Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast-Acting Molecules with Activity against Different Species Causing Malaria in Humans - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Antimicrobial Agents and Chemotherapy Année : 2015

Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast-Acting Molecules with Activity against Different Species Causing Malaria in Humans

Patty Chen
  • Fonction : Auteur
  • PersonId : 746667
  • IdHAL : patty-chen
Benoit Witkowski
  • Fonction : Auteur
  • PersonId : 751218
  • IdHAL : bwitkowski
Didier Ménard
Rossarin Suwanarusk
  • Fonction : Auteur
  • PersonId : 914105

Résumé

Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.

Dates et versions

hal-02560661 , version 1 (02-05-2020)

Identifiants

Citer

Nicholas Malmquist, Sandeep Sundriyal, Joachim Caron, Patty Chen, Benoit Witkowski, et al.. Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast-Acting Molecules with Activity against Different Species Causing Malaria in Humans. Antimicrobial Agents and Chemotherapy, 2015, 59 (2), pp.950-959. ⟨10.1128/AAC.04419-14⟩. ⟨hal-02560661⟩
43 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More