
HAL Id: hal-02558500
https://hal.science/hal-02558500v2

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomized Two-Valued Bounded Delay Online Buffer
Management

Christoph Dürr, Shahin Kamali

To cite this version:
Christoph Dürr, Shahin Kamali. Randomized Two-Valued Bounded Delay Online Buffer Management.
Operations Research Letters, 2021, 49 (2), pp.246-249. �10.1016/j.orl.2021.01.010�. �hal-02558500v2�

https://hal.science/hal-02558500v2
https://hal.archives-ouvertes.fr

Randomized Two-Valued Bounded Delay Online Buffer

Management

Christoph Dürr∗ Shahin Kamali†

November 18, 2020

Abstract

In the bounded delay buffer management problem unit size packets arrive online to be sent
over a network link. The objective is to maximize the total weight of packets sent before their
deadline. In this paper we are interested in the two-valued variant of the problem, where every
packet has either low (1) or high priority weight (α > 1). We show that the optimal randomized
competitive ratio against an oblivious adversary is 1 + (α− 1)/(α2 + α).

Keywords: competitive ratio, oblivious adversary, buffer management, maximum throughput
scheduling.

1 Introduction

Online Buffer Management is a scheduling problem which arises in network routers. Packets arrive
online to be sent on a specific link, the goal is to maximize the total weight of sent packets under
various constraints. Different models have been studied in the past, the FIFO model, where the
router stores pending packets in a limited capacity buffer, and the bounded delay model where
packets can stay only limited time in the buffer.

We are particularly interested in the latter model, which can be formalized as the following
scheduling problem. Time is partitioned into time slots. At each time slot, a (potentially empty)
set of jobs of unit length arrive online on a single machine. Job j arrives at a release time rj ∈ N,
has a deadline dj ∈ N and a weight wj ∈ R

+. At every time slot t ∈ N, there is a set of pending
jobs, which is updated by jobs released at time t and by jobs expiring at time t. The algorithm
can choose to schedule one of the pending jobs, at every time slot The goal is to maximize the
total weight of the scheduled jobs. The usual restriction on the online algorithm is that these
decisions need to be made without knowledge of future arriving jobs. Its performance is measured
by the competitive ratio, which compares the objective value reached by the algorithm with the
objective value of the optimal schedule, maximizing the ratio over all possible instances. The
deterministic competitive ratio of the problem is defined as the best competitive ratio among all
deterministic online algorithms. As randomization usually helps in these online settings, we consider

∗Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, Paris, France. Corresponding author:
christoph.durr@lip6.fr. https://orcid.org/0000-0001-8103-5333

†Department of Computer Science, University of Manitoba, Winnipeg, Canada. shahin.kamali@umanitoba.ca.
https://orcid.org/0000-0003-1404-2212

1

the randomized competitive ratio against an oblivious adversary. The term adversary comes from
the game theoretical setting of an online problem, played between an online algorithm which needs
to make decisions at every time slot and a malicious adversary which generates the instance over
time. The adversary is “oblivious” in the sense that it is not aware of the random choices made
by the randomized online algorithm. Other adversarial models exist but are not considered in this
paper.

2 Related work

This problem has been introduced in 2001, together with a lower bound of ϕ ≈ 1.618 on the
deterministic competitive ratio [1] and [2] and an upper bound of 2, achieved by the Greedy

algorithm which schedules always the heaviest pending job (ties are broken by executing the most
urgent job). This gap between lower and upper bound generated a series of studies of variants
of this problem, mostly with restrictions on the deadlines of the job, such as agreeable deadlines
(jobs can be ordered by release times and deadlines at the same time) or s-uniform or s-bounded
instances (dj − rj is s or at most s) for some parameter s> 1. Eventually in SODA 2019, the gap
was closed, with a sophisticated algorithm and analysis [3]. The randomized competitive ratio in
the oblivious adversary model of this problem is still open, and the optimal competitive ratio is
known to be between 1.25 [4] and 1.582 [5, 6].

The paper [7] considered a variant of the problem, where every job has not unit processing
time, but a processing time p ∈ N, all jobs are tight in the sense dj = rj + p, and the algorithm
can preempt job executions. In this setting, the authors give a barely random algorithm with
competitive ratio 2, and showed that this is optimal for barely random algorithms. By scaling,
this is equivalent to the problem with unit processing time jobs by fractional release times and
deadlines. In our problem these times are restricted to integers, and in this context preemption is
of no help to the algorithm. We refer to [8] for a survey on packet scheduling, as well as to the
more recent introduction of [3] and references therein.

In this paper we consider a particular variant of the bounded delay buffer management problem,
where every job can have either low or high weight, that is wj ∈ {1, α} for some parameter α > 1.
The 2-valued variant has been studied in [9] who showed the deterministic competitive ratio is
min{1 + 1/α, 1 + (α − 1)/(α + 1)}. It is motivated by the fact that some applications, as for
example online games, could send packets with two kind of informations: Major updates in the
game configuration (such as the arrival or departure of participants), and minor updates (such as
not critical moves).

2.1 Contributions

The lower bound of the deterministic competitive ratio for the 2-valued variant can be easily
transformed into a randomized lower bound. In addition this transformation suggests a randomized
online algorithm, which we show to have optimal competitive ratio 1 + (α− 1)/(α2 + α).

3 Preliminaries

Formally an instance of the bounded delay buffer management problem consists of a finite sequence
of jobs. Each job j has a unit processing time, a release time rj ∈ N, a deadline dj ∈ N and a priority

2

weight wj ∈ R+. The time line consists of time slots t ∈ N. During each time slot, at most one job
can be executed. A job is pending at time t if rj ≤ t < dj and if it has not already been scheduled.
An online algorithm A can schedule at each time slot t ∈ N at most one pending job, and has to
make this decision without knowledge of future released jobs. The objective value of a schedule is
the total priority weight of all scheduled jobs. This value is compared with the objective value of
an optimal schedule, and the resulting value is called the competitive ratio. The optimal schedule
can be computed offline by solving a maximum weight bipartite matching problem, matching jobs
to time slots. The competitive ratio of algorithm A is the supremum of its competitive ratio over
all instances. The competitive ratio of the problem is the infimum of the competitive ratio over all
online algorithms. Usually the online computation paradigm is seen as a game played between the
algorithm (making decisions which job to schedule) and the adversary (generating jobs).

If A is a randomized algorithm, then the performance of A is the expected objective value of
the produced schedule. Different adversarial models have been studied in the literature. In this
paper we focus on the oblivious adversary, where the input is generated without knowledge of the
random choices made by the algorithm. R5cm

job 1
1

job 2
α

Greedy α

Opt on instance 1 α 1

PEDF 1 α

job 3
α

Opt on instance 2 α α

Figure 1: The deterministic
lower bound from [9].

Online algorithms for this problem heavily rely on the notion of
a provisional schedule, which was introduced in [9]. Recall, that for
an algorithm A and a point in time t, we define the set of pending
jobs as the set of jobs released prior or at time t, which have their
deadline strictly after t, and which have not yet been scheduled
by A. The provisional schedule S is a maximum weight subset of
pending jobs, which can be scheduled from time t on. This set S
can be computed greedily, by starting with S = ∅, and processing
first all pending heavy jobs, then all pending light jobs, in arbitrary
order within each category. Each considered job j is then added to
S if and only if the number of jobs i ∈ S with di ≤ dj is strictly
less than dj − t. This condition ensures that there is a provisional
feasible schedule for S.

There are two natural deterministic algorithms that are defined
in [9]. The first algorithm, which we call Greedy, schedules at ev-
ery time step, a job of the provisional schedule of maximum weight,
breaking ties by the deadlines of job (earliest deadline has the high-
est priority). The second algorithm, we which we call Provisional
Earliest Deadline First (PEDF), schedules at every time step, a job
of the provisional schedule of minimum deadline. Note that it differs from the usual EDF algorithm
(earliest deadline first), which is not restricted to select jobs from the provisional schedule.

The deterministic lower bound consists of an adversary which releases at time 0 two jobs, see
Figure 1. A job of weight 1 and deadline 1 and a job of weight α and deadline 2. Any deterministic
deterministic algorithm either schedules the urgent job, or the heavy job, or no job at all. Clearly
the last option is suboptimal, hence we can focus on the first two options. If the algorithm schedules
the heavy job, then no more jobs are released, and the competitive ratio is 1+α

α
. If the algorithm

schedules the urgent light job, then at time 1 the adversary releases another job of weight α
and deadline 2, leading to the ratio 2α

1+α
. This shows a lower bound of min{1+α

α
, 2α
1+α

} on the

deterministic competitive ratio. It also suggests a simple deterministic algorithm. Let α∗ = 1 +
√

2
be the solution to the equation 1+α

α
= 2α

1+α
. If α ≤ α∗ run PEDF, else run Greedy. In [9] this

3

strategy was shown to be optimal.

4 Randomized competitive ratio

The previous lower bound can be extended into a lower bound against an oblivious randomized
adversary.

Proposition 1 No randomized online algorithm can achieve a competitive ratio better than R =
1 + α−1

α2+α
.

Proof Let σ1, σ2 be the two instances from the previous lower bound construction. Let y be a
distribution on σ1, σ2. We denote Ey[OPT(σj)] the expected optimal profit, and by Ey[A(σj)] the
expected profit of a given randomized algorithm A. By Yao’s principle, see [10, Theorem 8.3], the
randomized competitive ratio against an oblivious adversary is lower bounded by

max
y

min
A

Ey[OPT(σj)]/Ey[A(σj)].

We choose y = (α−1
α

, 1/α), which leads to the expected optimal profit

Ey[OPT(σj)] =
α− 1

α
(1 + α) +

1

α
2α = 2 + α− 1/α.

We recall that at time 0, the instances σ1 and σ2 are indistinguishable. Any deterministic algorithm
has 3 options at time 0, to execute the urgent light job, to execute the heavy job or to remain idle.
We ignore the last option, as it is clearly suboptimal. Any deterministic algorithm, which starts
by executing the urgent light job, has an expected profit of at most

y1(1 + α) + y2(1 + α) = 1 + α.

In addition any deterministic algorithm, which starts by executing the heavy job, has an expected
profit of at most

y1α + y22α =
α− 1

α
α +

1

α
2α = 1 + α.

This shows the claimed lower bound. �

Note that the above lower bound is maximized at α = 1+
√

2 and gives the value 4−2
√

2 ≈ 1.172.

4.1 Upper bound

The lower bound construction suggests a simple barely random algorithm. At time 0, the algo-
rithm flips a biased coin and based on its outcome decides between the two already mentioned
deterministic algorithms. In other words, Barely-Random will run Greedy with probability p
and PEDF with probability 1 − p, for

p =
α2 − 1

α2 + 2α− 1
.

This surprisingly simple algorithm achieves the optimal competitive ratio.

4

1

1.172

1.414

1 2.414 α

ratio

Greedy

PEDF

Barely-Random

Figure 2: Competitive ratios as function of α. The deterministic competitive ratio is the minimum
of the competitive ratios of the algorithms PEDF and Greedy.

Theorem 1 Algorithm Barely-Random has a competitive ratio of α2+2α−1
α2+α

against an oblivious

adversary.

Proof Fix an instance, and denote by Opt an optimal schedule. We start with showing some
structural properties of the three schedules Opt, Greedy and PEDF. Consider a time slot, where
Greedy executes a heavy job j, while PEDF executes a light job. By the definition of PEDF we
known that PEDF will eventually execute j as well.

In addition we observe that Greedy executes a maximum number of heavy jobs while PEDF

executes a maximum number of jobs regardless of their weight. This follows by the earliest deadline

policy applied by both algorithms, respectively on heavy pending jobs or on all pending jobs. Indeed
this policy is known to maximize the number of executed jobs for the unweighted unit length job
scheduling problem. Therefore OPT does not schedule more jobs than PEDF and does not schedule
more heavy jobs than Greedy. Also since PEDF maximizes the number of pending jobs in every
time slot, we know that whenever PEDF is idle, then Greedy is idle as well.

As a result, for the analysis of the competitive ratio it suffices to count the number of light and
heavy jobs executed by respectively Greedy and PEDF. To formalize this intuition, we use the
following notation.

set content

D time slots where Greedy is idle but not PEDF

H∗ heavy jobs executed only by Greedy

H heavy jobs executed both by Greedy and PEDF

L light jobs executed by Greedy

L′ light jobs executed by PEDF

Note that the jobs executed by PEDF are H ∪ L′ and the jobs executed by Greedy are
H ∪H∗ ∪ L. We use the corresponding lower case notation for the cardinality of those sets. The
key to the proof is the following claim.

Claim 1 d + h∗ ≤ h.

The proof uses an injective mapping from L′ to H ∪L. This implies ℓ′ ≤ h+ ℓ, and by the following

5

Greedy

PEDF

H
∗

D

H

L

L
′

x y za b

x y z

Figure 3: The injective mapping from L′ to H ∪L. Each job in L′ is mapped to either a heavy job
in H (e.g., a, b) or it is mapped to itself (e.g., x, y, and z).

equality, the claim holds:
d + h∗ + h + ℓ = h + ℓ′ (1)

The left and right sides of the above equality respectively indicate the number of time slots through-
out the execution of Greedy and PEDF.

To define the mapping, let j ∈ L′ be an arbitrary light job executed by PEDF at some moment
t. If Greedy executes j as well and not later than t, then we map j to itself. Otherwise, we map j
to the job k executed by Greedy at time t. We observe that if k is a heavy job, then it is common
to both schedules. This follows by the definition of PEDF, for which k was pending at this point,
hence k ∈ H. To show the injective nature of the mapping, for the sake of contradiction, we assume
that two jobs j, k ∈ L′ are mapped to the same job k ∈ L, executed by Greedy at some time
t. Then by the definition of the mapping, k must be scheduled after j by PEDF, so both jobs
j, k were pending at time t for PEDF but also for Greedy. This contradicts the fact that both
schedules apply the same earliest deadline policy among the light jobs, and concludes the proof of
the claim.

To summarize, we can express the objective values of the schedules as

profit(OPT) ≤ h∗α + hα + ℓ + d

profit(Greedy) = h∗α + hα + ℓ

profit(PEDF) = hα + ℓ + h∗ + d,

where the last expression uses (1).
Claim 1 implies the following inequality, which through a sequence of equivalent transformations

transforms into the required bound on the competitive ratio:

hα+ ℓ ≥ h∗α+ dα

hα(α − 1) + ℓ(α − 1) ≥ h∗α(α− 1) + dα(α − 1)

−(hα+ h∗α+ ℓ) + α(hα + h∗ + ℓ+ d) ≥ h∗α(α− 1) + dα2

−(hα+ h∗α+ ℓ) + 2α(hα + h∗ + ℓ+ d) ≥ α(hα+ h∗ + ℓ+ d) + h∗α(α− 1) + dα2

α2(hα+ h∗α+ ℓ)− (hα + h∗α+ ℓ) + 2α(hα + h∗ + ℓ+ d) ≥ α2(hα+ h∗α+ ℓ) + α(hα + h∗α+ ℓ+ d) + dα2

(α2
− 1)(hα + h∗α+ ℓ) + 2α(hα + h∗ + ℓ+ d) ≥ (α2 + α)(hα+ h∗α+ ℓ+ d)

α2 − 1

α2 + α
(hα+ h∗α+ ℓ) +

2α

α2 + α
(hα + h∗ + ℓ+ d) ≥ hα+ h∗α+ ℓ+ d

R · p · profit(Greedy) + R · (1− p) · profit(PEDF) ≥ profit(Opt)

R · profit(Barely-Random) ≥ profit(Opt).

(2)

6

�

5 Conclusion

Now that the randomized competitive ratio of the two valued bounded delay online buffer manage-
ment problem is tackled — against the oblivious adversary — it would be interesting to see how
it can be generalized to more values for the job weights, for example weights belonging to the set
{1, α, α2}, or even to the general problem. Currently the only known randomized algorithms for
the general problem are Rmix and Remix.

The algorithm Rmix was defined in [5, 6] as follows. At every time slot, consider j the heaviest
pending job. Denote wj its weight. Let x ∈ [−1, 0] be a uniformly chosen real number. Let f be
a job with minimal deadline and weight wf ≥ exwj. Execute f in this time slot. We can observe
that, if executed on instance 1 of the lower bound instance from Proposition 1, at time 0, it will
choose the heavy job with probability min{1, ln α}. Hence it has a larger tendency to choose the
heavy job than Barely-Random, and is fooled by instance 1.

The algorithm ReMix was defined in [11], and behaves even differently on instance 1. It will
execute the heavy job with probability 1 − 1/α and the light job with probability 1/α, but is
also not optimal. These comparisons with Barely-Random are unfair in a sense, because they
have been designed for the general weighted case, and mostly for an adaptive adversary. But the
comparison indicates room for improvement. The optimal randomized algorithm for the general
weighted problem, might combine ideas of all these mentioned algorithms, and in particular borrow
from the optimal deterministic algorithm [3].

6 Acknowledgment

This work was partially supported by the French research agency (ANR-19-CE48-0016), the CNRS
PEPS project ADVICE as well as by the EPSRC grant EP/S033483/1, and by the NSERC Dis-
covery Grant.

We would like to thank Spyros Angelopoulos for helpful discussions as well as anonymous referees
for spotting an error in a previous version of this paper.

References

[1] B. Hajek, On the competitiveness of on-line scheduling of unit-length packets with hard dead-
lines in slotted time, Proc. of the 2001 Conference on Information Sciences and Systems, 2001,
pp. 434–439.

[2] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, M. Sviridenko, Buffer
Overflow Management in QoS Switches, SIAM Journal on Computing 33 (3) (2004) 563–583.

[3] P. Veselý, M. Chrobak, L. Jeż, J. Sgall, A Φ-Competitive Algorithm for Scheduling Packets
with Deadlines, Proc. of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms,
Society for Industrial and Applied Mathematics, 2019, pp. 123–142.

7

[4] F. Y. L. Chin, S. P. Y. Fung, Online Scheduling with Partial Job Values: Does Timesharing
or Randomization Help?, Algorithmica 37 (3) (2003) 149–164.

[5] Y. Bartal, F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, R. Lavi, J. Sgall, T. Tichý,
Online Competitive Algorithms for Maximizing Weighted Throughput of Unit Jobs, Proc. of
the 21th Symposium on Theoretical Computer Science, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2004, pp. 187–198.

[6] F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall, T. Tichý, Online competitive
algorithms for maximizing weighted throughput of unit jobs, Journal of Discrete Algorithms
4 (2) (2006) 255–276.

[7] F. Y. L. Chin, S. P. Y. Fung, Improved competitive algorithms for online scheduling with
partial job values, Theoretical Computer Science 325 (3) (2004) 467–478.

[8] M. H. Goldwasser, A survey of buffer management policies for packet switches, ACM SIGACT
News 41 (1) (2010) 100–128.

[9] M. Englert, M. Westermann, Considering Suppressed Packets Improves Buffer Management
in Quality of Service Switches, SIAM Journal on Computing 41 (5) (2012) 1166–1192.

[10] A. Borodin, R. El-Yaniv, Online computation and competitive analysis, Cambridge University
Press, 2005.

[11] L. Jeż, A Universal Randomized Packet Scheduling Algorithm, Algorithmica 67 (4) (2013)
498–515.

8

	Introduction
	Related work
	Contributions

	Preliminaries
	Randomized competitive ratio
	Upper bound

	Conclusion
	Acknowledgment

