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Abstract. Directional optical coherence tomography (D-OCT) reveals reflec-
tance properties of retinal structures by changing the incidence angle of the light
beam. As no commercially available OCT device has been designed for such
use, image processing is required to homogenize the grey levels between
off-axis images before differential analysis. We describe here a method for
automated analysis of D-OCT images and propose a color representation to
highlight angle-dependent structures. Clinical results show that the proposed
approach is robust and helpful for clinical interpretation.
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1 Introduction

Photoreceptors have unique optical properties, one of which is the angular dependence 
of their absorbance and reflectance, known as the Stiles-Crawford effect (SCE) [1, 2]. 
As a result, the distribution of backscattered light through the pupil is modulated by its 
incidence. The angle-dependent absorbance and reflectance of individual cone pho-
toreceptors follows a Gaussian curve, with a peak whose orientation defines the pho-
toreceptor pointing and whose acceptance angle correlates with the span of photon 
capture. Cones account for most of the SCE.

Gao et al. first used a custom OCT setup to image off-axis macular photoreceptors 
and measure the contributions of macular photoreceptor substructures to the optical 
SCE (oSCE) [3]. They suggested that directional reflectance of the cone outer segment 
tip (COST) line and, to a lesser extent, of the inner/outer segment junction (IS/OS), 
accounts for most of the oSCE of macular photoreceptors. This was supported by the 
findings of Miloudi et al. who documented the directional reflectance of photoreceptors 
using a combined approach by en face adaptive optics imaging and D-OCT [4]. The 
potential medical interest of D-OCT was suggested by Lujan et al. who used D-OCT to 
delineate the Henle fiber layer, that is, the photoreceptor axons, and subsequently 
extract the thickness of the outer nuclear layer [5]. In addition, our group and others 
have recently demonstrated differences due to pathology in the photoreceptor layers 
using D-OCT in patients (Pedinielli et al. IOVS 2016: ARVO E-Abstract 4248, Lujan 
et al. IOVS 2016: ARVO E-Abstract 4250). Hence, D-OCT appears to be an interesting



approach to document subtle retinal changes. We describe here a method for automated
analysis of D-OCT images acquired with commercial OCT systems. We propose an
efficient visualization of D-OCT data that helps develop the clinical interpretation by
highlighting angle-dependent structures.

2 Methods

D-OCT scans were acquired using a commercially available OCT apparatus (Spec-
tralis® SD-OCT). A reference scan was acquired in the standard mode, with a light
beam parallel to the visual axis. Two off-axis images were also acquired, based on a
manual procedure, at approximately equal 2° to 3° angles a to the right and left of the
visual axis. All images were aligned by the acquisition system (Fig. 1).

Anisotropy properties of the reflectance can be brought out by computing the
difference between the two off-axis images. Retinal structures that have similar
reflectance responses whatever the light incidence angle are considered isotropic and
lead to values near zero. On the contrary, anisotropic areas lead to positive or negative
values, depending on the local orientation of the retinal structures with respect to the
incidence angle. However the simple difference of the two angled images is not suf-
ficient here. Indeed, the global brightness of the image is no longer homogeneous over
the entire image when the operator turns the light beam away from the visual axis
(Fig. 1(a) and (c)). Note that the left side is darker than the right side for the angle a
and conversely for the opposite angle –a. So the basic difference of the two off-axis
images cannot provide suitable enhancement of anisotropic features (Fig. 2).

Consequently, we have developed dedicated image processing methods to com-
pensate for illumination inhomogeneity, before performing differential analysis. The
proposed method relies on the segmentation of the retinal area (Sect. 3), followed by an
illumination correction applied on this area (Sect. 4). We do not have prior knowledge

(a) 1I (b) 2I (c) 3I

Fig. 1. A set of two off-axis images (a) (c) along with a standard on-axis acquisition (b), all
aligned. Red and green arrows show evidence of anisotropy. (Color figure online)

Fig. 2. The absolute difference of the two input off-axis images.
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of the physical model underlying this non-uniform illumination of the off-axis images,
as we use the OCT acquisition system in an unconventional manner. However, we
observe that the overall illumination basically varies along the horizontal axis.
Therefore, our correction models rely on functions of the horizontal x-coordinate. We
also propose post-processing algorithms to achieve a colored representation of aniso-
tropic areas (Sect. 5). To the best of our knowledge only one article [6] presents image
processing methods for D-OCT analysis. However, a global correction of the overall
brightness is applied on each image separately, which does not allow one to deal with
cases like the one presented in Fig. 2.

Let us denote by I1(x,y) and I3(x,y) the two off-axis images and by I2(x,y) the
standard image. The grayscale values are coded by floating point numbers in [0,1].

3 Retinal Segmentation and Estimation of the Incidence Angle

Segmentation is necessary to determine the area over which the illumination correction
has to be applied. We apply the method of [7, 8] to determine the region comprised
between the inner limiting membrane (ILM) and the external interface of the hyper
reflective complex (HRC), which is also the outer edge of the retinal pigment
epithelium (RPE). Horizontally, we restrict the region of interest (ROI) to the interval
[xL,xR], 6 mm wide, centered on the foveola xF (Fig. 3).

The beam incidence is manually and approximately set by the operator, as no
commercially available OCT apparatus has been designed for such use. Hence, it is
interesting to calculate the beam angle a from the image itself. We dramatically
increase the contrast in the vitreous and the choroid (Fig. 4(a)) and apply a morpho-
logical closing to simplify the image. These operations reveal the main edges, in
particular the contours of the rectangular image that is tilted off by the sought for angle
a (see the upper right black triangle). We extract the edges (Canny operator) and apply
a Hough transform so as to obtain the main linear segments (Fig. 4(b)). We compute
the angle h(j) and the length l(j) of each extracted segment j = 1,…J. For each angle
h(j), we calculate the sum of the lengths of all segments having the same orientation up
to 2° (1). The angle with the highest cumulative length L is the incident angle a.

L jð Þ ¼
X
i2E jð Þ

l ið Þ; E jð Þ ¼ i 2 1; . . .; Jf g= h ið Þ � h jð Þj j\2�f g ð1Þ

Fig. 3. Segmentation of the retinal data and definition of the ROI.
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4 Illumination Correction

4.1 Individual Illumination Correction

A first the illumination correction is independently applied to both off-axis images to
better balance their overall intensity. We divide the input image I x; yð Þ (actually I1 x; yð Þ
or I3 x; yð Þ, Fig. 5(a)) into two parts, by slicing it vertically at the foveola xF. We
classify the pixels of the retinal area into 3 classes with a k-means algorithm (k = 3

classes), applied to both sub-images independently (Fig. 5(b)). Let us denote by c Lð Þ
k ,

c Rð Þ
k , k = 1,2,3, the centers of the clusters for the left (L) and right (R) sub-images.
These values represent the mean intensity of each cluster. We use them to define
straight lines that represent a linear estimation of the intensity variation of the actual

value I 0ð Þ
k of cluster k with respect to the x coordinate (Fig. 5(b)).

The two points defining each of the three lines are set at the middle x coordinate of
every half image, and vertically take the intensity value of the cluster. We propose

modeling the variation of the intensity I 0ð Þ
k along the horizontal axis as follows:

(a) (b)

Fig. 4. Estimation of the incident light beam angle from the saturated image (a); linear segments
(in green) extracted from the contour image through the Hough transform (b). (Color figure
online)

(a) 1I

(c) '
1I (b)

Fig. 5. Individual correction of the intensity of off-axis images; (b) K-means classification
applied to input image (a), and linear estimation of the intensity variation; (c) Corrected image.
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Ik x; yð Þ ¼ Ið0Þk þ a
x� xF
xr � xl

Ið0Þk þ b
x� xF
xr � xl

ð2Þ

The parameters a and b are estimated from points xl; c
Lð Þ
k

� �
and xr; c

Rð Þ
k

� �
,

k ¼ 1; 2; 3, by minimizing the mean quadratic error at these six points. We deduce from
(2) the transform to apply to each pixel x; yð Þ of intensity I x; yð Þ:

I 0 x; yð Þ ¼ I x; yð Þ � b
x� xF
xr � xl

� ��
1þ a

x� xF
xr � xl

� �
ð3Þ

So, the overall intensity is better balanced over the corrected off-axis images, I 01 and
I 03, which are then normalized in [0,1] by linear contrast stretching (Fig. 5(c)).

4.2 Joint Illumination Correction

The corrected images are then jointly processed in the ROI. We propose modeling the
illumination correction as 3rd order polynomial function of the x-coordinate:

f xð Þ ¼ ax3 þ bx2 þ cxþ d ð4Þ

The purpose of the optimization is to define the parameters a, b, c, d of this
function. The corrected image is defined by

I 003 x; yð Þ ¼ f xð Þ I 03 x; yð Þ ð5Þ

The optimization process consists of minimizing the number of pixels of the ROI
that significantly differ between the first off-axis image I 01, viewed as the reference
image, and the corrected off-axis image I 003 . So we define the following criterion:

C a; b; c; dð Þ ¼ card x; yð Þ 2 ROI= I 01 x; yð Þ � I 003 x; yð Þ�� ��� T
� 	 ð6Þ

where T is a threshold dynamically set from the source images, equal to twice the
standard deviation of the difference image I 01 � I 03

�� ��. The optimal parameters of the
correction function f are obtained by minimizing the criterion C:

aopt; bopt; copt; dopt

 � ¼ Arg min

a;b;c;d
C a; b; c; dð Þf g ð7Þ

The image I 03 is corrected by Eq. (5) with the optimal parameters of the polynomial
function obtained through (7) (Fig. 6). It is worth noticing that the RPE layer gives a
zero response in the difference image, which proves retrospectively that our correction
model is valid, as this retinal layer is known to be isotropic.
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5 Differential Analysis

5.1 Color Representation

A color representation of the anisotropic retinal structures is proposed to indicate the
angle of maximal response. We calculate the difference image ID on the ROI:

ID x; yð Þ ¼ ID0 x; yð Þ
max
x;yð Þ

ID0 x; yð Þj jf g ;where ID0 x; yð Þ ¼ I 01 x; yð Þ � I 003 x; yð Þ if x; yð Þ 2 ROI
0 otherwise

�
ð8Þ

The operator sets a threshold S 2 0; 1½ � that classifies the pixels (x,y) in two sets:
isotropic if ID x; yð Þj j\S and anisotropic otherwise. Two colored images, coded in the
RGB color space, are finally derived from this classification. Let us denote by c 2
1; 2; 3f g the third coordinate coding the color channel (1 for red, 2 for green and 3 for

blue). The first output image IRG shows the anisotropic regions in red and green, with
the color coding the angle of maximal response (9). The second output image IRGB
provides the same information superimposed on a fusion image, which is defined as the
minimum of I 01 and I 003 . Figure 7 shows the output color images obtained with our
example, for S = 0.1, which is generally a good choice.

IRG x; y; 1ð Þ ¼ ID x; yð Þ if ID x; yð Þ[ S; 0 otherwise

IRG x; y; 2ð Þ ¼ �ID x; yð Þ if ID x; yð Þ\� S; 0 otherwise

IRG x; y; 3ð Þ ¼ 0

ð9Þ

5.2 Regularization

The results presented in Fig. 7 can be regularized based on Markov random field
(MRF) techniques [9], since the Markovian hypothesis allows us to take into account

(a) (b) " (c) "
Fig. 6. The absolute difference (c) of the two pre-processed off-axis images (a), (b).

Fig. 7. Color representation of anisotropy: IRG (left), IRGB (right). (Color figure online)
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spatial interactions between connected pixels. We define K = 3 classes corresponding
to the regions in red, black and green respectively in IRG (9). The center lk of every
cluster k 2 1; 2; 3f g is initialized to the mean intensity in ID of the pixels belonging to
class k. We also assume that the noise in the difference image ID follows a Gaussian
distribution, and we experimentally set its standard deviation rk to a fixed value, 0.1.
So we have defined the probability distributions P IDS jxs ¼ kð Þ of the pixel intensities
(denoted by IDS where s is referred to as a site, i.e. a pixel), conditionally to every class
k. We refine the classification according to the Bayesian maximum a posteriori
(MAP) criterion, i.e. by looking for the label configuration that maximizes the prob-
ability of the class field (the labels) conditionally to the observation field (the intensity
image ID). This optimal configuration corresponds to a minimum state of an energy
function U, defined as follows.

U x IDjð Þ ¼
X
s

IDs � lxs


 �2
2r2xs

þ ln
ffiffiffiffiffiffi
2p

p
rxs

� � !
þ b

X
ðs;tÞ

u xs;xtð Þ ð10Þ

In this equation, u(xs,xt) refers to the Potts model, expressing interactions between
the 8-connected sites s and t. The first term of (10) is related to the image data, while
the second term is a regularization term. The parameter b, empirically set (b = 0.9),
weights the relative influence of each. The energy function is minimized by running the
simulated annealing (SA) algorithm. Figure 8 shows the resulting images.

6 Experimental Results and Conclusion

We have applied the proposed method on a database of 60 sets of D-OCT images, from
33 patients, including normal cases (31%) and pathological cases: 27% of resolved
macular edema, 42% with macular telangiectasia. The study followed international
ethical requirements and informed consent was obtained from all patients.

The results presented below (Fig. 9) were obtained automatically with the proposed
method, with S = 0.1. Overall, we observed a good robustness of our algorithm, with
about 15% failure, revealed by noisy results or an anisotropy detected in the RPE. The
probable causes of failure are saturation of an off-axis image to black or white, off-axis
images that are too noisy, or a significant shift in the position of the vertical or
horizontal slice, due to eye movement during acquisition, and causing artefacts.

Fig. 8. Final images (IRG and IRGB) obtained after RMF based regularization, less noisy than in
Fig. 7, showing abnormal distribution of anisotropy of outer retinal structures.
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Highlighting the anisotropy of outer retinal layers on OCT scans may help to better
interpret some abnormalities seen in the photoreceptor layers. A common finding in
retinal diseases is indeed the observation of discontinuities of outer retinal layers,
which is usually attributed to loss of photoreceptors. Identifying directional variability
of the photoreceptor reflectance helps to identify “hidden” photoreceptor outer struc-
tures. We have observed areas of outer retinal layers showing a profile of directional
reflectance which is clearly different from normal eyes. In particular, color coding
enabled detection of adjacent areas with different directions of peak reflectivity (Figs. 8
and 9). This suggests the presence of photoreceptor disarray, that is, changes in the
pointing of photoreceptors. The fact that such disarray was detected in very different
clinical situations suggests that it is a common process in retinal diseases. D-OCT may
help therefore to disambiguate missing from misaligned cones.

We plan now to refine our acquisition protocol and to increase the number of
incidence angles in order to study more accurately reflectance properties.
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