one has the
following characterization of semistability, stability and polystability:

The parabolic Sp(2n,R)-Higgs bundle consists of a parabolic vector bundle V = E(V) and
a section

Φ = (β, γ) ∈ H0(K(D)⊗ Sym2V ⊕K(D)⊗ Sym2V ∗).

The stability condition turns out to be similar while we have a different Higgs field. For
the parabolic vector bundle V we define the filtration of V of length k − 1 to be a strictly
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increasing filtration of holomorphic subbundles

V = (0 = V0 ( V1 ( V2 ( . . . ( Vk−1 ( Vk = V ).

Let λ = (λ1 < λ2 < . . . < λk) be a strictly increasing sequence of k-real numbers, and we
define

Nβ(V, λ) =
∑

λi+λj≤0
1≤i,j≤k

K(D)⊗ (Vi ⊗S Vj) and Nγ(V, λ) =
∑

λi+λj≥0
1≤i,j≤k

K(D)⊗ (V ⊥i−1 ⊗S V ⊥j−1).

Here, for W1,W2 subbundles of W , then W1 ⊗S W2 is the image of the map W1 ⊗ W2 ⊂
W ⊗W → Sym2W . Also, W⊥1 is the kernel of restriction map W ∗ →W ∗1 . We also set

N (V, λ) := Nβ(V, λ)⊕Nγ(V, λ)

and define

pd(V, λ, α) :=

k∑
j=1

(λj − λj+1)(pardeg Vj − αrk(Vj)).

Now we can define the subspaces associated to the parabolic structure and determine
PE(mC). For any parabolic structure at xi we have a filtration 0 = U0 ( U1 ( . . . (
Ur−1 ( Ur = Vxi with associated weights α1 < α2 < . . . < αr. Define

Uβ(Vxi , α) :=
∑

αi+αj≤0
1≤i,j≤k

K(D)⊗ (Ui ⊗S Uj) and Uγ(Vxi , α) =
∑

αi+αj≥0
1≤i,j≤k

K(D)⊗ (U⊥i−1 ⊗S U⊥j−1),

and analogously U(Vxi , α) = Uβ(Vxi , α)⊕ Uγ(Vxi , α). Then the condition Φ ∈ H0(PE(mC)⊗
K(D)) is nothing but Φxi ∈ U(Vxi , α).

Thus we have the following characterization of the stability condition by the same argument
in [18]:

Lemma A.26. A parabolic Sp(2n,R)-Higgs bundle (E,Φ) over (X,D) with parabolic struc-
ture αi at each point xi ∈ D is a vector bundle V together with Φ = (β, γ) ∈ H0(K(D) ⊗
Sym2V ⊕ K(D) ⊗ Sym2V ∗) such that Φ|xi ∈ U(Vxi , αi). Moreover the Higgs bundle is
α-semistable if for a filtration of V and any strictly increasing sequence λ we have Φ ∈
H0(N (V, λ)), then pd(V, λ, α) ≥ 0. When the inequality is strict, we say the Higgs bundle is
stable.

The pair is α-polystable if for a nontrivial V and λ such that Φ ∈ H0(V, λ) and such that
pd(V, λ, α) = 0 there is an isomorphism of vector bundles

σ : V → V1 ⊕ V2/V1 ⊕ . . .⊕ Vk/Vk−1,

such that Vj = σ−1(V1 ⊕ V2/V1 ⊕ . . .⊕ Vj/Vj−1) and such that

β ∈ H0

 ∑
λi+λj

K(D)⊗ σ−1(Vi/Vi−1)⊗S σ−1(Vj/Vj−1)


and

γ ∈ H0

 ∑
λi+λj

K(D)⊗ σ∗((Vi/Vi−1)∗)⊗S σ∗((Vj/Vj−1)∗)

 .
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Since Sym(V ∗) ⊂ V ∗⊗V ∗ by sending v⊗Sw → 1
2(v⊗w+w⊗v), we can write the Sp(2n,R)-

bundle as an SL(2n,C)-bundle. Thus, we may write E = V ⊕ V ∨ and Φ =

(
0 β
γ 0

)
: E →

E⊗K (D). Equipped with the stability condition and since β, γ are fixed under the change of
basis a⊗ b 7→ b⊗ a in V ⊗V and V ∗⊗V ∗, we exactly revoke our Definition 5.2 of a parabolic
Sp(2n,R)-Higgs bundle.

The proof for the other examples of Section 8 is entirely analogous.
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