T. Ha, Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism, Proc. Natl. Acad. Sci. USA, vol.6, 1999.

S. Weiss, Fluorescence Spectroscopy of Single Biomolecules. Science, vol.283, pp.1676-1683, 1999.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, Preassociation of calmodulin with voltage-gated Ca 2+ channels revealed by FRET in single living cells, Neuron, vol.31, pp.973-985, 2001.

J. Zhang, Y. Ma, S. S. Taylor, and R. Y. Tsien, Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering, Proc. Natl. Acad. Sci, vol.98, pp.14997-15002, 2001.

A. Y. Ting, K. H. Kain, R. L. Klemke, and R. Y. Tsien, Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells, Proc. Natl. Acad. Sci, vol.98, pp.15003-15008, 2001.

O. Pertz, L. Hodgson, R. L. Klemke, and K. M. Hahn, Spatiotemporal dynamics of RhoA activity in migrating cells, Nature, vol.440, pp.1069-72, 2006.

A. Miyawaki, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature, vol.388, pp.882-887, 1997.

C. Grashoff, Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics, Nature, vol.466, pp.263-269, 2010.

F. Meng, T. M. Suchyna, and F. Sachs, A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ: Mechanical stress sensor, FEBS J, vol.275, pp.3072-3087, 2008.

P. Ringer, Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1, Nat. Methods, vol.14, pp.1090-1096, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647129

S. Padilla-parra and M. Tramier, FRET microscopy in the living cell: different approaches, strengths and weaknesses, Bioessays, vol.34, pp.369-76, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00683306

Y. Chen, J. P. Mauldin, R. N. Day, and A. Periasamy, Characterization of spectral FRET imaging microscopy, J. Microsc, vol.228, pp.139-152, 2007.

J. Wlodarczyk, Analysis of FRET Signals in the Presence of Free Donors and Acceptors, Biophys. J, vol.94, pp.986-1000, 2008.

P. T. Arsenovic, C. R. Mayer, D. E. Conway, and . Sensorfret, A Standardless Approach to Measuring Pixel-based Spectral Bleedthrough and FRET Efficiency using Spectral Imaging, Sci. Reports, vol.7, p.15609, 2017.

C. Berney and G. Danuser, FRET or no FRET: a quantitative comparison, Biophys. J, vol.84, issue.03, pp.75126-75127, 2003.

A. Zeug, A. Woehler, E. Neher, and E. G. Ponimaskin, Quantitative intensity-based FRET approaches -A comparative snapshot, Biophys. J, vol.103, pp.1821-1827, 2012.

M. Dahan, Ratiometric measurement and identification of single diffusing molecules, Chem. Phys, vol.247, pp.85-106, 1999.

A. N. Kapanidis, Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.8936-8941, 2004.

D. C. Youvan, Fluorescence Imaging Micro-Spectrophotometer (FIMS). Biotechnol. et alia, vol.1, pp.1-16, 1997.

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy, Biophys. J, vol.74, pp.77976-77983, 1998.

T. Zal and N. R. Gascoigne, Photobleaching-corrected FRET efficiency imaging of live cells, Biophys. J, vol.86, pp.3923-3962, 2004.

B. Hochreiter, M. Kunze, B. Moser, and J. A. Schmid, Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells, Sci. Reports, vol.9, 2019.

A. Hoppe, K. Christensen, and J. A. Swanson, Fluorescence resonance energy transfer-based stoichiometry in living cells, Biophys. J, vol.83, pp.75365-75369, 2002.

C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, Quantitative Multiphoton Spectral Imaging and Its Use for Measuring Resonance Energy Transfer, Biophys. J, vol.89, pp.2736-2749, 2005.

N. K. Lee, Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation, Biophys. J, vol.88, pp.2939-53, 2005.

S. V. Koushik, H. Chen, C. Thaler, H. L. Iii, S. S. Vogel et al., Venus, and VenusY67c FRET Reference Standards, Biophys. J, vol.91, pp.99-101, 2006.

B. Hellenkamp, Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study, Nat. Methods, vol.15, pp.669-676, 2018.

T. Ha, Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor, Proc. Natl. Acad. Sci, vol.93, pp.6264-6268, 1996.

H. Chen, H. L. Puhl, S. V. Koushik, S. S. Vogel, and S. R. Ikeda, Measurement of FRET Efficiency and Ratio of Donor to Acceptor Concentration in Living Cells, Biophys. J, vol.91, pp.39-41, 2006.

W. B. Frommer, M. W. Davidson, and R. E. Campbell, Genetically encoded biosensors based on engineered fluorescent proteins, Chem. Soc. Rev, vol.38, p.2833, 2009.

F. Sizaire and M. Tramier, FRET-based biosensors: genetically encoded tools to track kinase activity in living cells, Protein phosphorylation, vol.179, 2017.

S. V. Koushik and S. S. Vogel, Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements, J. Biomed. Opt, vol.13, 2008.

M. Postma and J. Goedhart, PlotsOfData-A web app for visualizing data together with their summaries, PLOS Biol, vol.17, 2019.