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COMPACT REDUCTION IN LIPSCHITZ FREE SPACES

RAMÓN J. ALIAGA, CAMILLE NOÛS, COLIN PETITJEAN,

AND ANTONÍN PROCHÁZKA

Abstract. We prove a general principle satisfied by weakly precompact sets
of Lipschitz-free spaces. By this principle, certain infinite dimensional phe-

nomena in Lipschitz-free spaces over general metric spaces may be reduced to

the same phenomena in free spaces over their compact subsets. As easy conse-
quences we derive several new and some known results. The main new results

are: F(X) is weakly sequentially complete for every superreflexive Banach

space X, and F(M) has the Schur property and the approximation property
for every scattered complete metric space M .

1. Introduction

For a metric space M with a distinguished base point 0 ∈ M (commonly called
a pointed metric space), the Lipschitz free space (for brevity just free space in the
sequel) F(M) is the norm-closed linear span of the evaluation functionals, i.e. of
the set {δ(x) : x ∈M} in the space Lip0(M)∗ where δ(x) : f 7→ f(x). Here the
Banach space Lip0(M) =

{
f ∈ RM : f Lipschitz, f(0) = 0

}
is equipped with the

norm

‖f‖L := sup

{
f(x)− f(y)

d(x, y)
: x 6= y

}
.

It is well known that F(M) is an isometric predual of Lip0(M). Another main
feature of the free spaces is that every Lipschitz map f : M → N which fixes the

zero induces a linear map f̂ : F(M) → F(N) such that δN ◦ f = f̂ ◦ δM and

‖f̂‖ = ‖f‖L. For a quick proof of these facts and some other basic properties we
refer the reader to the paper [6].

The study of isomorphic and isometric properties of free spaces has been a very
active research area recently where many deep theorems have been proved but
many basic questions are left hopelessly open. In this paper we focus on isomorphic
properties of free spaces. Our starting point is an innocent looking lemma about
weakly null sequences in free spaces in the fundamental paper by Nigel Kalton [17].
In Nigel’s words: “weakly-null sequences [in F(M)] are almost supported on ‘small’
sets [of M ]”. By ‘small’, it is meant unions of finite collections of small-radius
balls in the metric space M ; for the precise statement see Definition 3.1. Here we
observe that, when M is complete, this lemma can be bootstrapped to obtain a
more user-friendly conclusion: weakly-null sequences in F(M) are almost supported
on compact subsets of M . In fact, this conclusion, which we call tightness (see
Definition 2.1), is not only true for weakly-null sequences but also for all so called
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weakly precompact sets (see Definition 2.2). In light of (a bit more advanced version
of) this principle, a number of intriguing questions obtain straightforward answers.

Thus, we have several “compact reduction” results: F(M) is weakly sequentially
complete (WSC), resp. Schur, resp. `1-saturated, if and only if F(K) is for every
compact subset K of M . Similar results are obtained for the approximation prop-
erty and the Dunford-Pettis property. Also if a Banach space X does not contain
a copy of `1, then F(M) contains a copy of X if and only if F(K) contains a
copy of X for some compact K ⊂M . Shortly before the original announcement of
our results, a preprint was published by Gartland [11] where restricted versions of
some of our statements (in particular Corollaries 2.6 and 2.7) are proved using a re-
lated technique. It was his suggestion that we try to extend our compact reduction
principle to the approximation property, for which we are grateful.

Combining these compact-reduction results with known results about free spaces
we obtain that F(X) is WSC for every superreflexive Banach space X (which
answers a question posed in [6] by Cúth, Doucha and Wojtaszczyk, but we humbly
acknowledge that the heavy lifting was done by Kochanek and Pernecká who solved
the compact case in [19]). Notice that in particular one obtains that F(c0) is
not isomorphic to F(`p) for 1 < p < ∞. Up to our knowledge, these are the
first examples of classical infinite dimensional separable Banach spaces whose free
spaces are not isomorphic. We also obtain that F(M) has the Schur property and
the approximation property for every scattered complete metric space. Further
we (re)prove that non-separable Asplund spaces, WCG spaces and `∞ cannot be
isomorphic to a subspace of any free space. All of this is detailed in Section 2. The
proof of our user-friendly Kalton’s lemma is to be found in Section 3. It depends
heavily on the notions of support and multiplication operator developed in [3, 4].
Finally, in Section 4 we slightly improve a sufficient condition for the Schur property
of F(M) coming from [21] and disprove (twice!) the conjecture about necessity of
such condition.

1.1. Notation. Let us now introduce the notation that will be used throughout
this paper. For a Banach space X, we will write BX for its closed unit ball of
a Banach and SX for its unit sphere. As usual, X∗ denotes the topological dual
of X and 〈x∗, x〉 will stand for the evaluation of x∗ ∈ X∗ at x ∈ X. We will
write w = σ(X,X∗) for the weak topology in X and w∗ = σ(X∗, X) for the weak∗

topology in X∗.
The letter M will denote a complete pointed metric space with metric d and base

point 0. The choice of the base point will be irrelevant to our results since, as is well
known, free spaces over the same metric space but with different base points are
isometrically isomorphic. We recall that if N ⊂ M and 0 ∈ N , then F(N) can be
canonically isometrically identified with the subspace span {δ(x) : x ∈ N} of F(M).
This is due to well known McShane-Whitney theorem, according to which every
real-valued Lipschitz function on N can be extended to M with the same Lipschitz
constant. Further, B(p, r) will stand for the closed ball of radius r around p ∈ M
while for A ⊂M and δ > 0, we will write

d(p,A) = inf{d(p, x) : x ∈ A}
[A]δ = {p ∈M : d(p,A) ≤ δ}.
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We will also use the notation

rad(A) = sup{d(0, x) : x ∈ A}
diam(A) = sup{d(x, y) : x, y ∈ A}.

These two last quantities will be called the radius of A and the diameter of A,
respectively. Next, for any set B ⊂ M we define the Kuratowski measure of non-
compactness α(B) as the infimum of the numbers r such that B admits a finite
covering by sets of diameter smaller than r. Let us recall that Kuratowski’s theorem
(see [20]) states that if (Bn)n is a decreasing sequence of nonempty, closed subsets
of M such that lim

n→∞
α(Bn) = 0, then the intersection B of all Bn is nonempty and

compact.
Finally, let us recall some notions from [3, 4] that will be used throughout the

proof of our main theorem. Given any Lipschitz function h on M with bounded
support, the pointwise product fh belongs to Lip0(M) for any f ∈ Lip0(M), and
its support is contained in supp(h). In fact, for any S ⊃ supp(h) the mapping
Th : Lip0(S)→ Lip0(M) defined by

(1) Th(f)(x) =

{
h(x)f(x) if x ∈ S
0 otherwise

is a w∗-to-w∗ continuous linear operator, whose norm is bounded by

(2) ‖Th‖ ≤ ‖h‖∞ + rad(supp(h)) ‖h‖L .
Therefore its adjoint operator T ∗h takes F(M) into F(S). See [4, Lemma 2.3] for
the detailed proof of these facts. Also, recall that for each µ ∈ F(M) we can define
its support as the set

supp(µ) =
⋂
{K ⊂M : K is closed and µ ∈ F(K)} .

It satisfies µ ∈ F(supp(µ)), and moreover µ ∈ F(K) if and only if K ⊃ supp(µ).
This notion coincides with the usual one for finite linear combinations of evaluation
functionals, i.e. finitely supported elements of F(M). We refer to Section 2 of [4]
for proofs of this and additional properties.

2. Tightness of weakly precompact sets and applications

The following definition is somewhat reminiscent of the concept of tightness for
subsets of Borel measures on complete metric spaces (see [5]).

Definition 2.1. We will say that a set W ⊂ F(M) is tight if for every ε > 0 there
exists a compact K ⊂M such that

W ⊂ F(K) + εBF(M).

For the next one, let us recall that a sequence (xn)n in a Banach space X is
weakly Cauchy if the sequence (〈x∗, xn〉)n is convergent for every x∗ ∈ X∗.
Definition 2.2. Recall that a subset W of a Banach space X is called weakly
precompact1 if every sequence (xn)n ⊂ W admits a weakly Cauchy subsequence.
Equivalently, by virtue of Rosenthal’s `1-theorem, W is weakly precompact if it is
bounded and no sequence in W is equivalent to the unit vector basis of `1.

Our main technical result is the following.

1Do not confuse with relatively weakly compact sets!
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Theorem 2.3. Let M be a complete metric space. Let W ⊂ F(M) be weakly
precompact. Then W is tight.

More precisely, for every ε > 0 there exist a compact K ⊂ M and a linear
mapping T : span(W )→ F(K) such that

• ‖µ− Tµ‖ ≤ ε for all µ ∈W , and
• there is a sequence of bounded linear operators Tk : F(M) → F(M) such

that Tk → T uniformly on W .

We postpone the proof of this theorem until Section 3 in order to discuss its
most important consequences first.

2.1. Compact reduction for weak sequential completeness. Recall that a
Banach space X is called weakly sequentially complete (WSC) if every weakly
Cauchy sequence in X is weakly convergent.

Corollary 2.4. Let M be a complete metric space. Then F(M) is WSC if and
only if F(K) is WSC for every compact K ⊂M .

Proof. Since the WSC property passes to subspaces we only need to prove the
sufficiency. Let (µn)n be weakly Cauchy in F(M). Let µ be its w∗-limit in F(M)∗∗.
We set W := {µn : n ∈ N} and let ε > 0 be arbitrary. Let K and T be as in
Theorem 2.3 with ‖Tµn − µn‖ ≤ ε for all n. We know that there are bounded
linear operators Tk : F(M) → F(M) such that Tk�W → T �W uniformly. So for
every fixed f ∈ Lip0(M) we have

sup
n∈N
|〈f, Tkµn − Tµn〉| → 0 as k →∞.

Moreover, every sequence (〈f, Tkµn〉)n is Cauchy (for fixed k). So the usual exchange-
of-limits argument gives that the sequence (〈f, Tµn〉)n is Cauchy, too. Hence
(Tµn)n is weakly Cauchy. By assumption, F(K) is WSC so there exists λ ∈ F(K)

such that Tµn
w→ λ. By the weak lower semicontinuity of the norm we have

‖λ− µ‖ ≤ ε and so µ ∈ F(M) since ε was arbitrary. �

In the deep paper [19], Kochanek and Pernecká prove that if M is a compact
subset of a superreflexive Banach space, then the Lipschitz-free space F(M) is
weakly sequentially complete. So Corollary 2.4 implies immediately:

Corollary 2.5. If X is a superreflexive Banach space then F(X) is WSC.

In particular, the space F(`2) is WSC. This provides a negative answer to Ques-
tion 3 posed by Cúth, Doucha and Wojtaszczyk in [6].

2.2. Compact reduction for the Schur property. A Banach space has the
Schur property if every weakly-null sequence is also norm-convergent to 0.

Corollary 2.6. Let M be complete. The free space F(M) has the Schur property
if and only if F(K) has the Schur property for every compact K ⊂M .

The proof is almost identical to the proof of Corollary 2.4 and is left to the
reader.

Corollary 2.7. Let M be countable and complete metric space. Then F(M) has
the Schur property. More generally, let M be a scattered complete metric space.
Then F(M) has the Schur property.
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Notice that the above corollary applies in particular to complete metric spaces
which are topologically discrete. The Schur property for free spaces of such spaces
was, up to our knowledge, not known. See Section 4 for more information on this
subject.

Proof of Corollary 2.7. In a countable complete metric space every compact is
clearly countable so the first claim follows from Corollary 2.6 and [16, Theorem
3.1], which states that F(M) is Schur if M is countable and compact (see also [21]).

In a scattered metric space (i.e. without a perfect part) every subset is scattered.
But the only scattered and compact metric spaces are countable compacts (see
Lemma VI.8.2 in [8]). So again we conclude by Corollary 2.6 and [16, Theorem
3.1].

Alternatively, the first claim also follows from the second one using the fact that
perfect sets are uncountable. �

2.3. Compact reduction for the approximation property. We recall that a
Banach space X has the approximation property (AP) if for every ε > 0 and every
compact set W ⊂ X there exists a finite-rank bounded operator S : X → X such
that ‖Sx− x‖ ≤ ε for every x ∈W .

We are grateful to Chris Gartland for suggesting the possibility of using our main
theorem for proving the following result.

Corollary 2.8. Let M be complete. Then F(M) has the AP if and only if for
every compact K ⊂ M there is a subset B ⊂ M such that K ⊂ B and F(B) has
the AP.

Proof. One direction is clear, let us prove the other one. Let W ⊂ F(M) be a norm-
compact set. Let ε > 0, we will find a finite rank operator S : F(M) → F(M)
such that supw∈W ‖Sw − w‖ ≤ 3ε. So let K, T : W → F(K) and (Tn) be given by
Theorem 2.3. Since T �W is the uniform limit of continuous maps, it is continuous.
Thus T (W ) ⊂ F(K) is norm compact.

By assumption there exists B ⊂ M such that K ⊂ B and F(B) has the AP.
So there exists a bounded finite-rank operator H : F(B) → F(B) such that

supw∈W ‖HTw − Tw‖ ≤ ε. Let H̃ : F(M) → F(M) be a Hahn-Banach finite-
rank extension of H. We also know by the uniform convergence of (Tn) to T on W

that there is n such that supw∈W ‖Tnw − Tw‖ ≤ ε
∥∥∥H̃∥∥∥−1

. We set S = H̃Tn which

is bounded and has finite rank. For every w ∈W we have

‖Sw − w‖ ≤
∥∥∥H̃Tnw − H̃Tw∥∥∥+

∥∥∥H̃Tw − Tw∥∥∥+ ‖Tw − w‖

≤
∥∥∥H̃∥∥∥ ‖Tnw − Tw‖+ ε+ ε ≤ 3ε

which we wanted to prove. �

Notice that the difference between the statement of Corollary 2.4 (or Corol-
lary 2.6) and our last corollary is necessary since the AP does not pass to subspaces.
For instance, consider a Banach space X ⊂ c0 failing the AP such as Enflo’s exam-
ple [9]. It follows from [13, Theorem 5.3] that F(c0) has the AP. However, there
is a compact convex subset K ⊂ X such that X is isometric to a 1-complemented
subspace of F(K) and thus F(K) fails the AP (see [15, Theorem 4]).

Since free spaces over countable compact spaces have the AP [7, Theorem 3.1],
we obtain in particular:
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Corollary 2.9. Let M be countable and complete metric space. Then F(M) has
the AP. More generally, let M be a scattered complete metric space. Then F(M)
has the AP.

Notice that the above corollary gives a positive answer to the Banach space case
of [2, Question 6.3].

2.4. Compact reduction for the Dunford–Pettis property. A Banach space
X is said to have the Dunford–Pettis property (DPP) if for every sequence (xn)n
in X converging weakly to 0 and every sequence (x∗n)n in X∗ converging weakly to
0, the sequence of scalars (x∗n(xn))n converges to 0. Note that this property does
not pass to subspaces.

Corollary 2.10. Let M be complete. Then F(M) has the DPP if and only if for
every compact K ⊂ M there is a subset B ⊂ M such that K ⊂ B and F(B) has
the DPP.

Proof. The direction “ =⇒ ” is trivial, so let us prove the other one. Let (µn)n ⊂
F(M) and (fn)n ⊂ Lip0(M) be weakly-null (so bounded by some constant C > 0).
We set W := {µn : n ∈ N} and let ε > 0 be arbitrary. Let K and T be as in
Theorem 2.3 with ‖Tµn − µn‖ ≤ ε. In the same way as in the proof of Corollary 2.4,
we obtain that (Tµn)n is weakly-null. By assumption, there exists B ⊂M such that
K ⊂ B and F(B) has the DPP. Since (Tµn)n is weakly-null in F(K) and thanks
to the canonical isometric identification F(K) ⊂ F(B), (Tµn)n is weakly null in
F(B). Moreover the sequence (fn�B)n ⊂ Lip0(B) is also weakly-null. Therefore
limn 〈fn, Tµn〉 = 0. Now let n0 ∈ N such that |〈fn, Tµn〉| ≤ ε whenever n ≥ n0.
Using the triangle inequality we deduce that for every n ≥ n0:

|〈fn, µn〉| ≤ |〈fn, µn − Tµn〉|+ |〈fn, Tµn〉| ≤ ‖fn‖L‖µn − Tµn‖+ ε ≤ (C + 1)ε.

Since ε > 0 was arbitrary, this yields the conclusion. �

2.5. Compact reduction for copies of spaces not containing `1.

Theorem 2.11. Let M be a complete metric space. Let X ⊆ F(M) be a closed
subspace which does not contain an isomorphic copy of `1. Then there exists a
compact K ⊂M such that X is isomorphic to a subspace of F(K).

Proof. We apply Theorem 2.3 for W = BX and ε < 1
2 . Notice that span(BX) = X.

Since T �BX
is a uniform limit of bounded operators, it follows that T �X is a bounded

linear operator. On the other hand we have for every x ∈ SX that ‖Tx‖ ≥ 1 − ε.
It follows that T : X → F(K) is an isomorphism between X and a subspace of
F(K). �

We get immediately the following compact-reduction result.

Corollary 2.12. Let M be an infinite complete metric space. Assume that for
every infinite compact K ⊂M , the space F(K) is `1-saturated (i.e. every infinite-
dimensional subspace of F(K) contains an isomorph of `1). Then F(M) is `1-
saturated.
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2.6. Consequences for non-separable free spaces. The next result, which fol-
lows immediately from Theorem 2.3, is known.

Corollary 2.13. Let W ⊂ F(M) be weakly precompact. Then W is separable.

This fact has been first observed for weakly compact subsets of free spaces over
weakly compactly generated Banach spaces in [13, Proposition 4.1] and later proved
for weakly precompact subsets of free spaces over arbitrary metric spaces in [18,
Theorem 2.1].

We also get easily that some well known (classes of) non-separable Banach spaces
do not appear as subspaces of free spaces. Consequently, they fail the Lipschitz
lifting property introduced by Godefroy and Kalton in [13]. Recall that a Banach
space X is said to have this property if the map

βX :

n∑
i=1

aiδ(xi) ∈ F(X) 7−→
n∑
i=1

aixi ∈ X

admits a bounded linear right inverse. It was already known that cases (ii) and
(iii) below fail this property (see [13, Theorems 4.3 and 4.6]) but the proof here is
different.

Corollary 2.14. The following non-separable Banach spaces are not isomorphic
to a subspace of any free space:

(i) all non-separable spaces not containing a copy of `1 (e.g. Asplund spaces,
JT ∗),

(ii) non-separable weakly compactly generated (WCG) spaces,
(iii) `∞.

In particular, all these spaces fail the Lipschitz lifting property. And also, the free
spaces of all these spaces fail to have unique Lipschitz structure.

Proof. (i) follows directly from Theorem 2.11. The fact that JT ∗ does not contain
a copy of `1 is well known and is proved for instance in [10, Corollary 3.c.7].

(ii) If X ⊆ F(M) is non-separable and WCG, there is a weakly compact W ⊂ X
such that span(W ) = X. It follows that W is non-separable, contrary to Corol-
lary 2.13.

(iii) `∞ contains an isometric copy of the dual of every separable Banach space,
in particular contains JT ∗.

Finally, if a Banach space X satisfies the Lipschitz lifting property then F(X)
contains an isomorphic copy of X. This proves the second-to-last statement.

Also, let βX : F(X)→ X be the linear extension of IdX : X → X, i.e. βX ◦δX =
IdX . Then it is well known and easy to see that F(X) is Lipschitz equivalent to
kerβX ⊕X [13]. But, because of the first part of the corollary, kerβX ⊕X cannot
be linearly isomorphic to F(X). This proves the last statement. �

3. Proof of Theorem 2.3

We will in fact prove a (perhaps only formally) more general theorem, and then
show that Theorem 2.3 follows from it. For the general result we need the following
notion.

Definition 3.1. Let us say that a set W ⊂ F(M) has Kalton’s property if it is
such that for every ε, δ > 0 there exists a finite set E ⊂M such that

W ⊂ F([E]δ) + εBF(M)
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where [E]δ = {x ∈M : d(x,E) ≤ δ}.

In [17, Lemma 4.5] Kalton proved that weakly null sequences in free spaces over
bounded metric spaces satisfy this property – hence the terminology.

Theorem 3.2. Let W ⊂ F(M) be such that S(W ) has Kalton’s property for every
bounded operator S : F(M)→ F(N) and for every N ⊂M . Then W is tight.

More precisely, there exists a linear map T : span(W )→ F(K) such that

• ‖µ− Tµ‖ ≤ ε for all µ ∈W , and
• there is a sequence of bounded linear operators Tk : F(M) → F(M) such

that Tk → T uniformly on W .

Proof. Let us first assume that diam(M) = R < ∞. Let ε0 = ε, δ0 = R, and for
n ≥ 1 denote εn = 2−nε and δn = R( 1

εn
− 2)−1. Let W0 = W , K0 = M and S0

be the identity operator on F(M). We will inductively construct sets Kn ⊂ M
and operators Sn : F(Kn−1) → F(Kn) for n ≥ 1 such that (Kn)n is decreasing,
α(Kn) ≤ 4δn and ‖µ− Snµ‖ ≤ εn for every µ ∈Wn−1, where Wn = Tn(W ) and

Tn = Sn ◦ . . . ◦ S1.

Suppose Kn−1 and Sn−1 have been constructed. Since Wn−1 has Kalton’s property
(with respect to the metric space Kn−1) by hypothesis, there exists a finite set
En ⊂ Kn−1 such that

Wn−1 ⊂ F([En]δn) + ε2
nBF(Kn−1).

In the above we understand [En]δn = {x ∈ Kn−1 : d(x,En) ≤ δn} and similarly for
[En]2δn below. Let Kn = [En]2δn , which clearly satisfies α(Kn) ≤ 4δn. By the
McShane-Whitney extension theorem (plus bounding above and below by 1 and 0),
there is a Lipschitz function hn on Kn−1 such that 0 ≤ hn ≤ 1, ‖hn‖L ≤

1
δn

and

hn(x) =

{
1 if x ∈ [En]δn ,
0 if x ∈ Kn−1 \Kn.

Let Thn
: Lip0(Kn)→ Lip0(Kn−1) the weighting operator given by (1) for h = hn,

and let Sn be its preadjoint. Note that ‖Sn‖ ≤ (1 + R ‖hn‖L) by (2). Clearly
Sn : F(Kn−1)→ F(Kn) acts as the identity on F([En]δn) and its image is contained
in F(Kn). Finally, given µ ∈ Wn−1 there exists λ ∈ F([En]δn) with ‖µ− λ‖ ≤ ε2

n,
so we have

‖µ− Snµ‖ ≤ ‖µ− λ‖+ ‖λ− Snλ‖+ ‖Sn(λ− µ)‖
≤ (1 + ‖Sn‖)ε2

n ≤ (2 +R ‖hn‖L)ε2
n ≤ εn.

This completes the construction.
For every µ ∈ W , the sequence (Tnµ)n is Cauchy by construction, hence it

converges to some λ ∈ F(M). Moreover

‖µ− Tnµ‖ ≤
n∑
k=1

‖Tk−1µ− Tkµ‖ ≤
n∑
k=1

εk < ε

and ‖µ− λ‖ ≤ ε. We denote K =
⋂∞
n=1Kn. Notice that K is compact by Kura-

towski’s theorem [20]. Moreover supp(λ) ⊂ K. Indeed, λ ∈
⋂∞
n=1 F(Kn) = F(K)

where the equality follows from [4, Theorem 2.1].
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Now assume M is unbounded. Then we precede the above construction by a
preliminary step as follows: by Kalton’s property, there is a finite set E ⊂M such
that

W ⊂ F([E]1) +
ε

8
BF(M).

Let R = 2(rad(E) + 1) and K0 = B(0, R). Construct a Lipschitz function h on
M with 0 ≤ h ≤ 1, h = 1 on B(0, R/2), h = 0 on M \K0, and ‖h‖L ≤

2
R . Then

similarly ‖Th‖ ≤ 3 using (2) and for any µ ∈W we get

‖µ− T ∗hµ‖ ≤ (1 + ‖Th‖)
ε

8
≤ ε

2
.

Since T ∗h (W ) ⊂ F(K0) with rad(K0) ≤ R, we can now apply the first part of the
proof to obtain a compact K ⊂ K0 such that T ∗h (W ) ⊂ F(K) + ε

2BF(M) with the
corresponding operators Tk : F(K0) → F(K0) and the limit map T : F(K0) →
F(K). Clearly the operators Tk ◦ T ∗h and T ◦ T ∗h satisfy the requirements in the
second half of the statement. This ends the proof. �

Since continuous linear images of weakly precompact sets are weakly precompact,
in order to prove Theorem 2.3 it is now enough to show that weakly precompact sets
in free spaces have Kalton’s property. This is achieved separately for bounded and
unbounded metric spaces in the following couple of propositions, whose arguments
are inspired by Kalton’s original one from [17, Lemma 4.5].

Proposition 3.3 (Bounded case). Let M be bounded and let W ⊂ F(M) be weakly
precompact. Then W has Kalton’s property.

Proof. Let us assume that the assertion is not true. So there exist δ > 0 and ε > 0
such that the conclusion does not hold, namely, for every finite set E ⊂ M , there
is µ ∈W such that

d(µ,F([E]δ)) > ε.

We may assume that Rδ−1 ≥ 1 where R = rad(M). We will first construct se-
quences (µn)n ⊂ W and (λn)n ⊂ F(M) such that ‖µn − λn‖ → 0 and every λn is
finitely supported. Let µ1 ∈W be arbitrary such that ‖µ1‖ > ε. Let λ1 ∈ F(M) be
such that ‖µ1 − λ1‖ ≤ 2−1ε and E1 = supp(λ1) is finite. By the hypothesis there
exists µ2 ∈ W such that d(µ2,F([E1]δ) > ε. Let λ2 ∈ F(M) be finitely supported
and such that ‖µ2 − λ2‖ ≤ 2−2ε. We denote E2 = E1 ∪ supp(λ2). Notice that
d(λ2, [E1]δ) > ε/2. Continuing this way we will get an increasing family of finite
sets (En)n and a sequence (λn)n ⊂ F(M) such that for n ∈ N:

• λn ∈ F(En),
• ‖λn − µn‖ ≤ 2−nε and
• d(λn,F([En−1]δ)) > ε/2.

Now since W is weakly precompact, there is a weakly Cauchy subsequence (µnk
)k

of (µn)n. By construction (λnk
)k is also weakly Cauchy. Notice that since

d(λnk
,F([Enk−1]δ)) > ε/2,

we also have d(λnk
,F([Enk−1

]δ)) > ε/2. So we may write (λn)n instead of (λnk
)k

in the sequel. Denote ξn := λn − λn−1, so that (ξn)n is weakly null. We have
supp(ξn) ⊂ En and d(,F([En−1]δ)) = d(λn,F([En−1]δ)) > ε/2. Here we assume
tacitly that λ0 = 0 and E0 = {0}.

We will show that this leads to a contradiction. Let n1 = 1 and choose a
positive h1 ∈ BLip0(M) such that |〈ξn1

, h1〉| > ε/4. Now assume that nk has been
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selected, as well as h1, . . . , hk. We pick nk+1 > nk such that for all n ≥ nk+1

and all i ≤ k we have |〈hi, ξn〉| < ε
8(k−1) . By the Hahn-Banach theorem there is

fk+1 ∈ BLip0(M) which is zero on [Enk
]δ and

〈
fk+1, ξnk+1

〉
> ε/2. We define gk+1

as either the positive or the negative part of fk+1. The choice is made so that∣∣〈gk+1, ξnk+1

〉∣∣ ≥ ε/4. We now define

hk+1(x) = max
(

sup
y∈supp(ξnk+1

)

(gk+1(y)−Rδ−1d(x, y)) , 0
)

Since this is the smallest positive R
δ -Lipschitz extension of gk+1 we have

0 ≤ hk+1 ≤ gk+1.

In particular, hk+1 is zero on [Enk
]δ (and everywhere where gk+1 was zero). Now

if l < k and hk(x) 6= 0 then x /∈ [Enl
]δ. But then hl(x) = 0 by the choice of the

constant of the extension above. So (hk)k have mutually disjoint supports. Thus
letting h = supk hk we have h =

∑∞
k=1 hk pointwise and ‖h‖L ≤ Rδ−1. Therefore

h ∈ Lip0(M).
To finish, for every k we have

|〈ξnk
, h〉| =

∣∣∣∣∣
〈
ξnk

,

k∑
i=1

hi

〉∣∣∣∣∣ ≥ |〈ξnk
, hk〉| −

k−1∑
i=1

|〈ξnk
, hi〉|

≥ ε

4
−
k−1∑
i=1

ε

8(k − 1)
≥ ε

8

contradicting the fact that (ξn)n is weakly null. �

Notice that Theorem 2.3 is now proved for bounded metric spaces. In order to
remove the hypothesis of boundedness in Proposition 3.3, we need to undergo some
more tedious work.

Lemma 3.4. Let M be a pointed metric space and let (µn)n be a weakly Cauchy
sequence in F(M). Then for every ε > 0 there exists a bounded set C ⊂ M such
that

(µn)n ⊂ F(C) + εBF(M).

Proof. Without loss of generality, we may assume that all the µn are finitely sup-
ported.

We will first prove the lemma under the assumption that (µn)n is weakly null.
Aiming for a contradiction, suppose that the lemma fails, that is, there exists ε > 0
such that for every bounded subset C ⊂M :

sup
n
d(µn,F(C)) > ε.

Let R0 = 1, n0 = 1 and g0 = 0, and construct sequences (nk)k in N, (Rk)k in R
and (gk)k in Lip0(M) by induction as follows. Suppose the sequences have been
defined up to index k − 1. Since (µn)n is weakly null and by assumption, we can
choose nk > nk−1 such that

d(µnk
,F(B(0, 2Rk−1))) ≥ ε

and such that

|〈µnk
, gi〉| ≤ 2−(2+i)ε
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for i ≤ k − 1. By the Hahn-Banach theorem, there is fk ∈ BLip0(M) that vanishes
on B(0, 2Rk−1) and such that 〈µnk

, fk〉 ≥ ε. By replacing fk with its positive or
negative part, we may assume that fk is positive and |〈µnk

, fk〉| ≥ ε
2 instead. Now

let Rk = rad(supp(µnk
)) and let gk = fk · hk where

hk(x) =


1 , d(x, 0) ≤ Rk
2− d(x,0)

Rk
, Rk ≤ d(x, 0) ≤ 2Rk

0 , d(x, 0) ≥ 2Rk

Then gk ≥ 0, |〈µnk
, gk〉| = |〈µnk

, fk〉| ≥ ε
2 , supp(gk) ⊂ B(0, 2Rk), and ‖gk‖L ≤

3 ‖fk‖L ≤ 3 by (2), since ‖Thk
‖ ≤ 3.

Now let g = supk gk, which also equals the pointwise sum of the gk. Then
‖g‖L ≤ 3 so g ∈ Lip0(M). For every k we have

|〈µnk
, g〉| =

∣∣∣∣∣
〈
µnk

,

k∑
i=1

gi

〉∣∣∣∣∣ ≥ |〈µnk
, gk〉| −

k−1∑
i=1

|〈µnk
, gi〉| ≥

ε

2
−
k−1∑
i=1

ε

22+i
≥ ε

4

contradicting the fact that (µn) is weakly null. This settles the weakly null case.
In the general case where (µn)n is weakly Cauchy, again assume for contradiction

that the lemma fails. We may again extract a subsequence (µnk
)k such that

d(µnk
,F(B(0, 2Rk−1))) > ε,

where Rk = rad(supp(µnk
)). We let γk = µnk

−µnk−1
for every k ≥ 2. It is readily

seen that (γk)k is weakly null. Moreover, since µnk
∈ F(B(0, Rk)) for every k, we

also deduce that

d(γk,F(B(0, 2Rk−1))) = d(µnk
,F(B(0, 2Rk−1))) > ε.

As lim
k→+∞

Rk = +∞, this contradicts the first part of the proof. �

Lemma 3.5. Let M be a pointed metric space and let W ⊂ F(M) be weakly
precompact. Then for every ε > 0 there exists a bounded set C ⊂M such that

W ⊂ F(C) + εBF(M).

Proof. Aiming for a contradiction, assume that the conclusion is not true for some
fixed ε > 0. Let x1 ∈ W such that ‖x1‖ > ε and let us write R1 = 0. Using our
assumption we may build by induction an increasing sequence (Rn)n ⊂ R and a
sequence (xn)n ⊂W such that lim

n→∞
Rn =∞ and for every n ∈ N

(3) dist
(
xn,F

(
B(0, Rn−1)

))
> ε.

Now since (xn)n ⊂ W , it admits a weakly Cauchy subsequence (xnk
)k. But this

together with (3) contradicts Lemma 3.4. �

We now prove the unbounded version of Proposition 3.3.

Proposition 3.6 (General case). Let M be a pointed metric space. If W ⊂ F(M)
is a weakly precompact set, then W has Kalton’s property.

Proof. Fix ε, δ > 0 and let W be a weakly precompact set in F(M). By Lemma 3.5,
there is a bounded set C ⊂ M such that W ⊂ F(C) + εBF(M). Without loss of
generality, assume that C = B(0, R) for some R > 0 and denote C ′ = B(0, 2R).
Next, define a map h : M → R as follows: h(x) = 1 for every x ∈ C, h(x) = 0
whenever x 6∈ C ′ and extend h on C ′ \ C using the McShane-Whitney extension
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formula so that ‖h‖L ≤
1
R (plus bounding above and below by 1 and 0 to ensure

0 ≤ h(x) ≤ 1 for every x). Let Th : Lip0(C ′) → Lip0(M) be the linear operator
defined in (1), and write Sh : F(M) → F(C ′) for its predual operator. Note
that ‖Sh‖ = ‖Th‖ ≤ 3 by (2) and that Sh acts on F(C) as the identity. Since
W is weakly precompact, the set Sh(W ) is also weakly precompact in F(C ′). By
Proposition 3.3, there exists a finite set E ⊂ C ′ such that

Sh(W ) ⊂ F([E]δ) + εBF(M).

Consider x ∈ W . Since W ⊂ F(C) + εBF(M), there exists y ∈ F(C) such that
‖x− y‖ ≤ ε. Consequently we have

‖x− Sh(x)‖ ≤ ‖x− y‖+ ‖Sh(y)− Sh(x)‖ ≤ 4ε.

We now conclude with the following inclusions:

W ⊂ Sh(W ) + 4εBF(M) ⊂ F([E]δ) + 5εBF(M).

�

Proposition 3.6 together with Theorem 3.2 now prove Theorem 2.3 as promised.

4. A remark about the Schur property in free spaces

It is proved in [21, Proposition 8] that if the set of uniformly locally flat functions
in Lip0(M), i.e.

lip0(M) =

{
f ∈ Lip0(M) : lim

ε→0
sup

0<d(x,y)<ε

|f(x)− f(y)|
d(x, y)

= 0

}
,

is 1-norming for F(M) then F(M) has the Schur property. This result is in fact
an extension of a previous result due to Kalton [17, Theorem 4.6]. The fact that
lip0(M) is norming with constant 1 is essential in the proof of those results. How-
ever, thanks to a renorming trick (see also [22, p. 150]) we can slightly generalise
the result.

Proposition 4.1. Let M be a metric space such that lip0(M) is C-norming for
some C ≥ 1, that is

∀γ ∈ F(M), ‖γ‖ ≤ C sup
f∈Blip0(M)

|〈f, γ〉|.

Then F(M) has the Schur property.

Proof. Let us define a new metric d̃ on M by the following formula

∀x, y ∈M, d̃(x, y) = sup
f∈Blip0(M)

∣∣〈f, δ(x)− δ(y)〉
∣∣.

We first notice that d̃ is equivalent to d. Indeed,

d̃(x, y) ≤ sup
f∈BLip0(M)

|〈f, δ(x)− δ(y)〉| = d(x, y)

≤ C sup
f∈Blip0(M)

|〈f, δ(x)− δ(y)〉| = Cd̃(x, y).

Next, it is clear that lip0(M, d̃) is 1-norming for F(M, d̃). According to [21, Propo-

sition 8], F(M, d̃) has the Schur property. The conclusion follows from the fact that

F(M, d̃) and F(M) are isomorphic. �
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It is quite natural to ask whether this last condition is equivalent to the Schur
property. Not very surprisingly, it is not. Our first example shows that it might
happen that lip0(M) does not even separate the points of F(M) while the latter
space has the Schur property. The second example shows that assuming that M is
topologically discrete would not help either.

Example 4.2. There exists a countable complete metric spaceM such that lip0(M)
does not separate points of F(M) and such that F(M) has the Schur property.

Proof. We first define a metric graph structure as follows:

M = {0, q} ∪ {xni : n ∈ N, 1 ≤ i ≤ n},
with edges (0, xn1 ), (xni , x

n
i+1) and (xnn, q). The metric d is defined on the edges by

d(0, xn1 ) = d(xni , x
n
i+1) = d(xnn, q) =

1

n+ 1
,

and then extended as the shortest path distance along the edges. Note that d(0, q) =
1 and that 0 and q are the only accumulation points of M .

The fact that F(M) has the Schur property follows from Corollary 2.7 as M is
countable and complete. Let us now check that lip0(M) does not separate points
of F(M). Indeed, aiming at a contradiction, assume that there exists f ∈ lip0(M)
such that f(q) = 1. For every ε > 0, there is δ(ε) > 0 such that

∀x, y ∈M, d(x, y) ≤ δ(ε) =⇒ |f(x)− f(y)| ≤ εd(x, y).

Let n be such that 1
n+1 < δ( 1

2 ). Then we have for every 1 ≤ i ≤ n that

|f(xni )− f(xni+1)| ≤ 1

2

1

n+ 1
.

Thus

f(q) ≤ |f(q)− f(xnn)|+
n−1∑
i=1

|f(xni )− f(xni+1)|+ |f(xn1 )− f(0)| ≤ 1

2
,

which is clearly a contradiction. �

The following example is similar.

Example 4.3. There exists a countable, topologically discrete, complete metric
space M such that lip0(M) is not norming for F(M) and such that F(M) has the
Schur porperty.

Proof. The metric space M is defined as the disjoint union, at a suitably large
distance from each other, of metric graphs Mn where n ∈ N and Mn is defined by

Mn = {pn, qn} ∪ {xNi : N ∈ N \ {1}, 1 ≤ i ≤ N},
with edges (pn, x

N
1 ), (xNi , x

N
i+1) and (xNN , qn). The metric d is defined on the edges

by

d(pn, x
N
1 ) = d(xNN , qn) =

1

n
, d(xNi , x

N
i+1) =

1

N − 1
,

and then extended on each Mn as the shortest path distance along the edges. Note
that d(pn, qn) = 2

n + 1. Let us fix p1 to be the base point of M .
The fact that F(M) has the Schur property follows again directly from Corol-

lary 2.7. Let us see that lip0(M) cannot be C-norming for any C < ∞. Indeed,
fix C, choose n > 2C and suppose that f ∈ lip0(M) is such that f(qn) − f(pn) =



14 R. J. ALIAGA, C. NOÛS, C. PETITJEAN, AND A. PROCHÁZKA

d(pn, qn) = 1 + 2
n . Fix ε > 0, then there is δ > 0 such that |f(x)− f(y)| ≤ εd(x, y)

whenever d(x, y) ≤ δ. Take N such that 1
N−1 < δ. Then we have

f(qn)− f(pn) ≤
∣∣f(qn)− f(xNN )

∣∣+

N−1∑
i=1

∣∣f(xNi+1)− f(xNi )
∣∣+
∣∣f(xN1 )− f(pn)

∣∣
≤ 1

n
‖f‖L + (N − 1) · ε

N − 1
+

1

n
‖f‖L =

2

n
‖f‖L + ε.

Since ε > 0 was arbitrary, we get 1 + 2
n ≤

2
n ‖f‖L and hence ‖f‖L ≥ 1 + n

2 > C.
Thus lip0(M) is not C-norming.

�
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E-mail address: antonin.prochazka@univ-fcomte.fr


	1. Introduction
	1.1. Notation

	2. Tightness of weakly precompact sets and applications
	2.1. Compact reduction for weak sequential completeness
	2.2. Compact reduction for the Schur property
	2.3. Compact reduction for the approximation property
	2.4. Compact reduction for the Dunford–Pettis property
	2.5. Compact reduction for copies of spaces not containing l1
	2.6. Consequences for non-separable free spaces

	3. Proof of Theorem 2.3
	4. A remark about the Schur property in free spaces
	Acknowledgments
	References

