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ABSTRACT

Adaptive optics imaging of the retina has recently proven its capability to image micrometric structures
such as blood vessels, involved in common ocular diseases. In this paper, we propose an approach for
automatically segmenting the walls of retinal arteries in the images acquired with this technology. The
walls are modeled as four curves approximately parallel to a previously detected reference line located
near the vessel center (axial reflection). These curves are first initialized using a tracking procedure
and then more accurately positioned using an active contour model embedding a parallelism constraint.
We consider both healthy and pathological subjects in the same framework and show that the proposed
method applies in all cases. Extensive experiments are also proposed, by analyzing the robustness of
the axial reflections detection, the influence of the tracking parameters as well as the performance
of the tracking and the active contour model. Noticeably, the results show a good robustness for
detecting axial reflections and a moderate influence of the tracking parameters. Compared to a naive
initialization, the active contour model coupled with the tracking also offers faster convergence and
better accuracy while keeping an overall error smaller or very near the inter-physicians error.

1. Introduction

This paper deals with the segmentation and the quantifica-
tion of retinal blood vessels in Adaptive Optics (AO) images.
This recent and non-invasive technique provides a new insight
on retinal vessels and their diseases. In comparison to clas-
sical eye fundus images, AO images have a better lateral res-
olution (Rossant et al., 2011) and allow us to visualize mi-
crostructures such as photoreceptors (Liang et al., 1997), cap-
illaries (Martin and Roorda, 2005; Paques et al., 2014b) and
vascular walls (Chui et al., 2012). This technique offers a new
diagnosis and prognosis investigation tool to study the diseases
affecting the retinal blood vessels of small diameter (≤ 150µm),
which are major causes of morbidity and mortality, such as Hy-
pertensive Retinopathy (HR) and Diabetic Retinopathy (DR).
Early treatment of these diseases is crucial to avoid visual loss.

∗∗Corresponding author: Tel.: +33(0)1.64.69.48.00.
e-mail: nicolas.lerme@mines-paristech.fr (Nicolas Lermé)

This requires objective and accurate quantification of vessel
features, such as wall morphometry, which can be derived from
an automated segmentation of AO images. The measure of wall
thickness appears to be of great importance for physicians. The
automatic segmentation of AO images is the topic of this paper.

Data and challenges. The images used in this study were ac-
quired with a rtx1 camera (Viard et al., 2011) with flood illu-
mination at 10Hz using a 850nm LED light source with a pixel
resolution of 1.33µm. Flood-illumination systems usually pro-
duce noisy images making walls hardly visible. A common
solution is to geometrically align a stack of images acquired in
a short time (4.2s, 9.5 frames/s) and average them to increase
the signal-to-noise ratio (Kulcsár et al., 2013). In these images,
blood vessels appear as dark elongated structures with a bright
linear axial reflection, over a textured background. These char-
acteristics will be exploited in the proposed method. Parietal
structures (arterial walls) appear as gray lines along both sides
of the lumen (blood column), with a typical thickness of about
15% of the latter (Koch et al., 2014) (see Figure 1).
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(a) 924 × 947 pixels (b) 218 × 218 pixels (c) 218 × 218 pixels (d) 900 × 900 pixels

Figure 1: Examples of images acquired by the rtx1 camera and a detailed view of them for an healthy subject (a,b) and a pathological one (c,d) (Lermé et al., 2014a).

Figure 2: Flow diagram of the proposed approach.

Segmenting arterial walls in these images is however very
challenging for multiple reasons: (i) the background is highly
textured, (ii) the lumens are globally dark but with significant
intensity variation along them, (iii) the axial reflections may
locally show discontinuities or poor contrast, (iv) the outer bor-
ders of walls are poorly contrasted, (v) the vessel segments can
be locally blurred due to the geometry of the retina, and (vi)
morphological deformations can occur in case of pathologies.

Method overview. In this paper, we propose a fully automatic
method for segmenting arterial walls in a selected region of
interest1 in the averaged images produced by (Kulcsár et al.,
2013). Figure 2 outlines the different steps of the proposed ap-
proach. To the best of our knowledge, this is the first method
addressing this problem in such images. To overcome the dif-
ficulties previously outlined, we propose a strategy exploiting
both geometric, radiometric and topological prior information
regarding vessels. More precisely, we model arterial walls as
four curves approximately parallel to a common reference line
located near the vessel center (axial reflection). Once this line
is detected, the curves are simultaneously initialized as close
as possible to the borders of walls using a tracking procedure
to cope with morphological deformations along vessels (pre-
segmentation). Then, these curves are more accurately posi-
tioned using a parallel active contour model where each curve
evolves independently of the others towards large image gradi-
ents under a parallelism constraint (Ghorbel et al., 2011). This
approach allows us to control the distance of the curves to their
reference line, without knowing it accurately as prerequisite.
This work has also permitted the physicians to establish re-
lationships between morphometric measurements and clinical
parameters (Koch et al., 2014).

1In particular, we do not aim at segmenting the whole vascular tree.

This paper is an extension of our previous publication (Lermé
et al., 2014b), considering still healthy subjects but also patho-
logical ones in the same framework. Additionally, we provide
more details on the method where some steps (such as the axial
reflection detection) have been improved. The experiments and
the evaluation have also been substantially expanded with the
analysis of the robustness for detecting axial reflections, the in-
fluence of the tracking parameters as well as the performance of
the tracking and the active contour model. This work is comple-
mentary to our previous publication (Lermé et al., 2014a) where
curves are linked to each others to improve the robustness of the
model.

The rest of this paper is organized as follows. In Section 2,
we detail the steps for detecting axial reflections inside vessels.
Next, we introduce in Section 3 the pre-segmentation and the
active contour model for segmenting arterial walls. Finally, we
evaluate the performance of the method against manual seg-
mentations in Section 4 and discuss perspectives in Section 5.

2. Axial reflection detection

All along this section, we consider 2D images as functions
mapping pixels from Ω ⊂ Z2 into the interval [0, 1].

2.1. Pre-processing
The original image (see Figure 3(a)) is first pre-processed

by applying a median filter with a square structuring element
of size 5 followed by a morphological closing with a circular
structuring element of radius 3, in order to enhance the axial re-
flection. We denote the resulting image by IP1 (see Figure 3(b)).

The source image is also denoised by a non-linear diffusion
filter (Weickert et al., 1998) with the contrast parameter and the
space regularization parameter respectively set to 0.2 and 2.0.
We denote by IP2 the resulting image (see Figure 3(c)). This
filter allows us smoothing the vessel lumen while preserving
the contrast along its edges.

2.2. Detection of bright elongated structures
Two filters are sequentially applied on the pre-processed im-

age IP1 in order to further enhance the bright elongated struc-
tures. The first one is a white top-hat with a binary mask whose
radius has a fixed size of 1/3 of the axial reflection diameter 2.

2Despite the variety of images, this parameter appears to be stable in our
experiments (including those presented in Section 4).
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(a) Source image (b) IP1 (c) IP2 (d) IT1 (e) IT2

(f) I(0)
ES (g) I(1)

ES
(h) IES (i) k-mean (j) IDA

(k) IES ′ (l) IES ′′ (m) ILM (n) Labeled axial segments (o) Labeled lumens

Figure 3: Steps for axial reflection detection: The source image (a) is pre-processed in two different ways (b,c). Bright elongated structures are detected from (b) by
top-hat (d) and adapted linear filters (e). From (d), these structures are extracted by hysteresis thresholding (f), filtered (g) and finally combined with those detected
in (e) to give (h). Darkest areas are detected from (c) by k-means (i) followed by post-processing (j). From (h) and (j), the most relevant axial segments are kept
(k,l) and combined with (j) to give (m). Final axial segments (i) and lumens (j) are labeled from (d), (l) and the pruned skeleton of (m).

We denote by IT1 the top-hat image (see Figure 3(d)). The sec-
ond one is a series of adapted linear filters designed to esti-
mate the local direction of white linear structures. The mean
grey-level is calculated at every pixel (i, j) ∈ Ω along segments
of fixed length but with different orientations, centered on it.
The segment length is about 55 pixels (' 73µm) and the ori-
entation step is equal to ∆θ = 5◦ (N = 36 filters). Let us de-
note by I(k)

LF the image output by the filter with orientation k∆θ,
k ∈ {0, . . . ,N − 1}, and by ID the image storing the estimated
direction:

kopt(i, j) = argmax
k

I(k)
LF(i, j),

ID(i, j) =

 kopt(i, j) if 0.75I(kopt(i, j))(i, j)
LF > I((kopt(i, j)+ N

2 ) mod N)
LF (i, j)

−1 otherwise,

where x mod y is the remainder of x divided by y. In the latter
equation, the threshold 0.75 enables us to distinguish the pixels
within linear bright features with well-defined local direction
from all the others. From the top-hat image IT1 , we compute a
second image IT2 , defined for any pixel (i, j) ∈ Ω as follows:

IT2 (i, j) =

{
(IT1 • S lID(i, j))(i, j) if ID(i, j) ∈ {0, . . . ,N − 1}
IT1 (i, j) otherwise,

where • denotes the morphological closing operator and S lk is
a binary linear structuring element whose length and orienta-
tion are respectively set to 21 pixels (' 28µm) and k∆θ degrees.
Compared to the image IT1 , axial reflections show better prop-
erties in terms of continuity in the image IT2 (see Figure 3(e))
but the lumens are more noisy.

Afterwards, we binarize the image IT1 using hysteresis
thresholding (lower and upper thresholds are set to 0.2 and 0.6,

respectively) and denote the resulting image by I(0)
ES (see Fig-

ure 3(f)). Parts of the axial reflection of vessels are thus ex-
tracted, but also other bright areas of the textured background.
Further processing steps are therefore needed to discard the
undesired areas. For doing so, we propose to keep the 10
largest connected components and denote the resulting binary
image by I(1)

ES (see Figure 3(g)). To retrieve the connectivity,
a geodesic reconstruction by dilation of the resulting compo-
nents contained in I(1)

ES is performed in a binary mask IM that is
dynamically built from the image IT2 as follows:

IM(i, j) = 1{IT2 (i, j)>S M } ∨ I(1)
ES (i, j), ∀(i, j) ∈ Ω,

with

S M =

 1

]I(1)
ES

∑
(i, j)∈Ω

I(1)
ES =1

IT2 (i, j)

 − 0.4,

where 1, ] and ∨ respectively denote the indicator function, the
cardinality of a set and the logical OR operator. The threshold
S M is computed from the mean grey-level of the selected bright
features in IT2 , which is then lowered (−0.4) in order to surely
get the whole components. We denote by IES the final binary
image of the axial reflection components (see Figure 3(h)).

2.3. Detection of the darkest areas

k-means classification (k = 3) is performed on the pre-
processed images IP2 (see Figure 3(i)) and the cluster of low-
est mean intensity value provides a first binary image of the
darkest regions. It is then post-processed with morphological
operations to get the main connected components correspond-
ing to the dark areas of lumens. In particular, we retain the
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components whose area is more than 1/5 of the largest one, do
a morphological closing with a circular structuring element of
radius 15 and fill holes that are smaller than 10% of the area of
the component having the largest surface. We denote by IDA the
resulting image (see Figure 3(j)).

2.4. Extraction of vascular segments by information fusion

A first selection of vascular segments is performed based on
a simple measure of the tortuosity. Let us denote by IL

ES the
binary image of a tested connected component of the image
IES . This component is retained if

]IL
ES

](IL
ES • S )

> 0.8, (1)

where S is a binary disk whose radius is 15 pixels. Moreover,
a segment of axial reflection must lie inside a dark area, and
conversely, a dark region of the lumen must contain at least one
axial reflection segment. We denote by IES ′ the binary image
made of the components satisfying (1) (see Figure 3(k)) and
IL

ES ′ a tested component of it. The component IL
ES ′ is kept as

part of an axial reflection segment if

](IDA ∩ (IL
ES ′ ⊕ S ′)) >

]IL
ES ′

5
, (2)

where ⊕ denotes the morphological dilation operator and S ′ is a
binary disk whose radius is 15 pixels. Notice that the radius of
S and S ′ are determined according to the minimum size of the
vessels that are studied. We denote by IES ′′ the binary image
made of the components satisfying (1) and (2) (see Figure 3(l)).
Morphological operations are applied to IDA, including recon-
struction by dilation with the marker IES ′′ , in order to get the
final lumen mask ILM (see Figure 3(m)).

2.5. Segment labeling and reconnection of branches

We first compute the skeleton of the image IES ′′ to get
the end-points of the retained segments (see Section 2.4).
These end-points are then reconnected using minimal path tech-
niques (Cohen and Kimmel, 1997; Sethian, 1999). These tech-
niques aim at extracting curves of minimal length, according
to a Riemannian metric computed from the image and depend-
ing on the targeted application. A minimal path C connecting
two end-points p and q is obtained by minimizing the following
functional:

L[C] =

∫ q

p
P(C(s)) ds,

where s denotes the curvilinear abscissa and P is a potential
inducing the metric, defined as

P(x) = w1(1 − ITM (x))2 + w2(1 − IS M(x))2 + w3, ∀x ∈ Ω,

where ITM is the averages of images IT1 and IT2 , IS M is the
pruned skeleton of the lumen mask ILM filtered by a Gaussian
of standard deviation σ and w1,w2,w3 ∈ R+

∗ are free parame-
ters. These parameters are empirically set to σ = 10, w1 = 0.5,
w2 = 0.45 and w3 = 0.05. In the latter expression, the first
term should ideally be close to zero along the axial reflection.

The second term encourages the path C to pass near the middle
of the lumen mask ILM . The last term is a regularization con-
stant. The combination of the above criteria allows for a good
robustness against the variety of the encountered images.

Two end-points form a candidate pair for reconnection if they
belong to the same connected component in the lumen mask
ILM and if they do not belong to the same connected component
in the image IES ′′ . The candidate pairs are then processed by
decreasing order of the Euclidean distance (to start with points
that are close to each other) and reconnected using the above
procedure. A new skeleton is then calculated, providing the
axial reflection of the vessels, and the vessel branches are then
labeled (see Figure 3(n)). The vessel branches are individually
regularized using a classical parametric active contour (Kass
et al., 1988) with Gradient Vector Flow (Xu and Prince, 1998).
The lumen mask ILM is also labeled such that every non-null
pixel receives the label of the closest branch (see Figure 3(o)).

Although the above described steps rely on a number of pa-
rameters, we empirically found that they are all stable for the
images studied (including those presented in Section 4).

3. Segmentation of arterial walls

In what follows, we detail the procedure for segmenting ar-
terial walls of a single regularized vessel branch obtained at
the end of the axial reflection detection step (see Section 2).
We denote this regularized branch as the reference line V(s) =

(x(s), y(s))T ∈ R2 of the vessel, parameterized by s. Once ob-
tained, this line is considered to be fixed and will therefore no
longer evolve in the subsequent steps. Additionally, we choose
to model the artery wall by four curves {Vk}

4
k=1 approximately

parallel to the reference line V where V1, V2 and V3, V4 repre-
sent the inner and the outer borders of this wall, respectively.
These curves are defined as follows:

V1(s) = V(s) + b1(s)~n(s)
V2(s) = V(s) − b2(s)~n(s)
V3(s) = V(s) + b3(s)~n(s)
V4(s) = V(s) − b4(s)~n(s),

where ~n(s) ∈ R2 is the normal vector to the curve V and
bk(s) ∈ R+ is the local distance (or half-diameter) of any curve
Vk to the reference line V (see Figure 4). This model establishes
a direct correspondence between the points of any curve Vk and
those of the reference line V . The segmentation aims at com-
puting the half-diameters {bk}

4
k=1 that are the most suitable for

the delineation of the artery wall. By making strong (but realis-
tic) assumptions, we first detail how these curves can be simul-
taneously initialized using a tracking procedure to cope with
morphological deformations. Next, we relax these assumptions
and present the parallel active contour model used to position
these curves closer to artery walls.

3.1. Pre-segmentation

For convenience, we first sample the reference line V into
equally spaced points and denote by V(i) = (x(s = ih), y(s =

ih))T ∈ R2 the coordinates of the ith point along the reference
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Figure 4: Parametric representation of the model (Lermé et al., 2014b).

line V , and by ~n(i) ∈ R2 the associated normal vector (h > 0 de-
notes the sampling step, set to 1 here). For every i ∈ {1, . . . , ]V},
we sample the curves representing the artery walls by

V1(i) = V(i) + bint(i)~n(i)
V2(i) = V(i) − bint(i)~n(i)
V3(i) = V(i) + bext(i)~n(i)
V4(i) = V(i) − bext(i)~n(i)

, s.t. bint(i) < bext(i), (3)

where bint, bext ∈ R+ respectively denote the half-diameters
of the inner and outer curves. Notice that the model (3) as-
sumes that the inner (respectively outer) curves lie at the same
distance from the reference line V (i.e. b1 = b2 = bint and
b3 = b4 = bext). Additionally, we assume on both sides of
V that the wall thickness is constant along the vessels (i.e.
bext − bint = cst). Although these assumptions could appear
to be somewhat strong, they are verified for a large number of
images.

More generally, the goal is to obtain a robust initializa-
tion of the active contour algorithm, which in turn, will refine
the curves positioning so as to reach a better accuracy. The
pre-segmentation aims at simultaneously computing the half-
diameters bint and bext. In this way, the robustness of the pre-
segmentation against noise and poor contrast is substantially
improved. For instance, this is typically useful when some of
the borders of the artery walls are low contrasted since we can
rely on those which are well contrasted.

Before presenting the pre-segmentation, we need to intro-
duce some notations. First, we denote by I : Ω ⊂ Z2 → [0, 1] a
grayscale image and D~uI(p) the derivative of I in the direction
~u at a pixel p ∈ Ω. For a half-diameter b ∈ R+, a point V(i)
on the reference line V and a window of size (2r + 1), we also
define the mean local gradient along the curves V1 and V2 by

D̄int(b, i, r) =
1

2(2r + 1)

r∑
j=−r

(
D~n(i+ j)I(V1(i + j))+

D−~n(i+ j)I(V2(i + j))
)
, (4)

and the mean local gradient along the curves V3 and V4 by

D̄ext(b, i, r) =
1

2(2r + 1)

r∑
j=−r

(
|D~n(i+ j)I(V3(i + j))|+

|D−~n(i+ j)I(V4(i + j))|
)
. (5)

Using (4) and (5), the pre-segmentation is based on a criterion
to be maximized, defined for every i ∈ {1, . . . , ]V} by:

G(bi, be, i, r) = D̄int(bi, i, r) + D̄ext(be, i, r). (6)

This criterion encourages inner and outer curves to be located
near large gradients in the image. Notice that (4) does not
use absolute values on directional derivatives unlike (5). In-
creasing the window radius r makes gradient measures more
robust to noise but less reliable when strong deformations oc-
cur along vessels. This parameter therefore requires a trade-off.
In what follows, we detail the steps necessary to estimate the
half-diameters bint and bext in (3).

Step 1. Instead of jointly estimating constant half-diameters
bint0 and bext0 as in (Lermé et al., 2014b), we propose to estimate
them as piecewise constant. In this way, the estimated half-
diameters are less prone to morphological deformations while
keeping a good robustness against intensity changes along the
artery walls. The robustness of the tracking (see Step 3 be-
low) is therefore improved, especially for pathological cases.
Let us denote a vessel segment k whose starting and ending in-
dices in the reference line are kstart and kend, respectively. For
each vessel segment k, the half-diameters are estimated using
the criterion (6) as follows:

(bintk
0 , bextk

0 ) = argmax
bi ,be∈R+

bi<be

1
2(kend − kstart + 1)

kend∑
i=kstart

G(bi, be, i, r).

We then set bint0 (i) = bintk
0 and bext0 (i) = bextk

0 , ∀i ∈
{kstart, . . . , kend}. To speed up this step, the intervals for bi and
be are restricted to typical values (Koch et al., 2014). In ac-
cordance to morphometric features, the piecewise constant es-
timation of the half-diameters is performed on vessels segments
whose length is 50 pixels (' 66.5µm). Such an approach can
however fail to accurately segment the walls when deforma-
tions occur inside the same vessel segment. Estimating varying
half-diameters is therefore essential to take into account these
deformations.

Step 2. We determine the position along the curves having the
largest contrast by maximizing the criterion (6):

i∗ = argmax
i∈{1,...,]V}

G(bint0 , bext0 , i, r).

Step 3. Finally, we jointly estimate varying half-diameters bint

and bext whose difference (the wall thickness) is constant along
vessels. Again, this is achieved by using the criterion (6).
These half-diameters are constructed iteratively under a regu-
larity constraint from each side of the position i∗ found at Step
2 and using the estimates bint0 and bext0 found at Step 1. Let us
denote by ē = (bext0 (i∗) − bint0 (i∗)) the wall thickness at the po-
sition i∗. For a fixed error e, the half-diameters are constructed
as follows:

bint(i) =


bint0 (i∗) if i = i∗

argmaxb E(b, bint(i − 1), i, e, r) if i > i∗

argmaxb E(b, bint(i + 1), i, e, r) if i < i∗,
bext(i) = bint(i) + ē + e

(7)
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with

E(b, b′, i, e, r) = αG(b, b + ē + e, i, r) − (1 − α)(b − b′)2, (8)

and where α ∈ [0, 1] is a regularization parameter. The closer
the parameter α is to zero, the more the right term of (8) pe-
nalizes large deviations of bint, and conversely. To get a more
robust estimate of the wall thickness ē+e, we propose to slightly
vary e around ē and select the error e∗ achieving the maximum
energy (8) summed along the vessel:

e∗ = argmax
e

∑
i>0

E(bint(i), bint(i − 1), i, e, r).

In the latter equation, bint and bext are constructed using (7)
and (8). The resulting half-diameters bint∗ and bext∗ are those
found for e∗. It is not difficult to see that the assumptions made
at the beginning of this section hold for these half-diameters.

3.2. Refined segmentation
The model proposed by (Ghorbel et al., 2011) simultaneously

evolves two curves under a parallelism constraint. In what fol-
lows, we describe an extension of this model for extracting four
curves V1, V2, V3 and V4 almost parallel to a reference line V .
Since this line is fixed, the energy becomes

E(V1, . . . ,V4, b1, . . . , b4) =

4∑
k=1

(
EImage(Vk) + R(Vk, bk)

)
, (9)

where the term

EImage(Vk) =

∫ 1

0
P(Vk(s)) ds,

is designed to attract the curve Vk towards large intensity gra-
dients (see (Kass et al., 1988)). In this context, the term EImage

is based on the Gradient Vector Flow (Xu and Prince, 1998).
The role of the term R in (9) is to control the variation of the
distance bk, thus imposing a local parallelism. (Ghorbel et al.,
2011) proposed a function of the derivative of bk with

R(Vk, bk) =

∫ 1

0
Q(s, b′k) ds =

∫ 1

0
ϕk(s)(b′k(s))2 ds,

where {ϕk}
4
k=1 are application-dependent parameters that locally

control the strength of the parallelism of the curve Vk with re-
spect to the reference line V . More precisely, the larger these
parameters are, the stricter the parallelism to the reference line
V is. Unlike previous active contour methods embedding a par-
allelism constraint, it is important to note that the distance be-
tween any curve Vk and the reference line V has not to be pro-
vided in the model. It is adjusted during the evolution process
and can vary along boundaries. It is worth noting that the as-
sumptions made for the pre-segmentation (see Section 3.1) are
relaxed, i.e. the curves can now evolve independently of each
other (instead of (Lermé et al., 2014a) where curves are linked
to others). Also, we want to mention that the energy (9) does
not ensure that b1(s) < b3(s) and b2(s) < b4(s), ∀s. However,
we never encountered such a behavior in our experiments (in-
cluding those presented in Section 4).

Since the energy (9) does not have crossing terms involving
different curves, the minimization can be independently done
for each curve Vk. For any k ∈ {1, . . . , 4}, the Euler-Lagrange
equation expresses the minimization of (9) with respect to bk(s)

∂P(Vk(s))
∂bk

−
d
ds
∂Q(s, b′k)
∂b′k

= 0,

and the evolution of the distance bk to the reference line V is
driven by

〈~n,−∇P(Vk(s))〉 − 2
(
ϕk(s)b′′k (s) + ϕ′k(s)b′k(s)

)
= 0.

The latter equation is solved by discretizing it and introducing
the time variable using standard numerical approximations of
derivatives (central difference in space, backward difference in
time). The resolution of the above equations stops when

max
s
|bn

k(s) − bn−1
k (s)| ≤ ε, ∀k ∈ {1, . . . , 4},

where bn
k(s) is the distance of the curve Vk to the reference line

V at iteration n and ε ' 0 is an accuracy parameter.

4. Experimental results and discussion

4.1. Datasets
A first set of 16 images from healthy and pathological sub-

jects (denoted by D1) is used for evaluating the axial reflections
detection in complex situations (e.g. with several branches).
Since well contrasted vessels are generally limited to small lo-
calized segments, these images are not adapted to the evaluation
of walls. To this aim, a second set of images is used (denoted
by D2), distinct from D1, composed of 14 and 17 images from
healthy and pathological subjects, respectively. D2 is also used
for evaluating the axial reflection detection. All these images
were selected by physicians having several years of experience
in the field of AO image interpretation to ensure the representa-
tiveness of the situations encountered during clinical routine, in
terms of noise levels, contrast and morphological deformations.

4.2. Axial reflections
From each image of D1 and D2, the axial reflections of the

vessels whose lumen is visible were identified by a physician
by first interactively entering a few points along them and then
applying a classical parametric active contour algorithm (Kass
et al., 1988) with Gradient Vector Flow (Xu and Prince, 1998).

When no bifurcations occur, the automatic detection of axial
reflections (see Section 2) can result in fragmented reference
lines due to intensity changes along them. To not overpenalize
the automatic procedure, we propose to put in correspondence
these lines with those obtained semi-interactively by the physi-
cian. Let us denote by VA and V M a sampled reference line
obtained from the automatic procedure and from the physician,
respectively. Then, we consider that these reference lines match
with each other if VA overlaps V M by at least 50% of its length,
or more formally, if

L(Pro j(VA,V M))
L(VA)

> 0.5, (10)
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Table 1: Description of the measures used for comparing the number of refer-
ence lines in manual and automatic segmentations.

True Positives (TP) Number of correctly matched ref-
erence lines between automatic and
manual segmentations.

False Positives (FP) Number of reference lines in au-
tomatic segmentation that do not
match a manual one.

False Negatives (FN) Number of reference lines in man-
ual segmentation that do not match
an automatic one.

where Pro j(VA,V M) is a subset of points of VA such that each
of them has its nearest point in V M that lies at a distance less
than or equal to 5 pixels and L(x) denotes the piecewise linear
approximation of the length of the line x, defined by

L(x) =

]x∑
i=2

‖xi − xi−1‖2.

Notice that the points of Pro j(VA,V M) in (10) can be unequally
spaced due to the distance threshold. The latter permits us to
tolerate an imperfect positioning between the reference lines
VA and V M . Once the matching is done between these refer-
ence lines and to give an idea of the performance of the axial
reflection detection, we propose to compare an automatic seg-
mentation and a manual one by relying on measurements based
on (i) the number of reference lines detected (see Table 1) and
(ii) their relative overlap. Given a set of automatically detected
reference lines {VAk }nk=1 that match with a manual reference line
V M using (10), this overlap (in percentage) is defined by

RO({VAk }nk=1,V
M) =

(
1 −
|L(V M) −

∑n
k=1 L(VAk )|

L(V M)

)
× 100. (11)

The performance of the automatic axial reflection detection
against manual segmentations using the above measures is de-
tailed in Table 2 and illustrated in Figure 5. To address the gen-
eralization capability, the automatic procedure is optimized on
a training set (D1). The test set corresponds to D2. In Table 2,
we can see that the automatic procedure has a good robustness
with very few false positives / false negatives and a large mean
RO, meaning that most of the axial reflections are detected and
overlap well with the ideal ones. In particular, the automatic
procedure demonstrates its capacity to properly manage single
or multiple artery branches (see Subjects 8 and 10). These re-
sults appear to be in the same range for the test set D2, meaning
a good generalization of the automatic procedure. However,
we can notice that some images contain falsely detected axial
reflections (see Subject 15). While undesired, these false de-
tections remain minor in practice and can be easily removed by
medical experts in our software. Also, we can notice that one
axial reflection is missing (see Subject 11). All these particu-
lar cases are depicted in Figure 5. In particular, we observe that
the detection of axial reflections is very challenging for the Sub-
jects 11 and 15 due to the large amount of blur on some vessel
segments. However, such vessels are not relevant for physicians
since the arterial walls are not visible.

Table 2: Performance of the axial reflection detection on the training set D1 and
the test set D2. False positives (FP), false negatives (FN), true positives (TP)
and the relative overlap (RO, in %) are provided (see Table 1 and (11)) for each
set of images.

Number of
branches

FP FN TP RO

Training set 39 3 1 38 92.38% ± 8.28%
Test set 37 4 1 36 85.26% ± 20.01%

4.3. Artery walls

From each image of D2, a single artery branch was manu-
ally segmented two times by three physicians, with an inter-
val of several weeks between the inputs to attenuate the mem-
ory effect. To measure the accuracy of a segmentation A ob-
tained with our approach against a segmentation M realized by
a physician, we use the absolute relative error on the inner diam-
eter, the outer diameter and the wall thickness, respectively de-
noted by δid, δod and δwt1,2 . For each image, these measures are
taken where no vessel bifurcation occur and on the intersection
between automatic and manual segmentations. Considering the
wall thickness on each side separately (δwt1 and δwt2 ) instead as
a whole (as previously done in (Lermé et al., 2014b)) is more
sensitive but also more realistic. Notice that the measure δwt1,2
is of great importance for physicians.

First, we estimate the intra-physician variability by comput-
ing the mean and the standard deviation of the measures δid, δod

and δwt1,2 for all images. To put in perspective the results and
since arterial walls are very difficult to delineate up to a pixel,
we provide the mean and the standard deviation of δid and δod

when one of the two delineated curves is shifted by one pixel all
along it (see Section 3.2). For δwt1,2 , the two concerned curves
depend on which side of the reference line the measure is per-
formed. The resulting statistics are summarized in Table 3. As
expected, the mean error on the walls thickness appears to be
much larger than for the inner and outer diameter due to its
high sensitivity. Also, we can also notice that the physician
Phys1 has the smallest variability on both healthy and patho-
logical subjects for two measures out of three. Because this
physician produced the most stable segmentations, we decided
to choose him as a reference for the remainder of this evaluation
and denote him by PhysRe f .

In what follows, the influence of the parameter α involved
in the pre-segmentation step (see Section 3.1) is studied. In
particular, the window radius r is not considered here since our
experiments reveal that this parameter has a limited influence
on the results. We therefore choose to set r = 1. We believe that
this behavior is due to the dominant role of (8) in the tracking.

First, we study the sensitivity to the parameter α. Figure 6
shows how the parameter α affects the accuracy of the pre-
segmentations compared to those performed by the physician
PhysRe f for both healthy and pathological subjects. Clearly,
the segmentation error is stable for α ∈ [0, 0.65] and relatively
small around 0.95 on the interval [0.9, 1].

Secondly, we study the impact of the parameter α on pre-
segmentations and segmentations. For doing so, we constitute
a training set and a set set using all the images from healthy and
pathological subjects (D2). The training set is composed of one
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Subject 8 Subject 10 Subject 11 Subject 15

Figure 5: Good (half-left) and poor (half-right) results from Table 2 for the automatic detection of axial reflections for four distinct subjects. Top and bottom
rows depict respectively automatic and manual segmentations, superimposed on the original image. White and cyan dashed lines correspond to missed and falsely
detected reference lines, respectively. Dashed lines that are neither white or cyan correspond to correctly matched reference lines.

Table 3: Intra-physician variability with the absolute relative error on the inner diameter (ID), the outer diameter (OD) and the wall thickness (WT) (see δid , δod and
δwt1,2 in the text). All measures are expressed in percentages and averaged over vessel and images. For each measure, the numbers reported between parentheses are
the errors made by shifting one of the four curves by one pixel, all along it.

Phys1 / Phys1 Phys2 / Phys2 Phys3 / Phys3

ID 3.74 ± 3.38 (1.03 ± 0.32) 4.09 ± 3.49 (1.02 ± 0.31) 3.44 ± 2.84 (1.01 ± 0.31)
OD 2.56 ± 2.04 (0.75 ± 0.21) 3.52 ± 2.99 (0.76 ± 0.21) 3.03 ± 2.58 (0.74 ± 0.21)
WT 20.33 ± 20.43 (6.01 ± 2.09) 27.52 ± 31.95 (6.76 ± 3.08) 22.01 ± 22.33 (6.03 ± 2.37)

Table 4: Robustness of the pre-segmentation on healthy and pathological subjects against manual segmentations from the physician PhysRe f . The parameter α∗

achieving the best accuracy on the training set is computed and used for pre-segmenting the images from the test set. Parallel snakes (PS) are then applied. The
accuracy is then estimated on the inner diameter (ID), the outer diameter (OD) and the wall thickness (WT) (see δid , δod and δwt1,2 in the text). The inter-physicians
error is also provided. For each measure, the numbers reported between parentheses are the errors made by shifting one of the four curves by one pixel, all along it.

Pre-segmentation (α∗) Pre-segmentation (α∗) + PS Inter-physicians error

Training set
ID 5.62 ± 7.31 (1.13 ± 0.49) 5.33 ± 7.11 (1.13 ± 0.49) 4.09 ± 3.71 (1.13 ± 0.49)
OD 3.46 ± 3.45 (0.83 ± 0.31) 3.35 ± 3.51 (0.83 ± 0.31) 3.24 ± 2.79 (0.83 ± 0.31)
WT 16.60 ± 12.93 (6.74 ± 2.65) 16.49 ± 13.17 (6.74 ± 2.65) 21.84 ± 17.44 (6.75 ± 2.68)

Test set
ID 5.97 ± 4.74 (0.98 ± 0.17) 5.15 ± 4.28 (0.98 ± 0.17) 4.07 ± 3.37 (0.98 ± 0.17)
OD 3.51 ± 2.77 (0.71 ± 0.11) 3.19 ± 2.46 (0.71 ± 0.11) 3.34 ± 2.81 (0.71 ± 0.11)
WT 19.14 ± 15.55 (5.60 ± 1.65) 18.11 ± 16.81 (5.60 ± 1.65) 23.42 ± 23.36 (5.65 ± 1.63)

Table 5: Comparison of the proposed pre-segmentation (computed using α∗ that gives the best accuracy against PhysRe f ) compared to a naive one (computed using
α = 0) in terms of convergence speed and accuracy when coupled to parallel snakes (PS). The accuracy is estimated using the absolute relative error on the inner
diameter (ID), outer diameter (OD) and the walls thickness (WT) (see δid , δod and δwt1,2 in the text) against manual segmentations from the physician PhysRe f . For
these measures, the inter-physicians error is also provided. The convergence speed is estimated by the number of iterations needed by the PS model to converge.

Pre-segmentation
(α = 0)

Pre-segmentation
(α = 0) + PS

Pre-segmentation
(α∗)

Pre-segmentation
(α∗) + PS

Inter-physicians
error

ID 9.48 ± 9.01 7.78 ± 9.94 5.86 ± 5.70 5.21 ± 5.36 4.08 ± 3.48
OD 6.34 ± 5.02 5.40 ± 5.68 3.49 ± 3.00 3.24 ± 2.84 3.31 ± 2.80
WT 27.16 ± 14.90 30.15 ± 28.27 18.32 ± 14.80 17.59 ± 15.75 22.91 ± 21.64

Iterations / 90.74 ± 50.23 / 59.03 ± 31.68 /
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third of images from healthy subjects and one third of images
from pathological subjects, all randomly selected. The test set
is composed of the remaining images.

Then, we search for the value of the parameter α giving the
best accuracy against manual segmentations from the physician
PhysRe f on the training set. More precisely, we choose the op-
timized value α∗ as the one that minimizes the mean of δid,
δod and δwt1,2 along arteries and over images. We pre-segment
the images from the test set using α∗ and apply the parallel ac-
tive contour model (PS) (see Section 3.2) on the training and
test sets using the following parameter values: ε = 0.1 and
ϕk = 100, ∀k ∈ {1, . . . , 4}. To estimate the accuracy of our ap-
proach on the two sets of images (D2), we again compute the
mean and the standard deviation of the measures δid, δod and
δwt1,2 between the resulting segmentations and those performed
by the physician PhysRe f . The inter-physicians variability is
also computed for the same images by comparing the segmen-
tations performed by all the physicians, except PhysRe f , with
respect to those realized by PhysRe f . All these statistics are
summarized in Table 4. In this table, we can see that the re-
sulting measures appear to be approximately in the same range,
meaning good generalization properties of the parameter α. The
pre-segmentation offers a good accuracy when compared to the
inter-physicians error. When parallel snakes are applied from
these pre-segmentations, the accuracy is improved for all mea-
sures on both sets of images. For two measures out of three, the
accuracy on the test set is very good given the inter-physicians
error. A subset of the results is given in Figure 7 for two healthy
subjects (first and third rows) and two pathological subjects
(second and fourth rows). Mislocations in manual and auto-
matic segmentations are pointed by orange and green arrows
in images, respectively. On the first two rows, we see that the
pre-segmentation is robust to morphological deformations and
is able to delineate thin walls. However, the last row depicts
an extreme situation where the pre-segmentation fails due to
the poor contrast on the inner borders of walls and a fake line
in the textured background that mislead the tracking procedure
(green arrows). Also, we believe that the least performance of
our approach is due to a lack of accuracy in the manual segmen-
tations because artery walls are difficult to delineate. This issue
is shown in the two last rows of Figure 7 (orange arrows). It is
worth noting that the walls are not strictly parallel to the refer-
ence line for pathological cases. However, we do believe that it
still makes sense to consider an approximate parallelism since
its deviation remains moderate. While the model imposes a lo-
cal parallelism, it allows diameter variations at a larger scale.

Finally, Table 5 demonstrates, on both healthy and pathologi-
cal subjects, the benefit of using a pre-segmentation that follows
morphological deformations along vessels compared to a naive
pre-segmentation that does not. For the first one, we use the op-
timized value α∗ (see above). For the second one, we use α = 0
that leads to constant half-diameters along arteries. We then
apply the PS model on all these pre-segmentations and com-
pare the required number of iterations as well as the accuracy
with respect to the manual segmentations from the physicians
PhysRe f . In words, the pre-segmentation using α∗ both leads in
average to a better accuracy for all measures and diminishes the

Figure 6: Sensitivity of the parameter α on both healthy and pathological sub-
jects. The y-axis is the mean error of the measures δid , δod and δwt1,2 with
respect to the segmentations performed by the reference physician PhysRe f .

number of iterations by about 35%.

4.4. Practical use
We discuss below the potential usage of the method for a

non-specialist in image processing. To ensure a good accuracy
of the resulting segmentations, the method should be applied on
a clean image where the walls of arteries are well contrasted, i.e.
visually distinguishable from surrounding structures. When-
ever it is possible, it is preferable to focus the analysis on a
region of medical interest (Paques et al., 2014a; Koch et al.,
2014) to limit the computation time and to avoid wrongly de-
tected vessels due to linear structures in the background. In case
of failure, manual corrections can be performed on axial reflec-
tions and wall detection, by manually initializing the snakes.
Finally, note that the user interface developed to address these
tasks is easy to handle, stable and reactive as acknowledged by
the positive feedback we had from the collaborating hospitals
(Hôpital des Quinze-Vingts and Hôpital la Pitié Salpétrière).
The overall time for automatically delineating walls of a single
artery from a region of interest of 900 × 900 pixels is ' 4 min-
utes on a PC with a Intel Core i7-3612QM @ 2.10GHz. How-
ever, our software has not been optimized and we do believe
that this time would be inferior by using a C implementation.

5. Conclusion

In this paper, we have proposed an automatic method for
delineating the walls of retina arteries that apply on healthy
and pathological cases. Noticeably, the results showed a good
robustness for detecting axial reflections and an overall error
on arterial walls measurements smaller or very near the inter-
physicians error. For future work, we plan to evaluate the ben-
efit of the coupled parallel snakes model introduced in (Lermé
et al., 2014a) for different pathologies. Finally, notice that this
work is not limited to ophthalmology applications and could be
for instance applied to arterial hypertension in cardiology.
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Pre-segmentations Refined segmentations

2.85 ± 2.14 (ID), 1.91 ± 1.39 (OD), 11.13 ± 7.70 (WT) 2.76 ± 1.56 (ID), 1.49 ± 1.04 (OD), 11.18 ± 7.64 (WT)

4.91 ± 5.18 (ID), 3.04 ± 2.79 (OD), 14.32 ± 14.52 (WT) 4.33 ± 4.94 (ID), 2.26 ± 1.74 (OD), 15.36 ± 14.67 (WT)

3.48 ± 2.42 (ID), 3.25 ± 1.89 (OD), 21.60 ± 20.30 (WT) 2.17 ± 1.65 (ID), 4.77 ± 1.13 (OD), 20.77 ± 19.18 (WT)

13.71 ± 17.00 (ID), 7.54 ± 6.11 (OD), 20.18 ± 13.21 (WT) 14.03 ± 18.13 (ID), 7.55 ± 6.70 (OD), 20.04 ± 14.47 (WT)

Figure 7: From top to bottom: good (upper-half) and poor (lower-half) segmentation results against the physician PhysRe f . First and third rows correspond to healthy
subjects while second and fourth rows correspond to pathological ones. The left column shows pre-segmentations (α∗) while the right column shows segmentations
obtained by applying parallel snakes from them. Manual and automatic segmentations are drawn in purple and cyan, respectively, superimposed on the original
images. The white dashed line is the reference line V while the white circle denotes the position along it from which the tracking operates in the pre-segmentation.
The absolute relative error on inner diameter (ID), outer diameter (OD) and walls thickness (WT) (see δid , δod and δwt1,2 in the text) is indicated below each image.
Mislocations in manual and automatic segmentations are pointed by orange and green arrows in images, respectively.
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