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Abstract: This report introduces an upper bound on the absolute difference between: (a) the
cumulative distribution function (CDF) of the sum of a finite number of independent and identically
distributed random variables; and (b) a saddlepoint approximation of such CDF. This upper bound,
which is particularly precise in the regime of large deviations is used to study the dependence testing
(DT) bound and the meta converse (MC) bound on the decoding error probability (DEP) in point-
to-point memoryless channels. Often, these bounds cannot be analytically calculated and thus,
lower and upper bounds become particularly useful. Within this context, the main results include
new upper bounds and lower bounds on the DT and MC bounds. A numerical analysis of these
bounds is presented in the case of the binary symmetric channel, the additive white Gaussian noise
channel, and the additive symmetric α-stable noise channel, in which the new bounds are observed
to be tight.

Key-words: saddlepoint approximations, normal approximation, decoding error probability,
memoryless channels



Résumé : Ce rapport propose une borne supérieure sur l’erreur induite par l’approximation
du point de selle de la fonction de répartition de la somme des variables aléatoires identiquement
distribuées. Cette borne est particulièrement précise sur la queue de la distribution. Ce résultat
est appliqué pour étudier la borne "dependence testing (DT)" et celle du "meta converse (MC)"
sur la probabilité d’erreur minimale de décodage d’un canal sans mémoire. Dans ce contexte,
les résultats principaux sont les nouvelles bornes supérieures et inférieures sur les bornes DT et
MC. Une analyse numérique de ces bornes est présentée pour les canaux binaires symétriques,
les canaux avec un bruit blanc gaussien additif et les canaux avec un bruit impulsionnel additif.
Les bornes obtenues par notre méthode sont meilleures que celles obtenues à l’aide du Théorème
de Berry-Esseen.

Mots-clés : approximation du point de selle, approximation Gaussienne, probabilité d’erreur
de décodage, canal sans mémoire
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1 Introduction
This report focuses on approximating the cumulative distribution function (CDF) of sums of a
finite number of real-valued independent and identically distributed (i.i.d.) random variables.
More specifically, let Y1, Y2, . . . , Yn, with n an integer and 1 6 n 6 ∞, be real-valued random
variables with probability distribution PY . Denote by FY the CDF associated with PY , and if
it exists, denote by fY the corresponding probability density function (PDF). Let also

Xn =

n∑
t=1

Yt (1)

be a random variable with distribution PXn . Denote by FXn the CDF and if it exists, denote
by fXn the PDF associated with PXn . The objective is to provide a positive function that
approximates FXn and an upper bound on the resulting approximation error. In the following,
a positive function g : R→ R+ is said to approximate FXn with an approximation error that is
upper bounded by a function ε : R→ R+, if for all x ∈ R,

|FXn(x)− g(x)| 6 ε(x). (2)

The case in which Y1, Y2, . . . , Yn in (1) are stable random variables with FY analytically
expressible is trivial. This is essentially because the sum Xn follows the same distribution of
a random variable aY + b, for some (a, b) ∈ R2 and Y a random variable whose CDF is FY .
Examples of this case are random variables following the Gaussian distribution, the Cauchy
distribution or the Levy distribution [2].
In general, the problem of calculating the CDF ofXn boils down to calculating n−1 convolutions.
More specifically, it holds that

fXn(x) =

∫ ∞
−∞

fXn−1 (x− t) fY (t)dt, (3)

where fX1 = fY . Even for discrete random variables and small values of n, the integral in (3)
often requires excessive computation resources [3].
When the PDF of the random variable Xn cannot be conveniently obtained but only the r first
moments are known, with r ∈ N, an approximation of the PDF can be obtained by using an
Edgeworth expansion. Nonetheless, the resulting relative error in the large deviation regime
makes these approximations inaccurate [4].
When the cumulant generating function (CGF) associated with FY , denoted by KY : R→ R, is
known, the PDF fXn can be obtained via the Laplace inversion lemma [3]. That is, given two reals
α− < 0 and α+ > 0, if KY is analytic for all z ∈ {a+ib ∈ C : (a, b) ∈ R2 and α− 6 a 6 α+} ⊂ C,
then,

fXn(x) =
1

2πi

∫ γ+i∞

γ−i∞
exp (nKY (z)− zx) dz, (4)

with i =
√
−1 and γ ∈ (α−, α+). Note that the domain of KY in (4) has been extended to

the complex numbers and thus, it is often referred to as the complex CGF. With an abuse of
notation, both the CGF and the complex CGF are identically denoted.
In the case in which n is sufficiently large, an approximation to the Bromwich integral in (4)
can be obtained by choosing the countour to include the unique saddlepoint of the integrand as
suggested in [5]. The intuition behind this lies on the following observations:
(i) the saddlepoint, denoted by z0, is unique, real and z0 ∈ (α−, α+);
(ii) within a neighborhood around the saddlepoint of the form |z − z0| < ε, with z ∈ C and ε > 0

RR n° 9329
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sufficiently small, Im [nKY (z)− zx] = 0 and Re [nKY (z)− zx] can be assumed constant; and
(iii) outside such neighborhood, the integrand is negligible.
From (i), it follows that the derivative of nKY (t)− tx with respect to t, with t ∈ R, is equal to
zero when it is evaluated at the saddlepoint z0. More specifically, for all t ∈ R,

d

dt
KY (t) = EPY [Y exp (tY −KY (t))] , (5)

and thus,
EPY [Y exp (z0Y −KY (z0))] =

x

n
, (6)

which shows the dependence of z0 on both x and n.
An expansion in Taylor series of the exponent nKY (z)− zx in the neighborhood of z0, leads to
the following asymptotic expansion in powers of 1

n of the Bromwich integral in (4):

fXn(x)=f̂Xn(x)

1 +
1

n

1

8

K
(4)
Y (z0)(

K
(2)
Y (z0)

)2 −
5

24

(
K

(3)
Y (z0)

)2

(
K

(2)
Y (z0)

)3

+O

(
1

n2

) , (7)

where f̂Xn : R→ R+ is

f̂Xn(x)=

√
1

2πnK
(2)
Y (z0)

exp (nKY (z0)− z0x) , (8)

and for all k ∈ N and t ∈ R, the notation K(k)
Y (t) represents the k-th real derivative of the CGF

KY evaluated at t. The first two derivatives K(1)
Y and K(2)

Y play a central role, and thus, it is
worth to provide explicit expressions. That is,

K
(1)
Y (t),EPY [Y exp (tY −KY (t))] , and (9)

K
(2)
Y (t),EPY

[∣∣∣Y −K(1)
Y (t)

∣∣∣2 exp (tY −KY (t))

]
. (10)

The function f̂Xn in (8) is referred to as the saddlepoint approximation of the PDF fXn and was
first introduced in [5]. Nonetheless, f̂Xn is not necessarily a PDF as often its integral on R is
not equal to one. A particular exception is observed only in three cases [6]. First, when fY is
the PDF of a Gaussian random variable, the saddlepoint approximation f̂Xn is identical to fXn ,
for all n > 0. Second and third, when fY is the PDF associated with a Gamma distribution and
an inverse normal distribution, respectively, the saddlepoint approximation f̂Xn is exact up to a
normalization constant for all n > 0.
An approximation to the CDF FXn can be obtained by integrating the PDF in (4), c.f., [7, 8]
and [9]. In particular, the result reported in [7] leads to an asymptotic expansion of the CDF of
Xn, for all x ∈ R, of the form:

FXn(x)=F̂Xn(x) +O
(
n−1/2 exp (nKY (z0)− xz0)

)
, (11)

where the function F̂Xn : R→ R is the saddlepoint approximation of FXn . That is, for all x ∈ R,

F̂Xn(x)=1{z0>0} + (−1)1{z0>0} exp

(
nKY (z0)− z0x+

1

2
z2

0nK
(2)
Y (z0)

)
Q

(
|z0|
√
nK

(2)
Y (z0)

)
, (12)

RR n° 9329



An upper bound on the error induced by saddlepoint approximations - Applications to IT 7

where the function Q : R → [0, 1] is the complementary CDF of a Gaussian random variable
with zero mean and unit variance. That is, for all t ∈ R,

Q(t) =
1√
2π

∫ ∞
t

exp

(
−x

2

2

)
dx. (13)

Finally, from the central limit theorem [4], for large values of n and for all x ∈ R, a reasonable
approximation to FXn(x) is 1−Q(x). In the following, this approximation is referred to as the
normal approximation of FXn .

1.1 Contributions
The main contribution of this work is an upper bound on the error induced by the saddlepoint
approximation F̂Xn in (12) of the CDF FXn of the sum in (1) (Theorem 3 in Section 2.2). This
result builds upon two observations. The first observation is that the CDF FXn can be written
for all x ∈ R in the form,

FXn(x)

= 1{z060}EPSn
[
exp(nKY (z0)−z0Sn)1{Sn6x}

]
+ 1{z0>0}

(
1−EPSn

[
exp(nKY (z0)− z0Sn)1{Sn>x}

])
,

(14)

where the random variable

Sn =

n∑
t=1

Y
(z0)
t (15)

has a probability distribution denoted by PSn , and the random variables Y (z0)
1 , Y (z0)

2 , . . ., Y (z0)
n

are independent with probability distribution PY (z0) . The distribution PY (z0) is an exponentially
tilted distribution [10] with respect to the distribution PY at the saddlepoint z0. More specifically,
the Radon-Nikodym derivative of the distribution PY (z0) with respect to the distribution PY
satisfies for all y ∈ suppPY ,

dPY (z0)

dPY
(y) = exp (− (KY (z0)− z0y)) . (16)

The second observation is that the saddlepoint approximation F̂Xn in (12) can be written for all
x ∈ R in the form,

F̂Xn(x)

= 1{z060}EPZn
[
exp(nKY (z0)−z0Zn)1{Zn6x}

]
+ 1{z0>0}

(
1−EPZn

[
exp(nKY (z0)− z0Zn)1{Zn>x}

])
,

(17)

where Zn is a Gaussian random variable with mean x, variance nK(2)
Y (z0), and probability

distribution PZn . Note that the means of the random variable Sn in (14) and Zn in (17) are
equal to nK(1)

Y (z0), whereas their variances are equal to nK(2)
Y (z0). Note also that from (6), it

holds that x = nK
(1)
Y (z0).

Using these observations, it holds that the absolute difference between FXn in (14) and F̂Xn
in (17) satisfies for all x ∈ R,∣∣∣FXn(x)− F̂Xn(x)

∣∣∣
= 1{z060}

∣∣EPSn [exp (nKY (z0)− z0Sn)1{Sn6x}
]
− EPZn

[
exp (nKY (z0)− z0Zn)1{Zn6x}

]∣∣
RR n° 9329
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+1{z0>0}
∣∣EPSn [exp (nKY (z0)− z0Sn)1{Sn>x}

]
− EPZn

[
exp (nKY (z0)− z0Zn)1{Zn>x}

]∣∣ . (18)
A step forward (Lemma 4 in Appendix A) is to note that when x is such that z0 6 0, then,∣∣EPSn [exp (nKY (z0)− z0Sn)1{Sn6x}

]
− EPZn

[
exp (nKY (z0)− z0Zn)1{Zn6x}

]∣∣
6 exp (nKY (z0)− z0x) min

(
1, 2 sup

a∈R
|FSn(a)− FZn(a)|

)
, (19)

and when x is such that z0 > 0, it holds that∣∣EPSn [exp (nKY (z0)− z0Sn)1{Sn>x}
]
− EPZn

[
exp (nKY (z0)− z0Zn)1{Zn>x}

]∣∣
6 exp (nKY (z0)− z0x) min

(
1, 2 sup

a∈R
|FSn(a)− FZn(a)|

)
, (20)

where FSn and FZn are the CDFs of the random variables Sn and Zn, respectively. The final
result is obtained by observing that supa∈R |FSn(a)− FZn(a)| can be upper bounded using the
Berry-Esseen Theorem (Theorem 1 in Section 2.1). This is essentially due to the fact that the
random variable Sn is the sum of n independent random variables, i.e., (15), and Zn is a Gaussian
random variable, and both Sn and Zn possess identical means and variances. Thus, the main
result (Theorem 3 in Section 2.2) is that for all x ∈ R,∣∣∣FXn(x)− F̂Xn(x)

∣∣∣ 6 n−1/2 exp (nKY (z0)− z0 x)
2 c ξY (z0)(
K

(2)
Y (z0)

)3/2
, (21)

where c can be chosen as c = 0.476 according to [11]; and ξY (z0) is the third absolute central
moment with respect to the distribution PY (z0) . Finally, note that (21) reflects the scaling law
with respect to n suggested in (11).

1.2 Applications
In the realm of information theory, the normal approximation has played a central role in the
calculation of bounds on the minimum decoding error probability (DEP) in point-to-point mem-
oryless channels, c.f., [12, 13]. Thanks to the normal approximation, simple approximations for
the dependence testing (DT) bound, the random coding union bound (RCU) bound, and the
meta-converse (MC) bound have been obtained in [12,14]. The success of these approximations
stems from the fact that they are easy to calculate. Nonetheless, easy computation comes at the
expense of loose upper and lower bounds, and thus, uncontrolled approximation errors.
On the other hand, saddlepoint techniques have been extensively used to approximate existing
lower and upper bounds on the minimum DEP. See for instance, [15] and [16] in the case of the
RCU bound and the MC bound. Nonetheless, the errors induced by saddlepoint approximations
are often neglected due to the fact that calculating them involves a large number of optimizations
and numerical integrations. Within this context, the main results of this report are used to
provide new lower and upper bounds on the DT bound and the MC bound. Numerical analysis
of these bounds are presented for the case of the binary symmetric channel (BSC), the additive
white Gaussian noise (AWGN) channel, and the additive symmetric α-stable noise (SαS) channel,
in which the new bounds are observed to be tight and obtained at low computational cost.

RR n° 9329
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2 Sums of Independent and Identically Distributed Random
Variables

In this section, upper bounds on the absolute error of approximating FXn by the normal approx-
imation and the saddlepoint approximation are presented.

2.1 Error Induced by the Normal Approximation
Given a random variable Y , let the function ξY : R −→ R be for all t ∈ R :

ξY (t),EPY
[∣∣∣Y −K(1)

Y (t)
∣∣∣3 exp (tY −KY (t))

]
. (22)

The following theorem, known as the Berry-Esseen theorem [4], introduces an upper bound on
the approximation error induced by the normal approximation.

Theorem 1 (Berry-Esseen [4]) Let Y1, Y2, . . ., Yn be i.i.d random variables with probability
distribution PY . Let also Zn be a Gaussian random variable with mean nK

(1)
Y (0), variance

nK
(2)
Y (0) and CDF denoted by FZn . Then, the CDF of the random variable Xn = Y1 + Y2 +

. . . + Yn, denoted by FXn , satisfies

sup
a∈R
|FXn(a)− FZn(a)| 6 min

1,
c ξY (0)√
n(K

(2)
Y (0))3

 , (23)

where c = 0.476 and the functions K(1)
Y , K(2)

Y and ξY are defined in (9), (10), and (22).

The choice of c = 0.476 in Theorem 1 is justified in [11]. An immediate result from Theorem 1
consists in the following upper and lower bounds on FXn(a), for all a ∈ R,

FXn(a) 6 FZn(a) + min

1,
c ξY (0)√
n(K

(2)
Y (0))3

 , Σ̄(a, n), and (24)

FXn(a) > FZn(a)−min

1,
c ξY (0)√
n(K

(2)
Y (0))3

 , Σ(a, n). (25)

The main drawback of Theorem 1 is that the upper bound on the approximation error does not
depend on the exact value of a. More importantly, for some values of a and n, the upper bound
on the approximation error might be particularly big, which leads to irrelevant results.

2.2 Error Induced by the Saddlepoint Approximation
The following theorem introduces an upper bound on the approximation error induced by ap-
proximating the CDF FXn of Xn in (1) by the function ηY : R2× N → R defined such that for
all (θ, a, n) ∈ R2 × N,

ηY (θ,a,n),

1{θ>0}+(−1)1{θ>0}exp

(
1

2
nθ2K

(2)
Y (θ)+nKY (θ)−nθK(1)

Y (θ)

)
Q

(−1)1{θ60}
a+nθK

(2)
Y (θ)−nK(1)

Y (θ)√
nK

(2)
Y (θ)

,
RR n° 9329
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(26)

where the function Q : R→ [0, 1] is the complementary CDF of the standard Gaussian distribu-
tion defined in (13). Note that ηY (θ, n, a) is identical to F̂Xn(a), when θ is chosen to satisfy the
saddlepoint K(1)

Y (θ) = a
n . Note also that ηY (0, n, a) is the CDF of a Gaussian random variable

with mean nK(1)
Y (0) and variance nK(2)

Y (0), which are the mean and the variance of Xn in (1),
respectively.

Theorem 2 Let Y1, Y2, . . ., Yn be i.i.d. random variables with probability distribution PY and
CGF KY . Let also FXn be the CDF of the random variable Xn = Y1 + Y2 + . . . + Yn. Hence,
for all a ∈ R and for all θ ∈ ΘY , it holds that

|FXn(a)− ηY (θ, a, n)| 6 exp (nKY (θ)− θ a) min

(
1,

2 c ξY (θ)

(K
(2)
Y (θ))3/2

√
n

)
, (27)

where c = 0.476;

ΘY , {t ∈ R : KY (t) <∞}; (28)

and the functions K(2)
Y , ξY , and ηY are defined in (10), (22), and (26), respectively.

Proof: The proof of Theorem 2 is presented in Appendix A.
The relevance of Theorem 2 is that given a pair (a, n) ∈ R × N, the value FXn(a) can be
approximated by ηY (θ, a, n) up to an approximation error that is not bigger than exp

(
nKY (θ)

−θ a
)

min
(

1, 2 c ξY (θ)

(K
(2)
Y (θ))3/2

√
n

)
. This observation leads to the following upper and lower bounds

on FXn(a), for all a ∈ R,

FXn(a)6ηY (θ, a, n) + exp (nKY (θ)− θ a) min

(
1,

2 c ξY (θ)

(K
(2)
Y (θ))3/2

√
n

)
, and (29)

FXn(a)>ηY (θ, a, n)− exp (nKY (θ)− θ a) min

(
1,

2 c ξY (θ)

(K
(2)
Y (θ))3/2

√
n

)
, (30)

with θ ∈ ΘY .
The advantages of approximating FXn by using Theorem 2 instead of Theorem 1 are twofold.
First, both the approximation ηY and the corresponding approximation error depend on the
exact value of a. In particular, the approximation can be optimized for each value of a via the
parameter θ. Second, the parameter θ in (27) can be optimized to improve either the upper
bound in (29) or the lower bound in (30) for some a ∈ R. Nonetheless, such optimizations are
not necessarily simple.
An alternative to the optimization on θ in (29) and (30) is to choose θ such that it minimizes
nKY (θ)−θ a. This follows the intuition that, for some values of a and n, the term exp(nKY (θ)−
θ a) is the one that influences the most the value of the right-hand side of (27). To build upon
this idea, consider the following lemma.

Lemma 1 Consider a random variable Y with probability distribution PY and CGF KY . Given
n ∈ N, let the function h : R → R be defined for all a ∈ R satisfying a

n ∈ intCY , with intCY
denoting the interior of the convex hull of suppPXn , as follows

h(a) = inf
θ∈ΘY

nKY (θ)− θ a, (31)

RR n° 9329
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where ΘY is defined in (28). Then, the function h is concave and for all a ∈ R,

h(a) 6 h(nEPY [Y ]) = 0. (32)

Furthermore,

h(a) = nKY (θ?)− θ? a, (33)

where θ? is the unique solution in θ to

nK
(1)
Y (θ) = a, (34)

with K(1)
Y is defined in (9).

Proof: The proof of Lemma 1 is presented in Appendix B.
Given (a, n) ∈ R × N, the value of h(a) in (31) is the argument that minimizes the exponential
term in (27). An interesting observation from Lemma 1 is that the maximum of h is zero and it
is reached when a = nEPY [Y ] = EPXn [Xn]. In this case, θ? = 0, and thus, from (29) and (30),
it holds that

FXn(a)6ηY (0, a, n) + min

(
1,

2 c ξY (0)

(K
(2)
Y (0))3/2

√
n

)

=FZn(a) + min

(
1,

2 c ξY (0)

(K
(2)
Y (0))3/2

√
n

)
, and (35)

FXn(a)>ηY (0, a, n)−min

(
1,

2 c ξY (0)

(K
(2)
Y (0))3/2

√
n

)

=FZn(a)−min

(
1,

2 c ξY (0)

(K
(2)
Y (0))3/2

√
n

)
, (36)

where FZn is the CDF defined in Theorem 1. Hence, the upper bound in (35) and the lower
bound in (36) obtained from Theorem 2 are worse than those in (24) and (25) obtained from
Theorem 1. In a nutshell, for values of a around the vicinity of nEPY [Y ] = EPXn [Xn], it is more
interesting to use Theorem 1 instead of Theorem 2.
Alternatively, given that h is non-positive and concave, when |a− nEPY [Y ]| =

∣∣a− EPXn [Xn]
∣∣

> γ, with γ sufficiently large, it follows that

exp (nKY (θ?)− θ? a) < min

1,
c ξY (0)√
n(K

(2)
Y (0))3

 , (37)

with θ? defined in (34). Hence, in this case, the right-hand side of (27) is always smaller than the
right-hand side of (23). That is, for such values of a and n, the upper and lower bounds in (29)
and (30) are better than those in (24) and (25), respectively. The following theorem leverages
this observation.

Theorem 3 Let Y1, Y2, . . ., Yn be i.i.d. random variables with probability distribution PY and
CGF KY . Let also FXn be the CDF of the random variable Xn = Y1 + Y2 + . . .+ Yn. Hence, for
all a ∈ int CXn , with int CXn the interior of the convex hull of suppPXn , it holds that

∣∣∣FXn(a)− F̂Xn(a)
∣∣∣ 6 exp (nKY (θ?)− θ? a) min

1,
2 c ξY (θ?)

√
n
(
K

(2)
Y (θ?)

)3/2

 , (38)
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where θ? is defined in (34), c = 0.476, and the functions K
(2)
Y , F̂Xn , and ξY are defined

in (10), (12), and (22), respectively.

Proof: The proof of Theorem 3 is presented in Appendix C.
An immediate result from Theorem 3 consists in the following upper and lower bounds on FX(a),
for all a ∈ R ,

FXn(a)6F̂Xn(a) + exp (nKY (θ?)− θ? a) min

1,
2 c ξY (θ?)(

K
(2)
Y (θ?)

)3/2√
n

 , Ω̄(a, n), and (39)

FXn(a)>F̂Xn(a)− exp (nKY (θ?)− θ? a) min

1,
2 c ξY (θ?)(

K
(2)
Y (θ?)

)3/2√
n

 , Ω(a, n). (40)

The following section presents two examples that highlight the observations mentioned above.

2.3 Examples
Example 1 (Discrete random variable) Let the random variables Y1, Y2, . . ., Yn in (1) be
i.i.d. Bernoulli random variables with parameter p = 0.2 and n = 100. In this case EPXn [Xn] =
nEPY [Y ] = 20. Figure 1 depicts the CDF FX100

of X100 in (1); the normal approximation
FZ100

in (23); and the saddlepoint approximation F̂X100
in (12). Therein, it is also depicted the

upper and lower bounds due to the normal approximation Σ̄ in (24) and Σ in (25), respectively;
and the upper and lower bounds due to the saddlepoint approximation Ω̄ in (39) and Ω in (40),
respectively. These functions are plotted as a function of a, with a ∈ [5, 35]. Figure 2 and Figure
3 depict the same functions as a function of a, with a ∈ [0, 5] and a ∈ [50, 60], respectively.

Example 2 (Continuous random variable) Let the random variables Y1, Y2, . . ., Yn in (1)
be i.i.d. chi-squared random variables with parameter k = 1 and n = 50. In this case EPXn [Xn] =
nEPY [Y ] = 50. Figure 4 depicts the CDF FX50

of X50 in (1); the normal approximation FZ50

in (23); and the saddlepoint approximation F̂X50
in (12). Therein, it is also depicted the upper

and lower bounds due to the normal approximation Σ̄ in (24) and Σ in (25), respectively; and
the upper and lower bounds due to the saddlepoint approximation Ω̄ in (39) and Ω in (40),
respectively. These functions are plotted as a function of a, with a ∈ [0, 100]. Figure 5 and Figure
6 depict the same functions as a function of a, with a ∈ [0, 25] and a ∈ [100, 170], respectively.
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Figure 1: Sum of 100 Bernoulli random variables with parameter p = 0.2. Note that E [X100] =
20. The function FX100(a) (asterisk markers ∗) in Example 1; the function FZ100(a) (star markers
?) in (23); the function F̂X100(a) (diamond markers �) in (12); the function Σ̄(a, 100) (circle
marker ◦) in (24); the function Σ(a, 100) (square marker �) in (25); the function Ω̄(a, 100)
(upward-pointing triangle marker 4) in (39); and the function Ω(a, 100) (downward-pointing
triangle marker O) in (40) as a function of a, with a ∈ [5, 35].
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Figure 2: Sum of 100 Bernoulli random variables with parameter p = 0.2. Note that E [X100] =
20. The function FX100

(a) (asterisk markers ∗) in Example 1; the function FZ100
(a) (star markers

?) in (23); the function F̂X100
(a) (diamond markers �) in (12); Ω̄(a, 100) (upward-pointing triangle

marker 4) in (39) as a function of a, with a ∈ [0, 5].
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Figure 3: Sum of 100 Bernoulli random variables with parameter p = 0.2. Note that E [X100] =
20. The complementary CDF 1 − FX100(a) (asterisk markers ∗) in Example 1; the function
1−FZ100(a) (star markers ?) in (23); the function 1− F̂X100(a) (diamond markers �) in (12); The
function 1 − Ω̄(a, 100) (downward-pointing triangle marker O) in (40) as a function of a, with
a ∈ [35, 60].
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Figure 4: Sum of 50 Chi-squared random variables with parameter k = 1. Note that E [X50] = 50.
The function FX50

(a) (asterisk markers ∗) in Example 2; the function FZ50
(a) (star markers ?)

in (23); the function F̂X50
(a) (diamond markers �) in (12); the function Σ̄(a, 50) (circle marker

◦) in (24); the function Σ(a, 50) (square marker �) in (25); Ω̄(a, 50) (upward-pointing triangle
marker 4) in (39); and the function Ω(a, 50) (downward-pointing triangle marker O) in (40) as
a function of a, with a ∈ [0, 100].
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Figure 5: Sum of 50 Chi-squared random variables with parameter k = 1. Note that E [X50] = 50.
The function FX50

(a) (asterisk markers ∗) in Example 2; the function FZ50
(a) (star markers ?)

in (23); the function F̂X50
(a) (diamond markers �) in (12); Ω̄(a, 50) (upward-pointing triangle

marker 4) in (39) as a function of a, with a ∈ [0, 40].
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Figure 6: Sum of 50 Chi-squared random variables with parameter k = 1. Note that E [X50] =
50. The complementary CDF 1 − FX50

(a) (asterisk markers ∗) in Example 2; the function
1 − FZ50

(a) (star markers ?) in (23); the function 1 − F̂X50
(a) (diamond markers �) in (12);

Ω(a, 50) (downward-pointing triangle marker O) in (40) as a function of a, with a ∈ [70, 100].
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3 Application to Information Theory: Channel Coding
This section focuses on the study of the DEP in point-to-point memoryless channels. The
problem is formulated in Section 3.1. The main results presented in this section consist in lower
and upper bounds on the DEP. The former, which are obtained building upon the existing DT
bound [12], are presented in Section 3.2. The latter, which are obtained from the MC bound [12],
are presented in Section 3.3.

3.1 System Model
Consider a point-to-point communication in which a transmitter aims at sending information to
one receiver through a noisy memoryless channel. Such a channel can be modeled by a random
transformation

(Xn,Yn, PY |X), (41)

where n ∈ N is the blocklength and X and Y are the channel input and channel output sets.
Given the channel inputs x = (x1, x2, . . ., xn) ∈ Xn, the outputs y = (y1, y2, . . ., yn) ∈ Yn are
observed at the receiver with probability

PY |X(y|x) =

n∏
t=1

PY |X(yt|xt), (42)

where, for all x ∈ X , PY |X=x ∈ 4 (Y), with 4 (Y) the set of all possible probability distributions
whose support is a subset of Y. The objective of the communication is to transmit a message
index i, which is a realization of a random variable W that is uniformly distributed over the set

W , {1, 2, . . . ,M}, (43)

with 1 < M < ∞. To achieve this objective, the transmitter uses an (n, M , λ)-code, where λ ∈
[0, 1].

Definition 1 ((n, M ,λ)-code) Given a tuple (M , n, λ) ∈ N2× [0, 1], an (n, M , λ)-code for
the random transformation in (41) is a system{(

u(1),D(1)

)
,

(
u(2),D(2)

)
, . . . ,

(
u(M),D(M)

)}
, (44)

where for all (j, `) ∈ W2, with j 6= `:

u(j) = (u1(j), u2(j), . . . , un(j)) ∈ Xn, (45a)
D(j) ∩ D(`) = ∅, (45b)⋃
j∈W
D(j) ⊆ Yn, and (45c)

1

M

M∑
i=1

EPY |X=u(i)

[
1{Y /∈D(i)}

]
6 λ. (45d)

To transmit message index i ∈ W, the transmitter uses the codeword u(i). For all t ∈ { 1,2,. . .,
n}, at channel use t, the transmitter inputs the symbol ut(i) into the channel. Assume that at
the end of channel use t, the receiver observes the output yt. After n channel uses, the receiver
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uses the vector y = (y1,y2,. . ., yn) and determines that the symbol j was transmitted if y ∈
D(j), with j ∈ W.
Given the (n,M ,λ)-code described by the system in (44), the DEP of the message index i is
EPY |X=u(i)

[
1{Y /∈D(i)}

]
. As a consequence, the average DEP is

1

M

M∑
i=1

EPY |X=u(i)

[
1{Y /∈D(i)}

]
. (46)

Note that from (45d), the average DEP of such an (n,M, λ)-code is upper bounded by λ. Given
a fixed pair (n,M) ∈ N2, the minimum λ for which an (n,M ,λ)-code exists is defined hereunder.

Definition 2 Given a pair (n,M) ∈ N2, the minimum average decoding error probability for the
random transformation in (41), denoted by λ∗(n,M), is given by

λ∗(n,M) = min {λ ∈ [0, 1] : ∃(n,M, λ)-code} . (47)

When λ is chosen accordingly with the reliability constraints, an (n,M, λ)-code is said to transmit
at an information rate R = log2(M)

n bits per channel use.
The remainder of this section introduces the DT bound and the MC bound. The DT bound is
one of the tightest existing upper bounds on λ∗(n,M) in (47), whereas the MC bound is one of
the tightest lower bounds.

3.2 Dependence Testing Bound
This section describes an upper bound on λ∗(n,M), for a fixed pair (n,M) ∈ N2. Given a
probability distribution PX ∈ 4 (Xn), let the random variable ι (X;Y ) satisfy

ι (X;Y ) , ln

(
dPXY

dPXPY
(X,Y )

)
, (48)

where the function dPXY

dPXPY
: Xn × Yn → R denotes the Radon-Nikodym derivative of the joint

probability measure PXY with respect to the product of probability measures PXPY , with
PXY = PXPY |X and PY the corresponding marginal. Let the function T : N2 ×4 (Xn)→ R+

be for all (n,M) ∈ N2 and for all probability distributions PX ∈ 4 (Xn),

T (n,M,PX)=EPXPY |X

[
1{ι(X;Y )6ln(M−1

2 )}
]

+
M − 1

2
EPXPY

[
1{ι(X;Y )>ln(M−1

2 )}
]
. (49)

Using this notation, the following lemma states the dependence testing bound.

Lemma 2 (Dependence testing bound [12]) Given a pair (n,M) ∈ N2, the following holds
for all PX ∈ 4 (Xn), with respect to the random transformation in (41):

λ∗(n,M) 6 T (n,M,PX), (50)

with the function T defined in (49).

Note that the input probability distribution PX in Lemma 2 can be chosen among all possible
probability distributions PX ∈ 4 (Xn) to minimize the right-hand side of (50), which improves
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the bound. Note also that with some lost of optimality, the optimization domain can be con-
strained to the set of probability distributions for which for all x ∈ Xn,

PX(x) =

n∏
t=1

PX(xt), (51)

with PX ∈ 4 (X ). Hence, subject to (42), the random variable ι(X;Y ) in (48) can be written
as the sum of i.i.d. random variables, i.e.,

ι(X;Y ) =

n∑
t=1

ι(Xt;Yt). (52)

This observation motivates the application of the results of Section 2 to provide upper and lower
bounds on the function T in (49), for some given values (n,M) ∈ N2 and a given distribution
PX ∈ 4 (Xn) for the random transformation in (41) subject to (42). These bounds become
significantly relevant when the exact value of T (n,M,PX) cannot be calculated with respect
to the random transformation in (41). In such a case, providing upper and lower bounds on
T (n,M,PX) helps in approximating its exact value subject to an error sufficiently small such
that the approximation is relevant.

3.2.1 Normal Approximation

This section describes the normal approximation of the function T in (49). That is, the ran-
dom variable ι(X;Y ) is assumed to satisfy (52) and to follow a Gaussian distribution. More
specifically, for all PX ∈ 4 (X ), let

µ(PX) , EPXPY |X [ι(X;Y )] , (53)

σ(PX) , EPXPY |X
[(
ι(X;Y )− µ(PX)

)2]
, and (54)

ξ(PX) , EPXPY |X
[∣∣ι(X;Y )− µ(PX)

∣∣3], (55)

be the first moment; the second central moment; and the third absolute central moment of the
random variables ι(X1;Y1), ι(X2;Y2) . . . ι(Xn;Yn). Using this notation consider the functions
D : N2 × 4 (X ) → R+ and N : N2 × 4 (X ) → R+ such that for all (n,M) ∈ N2 and for all
PX ∈ 4 (X ),

D(n,M,PX) = max

(
0, α (n,M,PX)− c ξ(PX)

σ(PX)
3
2
√
n

)
, and (56)

N(n,M,PX) = min

(
1,α (n,M,PX)+

3 c ξ(PX)

σ(PX)
3
2
√
n

+
2ln (2)

σ(PX)
1
2

√
2nπ

)
, (57)

where c = 0.476 and

α (n,M,PX),Q

(
nµ(PX)− ln

(
M−1

2

)√
nσ(PX)

)
. (58)

Using this notation, the following theorem introduces a lower bound and an upper bound on T
in (49).
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Theorem 4 Given a pair (n,M) ∈ N2, for all input distributions PX ∈ 4 (Xn) subject to (51),
the following holds with respect to the random transformation in (41) subject to (42),

D(n,M,PX) 6 T (n,M,PX) 6 N(n,M,PX), (59)

where the functions T , D and N are defined in (49), (56) and (57), respectively.

Proof: The proof of Theorem 4 is presented in [14]. Essentially, it consists in using
Theorem 1 for upper and lower bounding the terms EPXPY |X

[
1{ι(X;Y )6ln(M−1

2 )}
]
in (49). The

upper bound on EPXPY

[
1{ι(X;Y )>ln(M−1

2 )}
]
in (49) follows from Lemma 20 in [17].

In [14], the function α(n,M,PX) in (58) is often referred to as the normal approximation of
T (n,M,PX), which is indeed a language abuse. In Section 2.1, a comment is given on the fact
that the lower and upper bounds, i.e., the functions D in (56) and N in (57), are often too far
from the normal approximation α in (58).

3.2.2 Saddlepoint Approximation

This section describes an approximation of the function T in (49) by using the saddlepoint
approximation of the CDF of the random variable ι(X;Y ), as suggested in Section 2.2. Given
a distribution PX ∈ 4 (X ), the moment generating function of ι(X;Y ) is

ϕ(PX , θ) , EPXPY |X [exp (θ ι(X;Y ))] , (60)

with θ ∈ R. For all PX ∈ 4 (X ) and for all θ ∈ R, consider the following functions:

µ(PX , θ) , EPXPY |X

[
ι(X;Y ) exp (θ ι(X;Y ))

ϕ(PX , θ)

]
, (61)

V (PX , θ) , EPXPY |X

[
(ι(X;Y )−µ(PX , θ))

2exp (θι(X;Y ))

ϕ(PX , θ)

]
, and (62)

ξ(PX , θ) , EPXPY |X

[
|ι(X;Y )−µ(PX , θ)|3

exp (θι(X;Y ))

ϕ(PX , θ)

]
. (63)

Using this notation, consider the functions β1 : N2×R×4 (X )→ R+ and β2 : N2×R×4 (X )→
R+:

β1(n,M, θ, PX)

=1{θ>0}+(−1)1{θ>0} exp

(
nln (ϕ(PX , θ))−θln

(
M −1

2

)
+

1

2
θ2nV (PX , θ)

)
Q
(√
nV (PX , θ)|θ|

)
, (64)

and

β2(n,M, θ, PX)

=1{θ6−1}+(−1)1{θ6−1}exp

(
nln (ϕ(PX ,θ))−(θ+1)ln

(
M−1

2

)
+

1

2
(θ+1)2nV (PX ,θ)

)
Q
(√
nV (PX , θ)|θ+1|

)
.

(65)

Note that β1 is the saddlepoint approximation of the CDF of the random variable ι(X;Y )
in (52) when X and Y follow the distribution PXPY |X . Note also that β2 is the saddlepoint
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approximation of the complementary CDF of the random variable ι(X;Y ) in (52) when X and
Y follow the distribution PXPY .
Consider also the following functions:

G1(n,M, θ, PX) = β1(n,M, θ, PX)− 2c ξ(PX , θ)

V (PX , θ)3/2
√
n

exp

(
nln (ϕ(PX , θ))− θln

(
M − 1

2

))
, (66)

G2(n,M, θ, PX) = β2(n,M, θ, PX)− 2c ξ(PX , θ)

V (PX , θ)3/2
√
n

exp

(
nln (ϕ(PX , θ))−(θ+1)ln

(
M−1

2

))
, (67)

G(n,M, θ, PX) = max (0, G1(n,M, θ, PX)) +
M − 1

2
max (0, G2(n,M, θ, PX)) , and (68)

S(n,M, θ, PX) = min

(
1, β(n,M, θ, PX)+

4c ξ(PX , θ)

(V (PX , θ))
3/2√

n
exp

(
nln (ϕ(PX , θ))−θln

(
M−1

2

)))
. (69)

The following theorem introduces new lower and upper bounds on T in (49).

Theorem 5 Given a pair (n,M) ∈ N2, for all input distributions PX ∈ 4 (Xn) subject to (51),
the following holds with respect to the random transformation in (41) subject to (42),

G(n,M, θ, PX) 6 T (n,M,PX) 6 S(n,M, θ, PX) (70)

where θ is the unique solution in t to

nµ(PX , t) = ln

(
M − 1

2

)
, (71)

and the functions T , G, and S are defined in (49), (68) and (69), with c = 0.476.

Proof: The proof of Theorem 5 is provided in Appendix F. In a nutshell, the proof consists
in using Theorem 3 for independently bounding the terms EPXPY |X

[
1{ι(X;Y )6ln(M−1

2 )}
]
and

EPXPY

[
1{ι(X;Y )>ln(M−1

2 )}
]
in (49).

In the following, the function

β(n,M, θ, PX)=β1(n,M,θ,PX)+
M−1

2
β2(n,M,θ,PX), (72)

with β1 in (64) and β2 in (65), is referred to as the saddlepoint approximation of the function T
in (49), which is indeed a language abuse.

3.2.3 Numerical Analysis

The normal approximation and the saddlepoint approximation of the DT bound as well as the
corresponding upper bounds and lower bounds presented in Section 3.2.1 and in Section 3.2.2
are studied in the cases of the BSC, the AWGN channel, and the SαS channel. The latter is
defined by the random transformation in (41) subject to (42) and for all (x, y) ∈ X × Y:

PY |X(y|x) = PZ(y − x), (73)

where PZ is a probability distribution satisfying for all t ∈ R,

EPZ [exp (itZ)] = exp (− |σt|α) , (74)
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with i =
√
−1. The reals α ∈ (0, 2] and σ ∈ R+ in (74) are parameters of the SαS channel.

In the following figures, Figure 7 - Figure 9, the function T in (49), which is bounded by using
Theorem 4 and Theorem 5, is studied. On the first hand, its normal approximation α

(
n, 2nR, PX

)
in (58) is plotted in black diamonds, whereas the corresponding lower and upper bounds, i.e.,
D
(
n, 2nR, PX

)
in (56) and N

(
n, 2nR, PX

)
in (57), are respectively plotted in red circles and blue

squares. On the second hand, its saddlepoint approximation β
(
n, 2nR, θ, PX

)
in (72), is plotted

in black stars whereas the corresponding upper and lower bounds, i.e., S
(
n, 2nR, θ, PX

)
in (69)

and G
(
n, 2nR, θ, PX

)
in (68), are plotted in blue upward-pointing triangles and red downward-

pointing triangles respectively. These functions are plotted only when their values are positive.
The channel inputs are discrete X = {−1, 1}, PX is the uniform distribution, and θ is chosen to
be the unique solution in t to the equality in (71).
Figure 7 concerns the case of a BSC with cross-over probability δ = 0.11 and R = 0.32 bits
per channel use. The function T in (49) can be calculated exactly and thus, it is plotted in
magenta asterisks. Therein, it can be observed that both the saddlepoint approximation β and
the function T overlap. These observations are in line with those reported in [15], in which
the saddlepoint approximations of the RCU bound and the MC bound are both shown to be
precise approximations. The new bounds provided in Theorem 5 show that the exact value of
T (n,M,PX) is between S (n,M, θ, PX) and G (n,M, θ, PX). Hence, approximating T in (49) by
the function α (n,M,PX) in (58) might lead to erroneous conclusions. Indeed, when n > 1000
for instance, our lower bound G (n,M, θ, PX) in (68) becomes bigger than the approximation
α (n,M,PX) in (58) and hence approximating T by α is too optimistic.
Figure 8 and Figure 9 concern the cases of a real-valued AWGN channel and a SαS channel,
respectively. Moreover, the signal to noise ratio (SNR) is SNR = 1 for both channels. The
information rate is R = 0.425 bits per channel use for the AWGN channel and R = 0.38 bits per
channel use for the SαS channel, with (α, σ) = (1.4, 0.6). In both cases, the function T in (49)
can not be computed explicitly and hence does not appear in Figure 8 and Figure 9. In addition,
the lower bound D (n,M,PX) obtained from Theorem 4 is non-positive in these cases, and thus,
does not appear on the figures.
Note that in Figure 7 - Figure 9, the upper bound N (n,M,PX) is several orders of magnitude
far away from the normal approximation α (n,M,PX). From this perspective, a proper analysis
on the DT bound (Lemma 2) based on Theorem 4 does not lead to relevant conclusions.

RR n° 9329



An upper bound on the error induced by saddlepoint approximations - Applications to IT 25

0 500 1000 1500 2000
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 7: Normal and saddlepoint approximations of the function T in (49) as functions of the
blocklength n for the case of a BSC with cross-over probability δ = 0.11 at information rate
R = 0.32 bits per channel use. The channel input distribution PX is chosen to be the uniform
distribution and θ chosen to be the unique solution in t to the equality in (71).
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Figure 8: Normal and saddlepoint approximations of the function T in (49) as functions of
the blocklength n for the case of a real-valued AWGN channel with discrete channel inputs,
X = {−1, 1}, and SNR = 1 at information rate R = 0.425 bits per channel use. The channel
input distribution PX is chosen to be the uniform distribution and θ chosen to be the unique
solution in t to the equality in (71).
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Figure 9: Normal and saddlepoint approximations of the function T in (49) as functions of the
blocklength n for a real-valued SαS channel with discrete channel inputs, X = {−1, 1}, α = 1.4,
and σ = 0.6 at information rate R = 0.38 bits per channel use. The channel input distribution
PX is chosen to be the uniform distribution and θ chosen to be the unique solution in t to the
equality in (71).
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3.3 Meta Converse Bound
This section describes a lower bound on λ∗(n,M), for a fixed pair (n,M) ∈ N2. Given two proba-
bility distributions PXY ∈ 4 (Xn × Yn) and QY ∈ 4 (Yn), let the random variable ι̃ (X;Y |QY )
satisfy

ι̃ (X;Y |QY ) , ln

(
dPXY

dPXQY
(X,Y )

)
. (75)

For all (n,M ,γ) ∈ N2 × R and for all probability distributions PX ∈ 4 (Xn) and QY ∈ 4 (Yn),
let the function C : N2 ×4 (Xn)×4 (Yn)× R→ R+ be

C(n,M,PX , QY , γ) , EPXPY |X

[
1{ι̃(X;Y |QY )6ln(γ)}

]
+γ

(
EPXQY

[
1{ι̃(X;Y |QY )>ln(γ)}

]
− 1

M

)
. (76)

Using this notation, the following lemma describes the MC bound.

Lemma 3 (MC Bound [12,15]) Given a pair (n,M) ∈ N2, the following holds for all QY ∈
∆(Yn), with respect to the random transformation in (41):

λ∗(n,M)> inf
PX∈∆(Xn)

max
γ>0

C(n,M,PX , QY , γ), (77)

where the function C is defined in (76).

Note that the output probability distribution QY in Lemma 3 can be chosen among all pos-
sible probability distributions QY ∈ 4 (Yn) to maximize the right-hand side of (76), which
improves the bound. Note also that with some lost of optimality, the optimization domain can
be constrained to the set of probability distributions for which for all y ∈ Yn,

QY (y) =

n∏
t=1

QY (yt), (78)

with QY ∈ 4 (Y). Hence, subject to (42), for all x ∈ Xn, the random variable ι̃(x;Y |QY )
in (76) can be written as the sum of the independent random variables, i.e.,

ι̃(x;Y |QY ) =

n∑
t=1

ι̃(xt;Yt|QY ). (79)

With some lost of generality, the focus is on a channel transformation of the form in 41 for which
the following condition holds: The infimum in (77) is achieved by a product distribution, i.e.,
PX is of the form in (51), when the probability distribution QY satisfies (78). Note that this
condition is met by memoryless channels such as the BSC, the AWGN and SαS channels with
binary antipodal inputs, i.e. input alphabets are of the form X = {a,−a}, with a ∈ R. This
follows from the fact that the random variable ι̃(x;Y |QY ) is invariant of the choice of x ∈ Xn
when the probability distribution QY satisfies (78) and for all y ∈ Y,

QY (y) =
PY |X(y| − a) + PY |X(y|a)

2
. (80)

Under these conditions, the random variable ι̃(X;Y |QY ) in (76) can be written as the sum of
i.i.d. random variables, i.e.,

ι̃(X;Y |QY ) =

n∑
t=1

ι̃(Xt;Yt|QY ). (81)
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This observation motivates the application of the results of Section 2 to provide upper and lower
bounds on the function C in (76), for some given values (n,M) ∈ N2 and given distributions
PX ∈ 4 (Xn) and QY ∈ 4 (Yn). These bounds become significantly relevant when the exact
value of C(n,M,PX , QY , γ) cannot be calculated with respect to the random transformation
in (41). In such a case, providing upper and lower bounds on C(n,M,PX , QY , γ) helps in
approximating its exact value subject to an error sufficiently small such that the approximation
is relevant.

3.3.1 Normal Approximation

This section describes the normal approximation of the function C in (76), that is to say, the
random variable ι̃(X;Y |QY ) is assumed to satisfy (81) and to follow a Gaussian distribution.
That being said, for all (PX , QY ) ∈ 4 (X )×4 (Y), let

µ̃(PX , QY ) , EPXPY |X [ι̃(X;Y |QY )] , (82)

σ̃(PX , QY ) , EPXPY |X
[(
ι̃(X;Y |QY )− µ̃(PX , QY )

)2]
, and (83)

ξ̃(PX , QY ) , EPXPY |X
[∣∣ι̃(X;Y |QY )− µ̃(PX , QY )

∣∣3] (84)

be the first, the second central, and the third absolute central moments, respectively, of the
random variables ι̃(X1;Y1|QY ), ι̃(X2;Y2|QY ), . . . ι̃(Xn;Yn|QY ). Using this notation consider the
functions D̃ : N2 ×4 (X ) ×4 (Y) × R+ → R+ and Ñ : N2 ×4 (X ) ×4 (Y) × R+ → R+ such
that for all (n,M, γ) ∈ N2 × R and for all PX ∈ 4 (X ) and for all QY ∈ 4 (Y),

D̃(n,M,PX , QY , γ) = max

(
0, α̃ (n,M,PX , QY , γ)− c ξ̃(PX , QY )

σ̃(PX , QY )
3
2
√
n

)
, and (85)

Ñ(n,M,PX , QY , γ) = min

(
1,α̃ (n,M,PX , QY , γ)+

3 c ξ̃(PX , QY )

σ̃(PX , QY )
3
2
√
n

+
2ln (2)

σ̃(PX , QY )
1
2

√
2nπ

)
,(86)

where c = 0.476 and

α̃ (n,M,PX , QY , γ),Q

(
nµ̃(PX , QY )− ln (γ)√

nσ̃(PX , QY )

)
− γ

M
. (87)

Using this notation, the following theorem introduces a lower bound and an upper bound on C
in (76).

Theorem 6 Given a pair (n,M) ∈ N2, for all input distributions PX ∈ 4 (Xn) subject to (51),
for all output distributions QY ∈ 4 (Yn) subject to (78), and for all γ > 0, the following holds
with respect to the random transformation in (41) subject to (42),

D̃(n,M,PX , QY , γ) 6 C(n,M,PX , QY , γ) 6 Ñ(n,M,PX , QY , γ), (88)

where the functions C, D̃, and Ñ are defined in (76), (85) and (86), respectively.

Proof: The proof of Theorem 6 is partially presented in [12]. Essentially, it consists in
using Theorem 1 for upper and lower bounding the term EPXPY |X

[
1{ι̃(X;Y |QY )6ln(γ)}

]
in (76);

and using Lemma 20 in [17] for upper bounding the term EPXQY

[
1{ι̃(X;Y |QY )>ln(γ)}

]
in (76).

The function α̃ (n,M,PX , QY , γ) in (87) is often referred to as the normal approximation of
C(n,M,PX), which is indeed a language abuse. In Section 2.1, a comment is given on the fact
that the lower and upper bounds on the normal approximation, i.e., the functions D̃ in (85) and
Ñ in (86), are often too far from the normal approximation α̃ in (87).
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3.3.2 Saddlepoint Approximation

This section describes an approximation of the function C in (76) by using the saddlepoint
approximation of the CDF of the random variable ι̃(X;Y |QY ), as suggested in Section 2.2.
Given two distributions PX ∈ 4 (X ) and QY ∈ 4 (Y), let the random variable ι̃(X;Y |QY )
satisfy

ι̃(X;Y |QY ) , ln

(
dPXPY |X

dPXQY
(X,Y )

)
, (89)

where PY |X is in (42). The moment generating function of ι̃(X;Y |QY ) is

ϕ̃(PX , QY , θ) , EPXPY |X [exp (θ ι̃(X;Y |QY ))] , (90)

with θ ∈ R. For all PX ∈ 4 (X ) and QY ∈ 4 (Y), and for all θ ∈ R, consider the following
functions:

µ̃(PX , QY , θ) , EPXPY |X

[
ι̃(X;Y |QY ) exp (θ ι̃(X;Y |QY ))

ϕ̃(PX , QY , θ)

]
, (91)

Ṽ (PX , QY , θ) , EPXPY |X

[
(ι̃(X;Y |QY )−µ̃(PX , QY , θ))

2exp (θι̃(X;Y |QY ))

ϕ̃(PX , QY , θ)

]
, and (92)

ξ̃(PX , QY , θ) , EPXPY |X

[
|ι̃(X;Y |QY )−µ̃(PX , QY , θ)|3

exp (θι̃(X;Y |QY ))

ϕ̃(PX , QY , θ)

]
. (93)

Using this notation consider the functions β̃1 : N×R2×4 (X )×4 (Y)→ R+ and β̃2 : N×R2×
4 (X )×4 (Y)→ R+:

β̃1(n, γ, θ, PX , QY )

=1{θ>0}+(−1)1{θ>0}exp

(
nln (ϕ̃(PX , QY , θ))−θln (γ)+

1

2
θ2nṼ (PX ,QY ,θ)

)
Q

(√
nṼ (PX , QY , θ)|θ|

)
,

(94)

and

β̃2(n, γ, θ, PX , QY )

= 1{θ6−1}+(−1)1{θ6−1} exp
(
nln (ϕ̃(PX , QY , θ))−(θ+1)ln (γ)+

1

2
(θ+1)2nṼ (PX , QY , θ)

)
Q

(√
nṼ (PX , QY , θ)|θ+1|

)
. (95)

Note that β̃1 and β̃2 are the saddlepoint approximation of the CDF and the complementary CDF
of the random variable ι̃(X;Y |QY ) in (81) when (X,Y ) follows the distribution PXPY |X and
PXQY , respectively. Consider also the following functions:

G̃1(n, γ, θ, PX , QY )

= β̃1(n, γ, θ, PX , QY )− 2c ξ̃(PX , QY , θ)

Ṽ (PX , QY , θ)3/2
√
n

exp

(
nln (ϕ̃(PX , QY , θ))− θln (γ)

)
, (96)

G̃2(n, γ, θ, PX , QY )

= β̃2(n, γ, θ, PX , QY )− 2c ξ̃(PX , QY , θ)

Ṽ (PX , QY , θ)3/2
√
n

exp (nln (ϕ̃(PX , QY , θ))− (θ + 1)ln (γ)) , (97)
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G̃(n, γ, θ, PX , QY ,M)

= max
(

0, G̃1(n, γ, θ, PX , QY )
)

+ γmax
(

0, G̃2(n, γ, θ, PX , QY )
)
− γ

M
, (98)

S̃(n, γ, θ, PX , QY ,M)

=min

1, β̃ (n, γ, θ, PX , QY ,M)+
4c ξ̃(PX , QY , θ)(

Ṽ (PX , QY , θ)
)3/2√

n

exp (nln (ϕ̃(PX , QY , θ))−θln (γ))

,(99)
and

β̃(n, γ, θ, PX , QY ,M) = β̃1(n, γ, θ, PX , QY ) + γβ̃2(n,γ, θ, PX , QY )− γ

M
. (100)

The function β̃(n, γ, θ, PX , QY ,M) in (100) is referred to as the saddlepoint approximation of
the function C in (76), which is indeed a language abuse. The following theorem introduces a
new lower bound and a new upper bound on C.

Theorem 7 Given a pair (n,M) ∈ N2, for all input distributions PX ∈ 4 (Xn) subject to (51),
for all output distributions QY ∈ 4 (Yn) subject to (81) such that for all x ∈ X , PY |X=x is
absolutely continuous with respect to QY , for all γ > 0, the following holds with respect to the
random transformation in (41) subject to (42),

G̃(n, γ, θ, PX , QY ,M) 6 C(n,M,PX , QY , γ) 6 S̃(n, γ, θ, PX , QY ,M), (101)

where θ is the unique solution in t to

nµ(PX , t) = ln (γ) , (102)

and the functions C, G̃, and S̃ are defined in (76), (98) and (99), with c = 0.476.

Proof: The proof of Theorem 7 is provided in Appendix G.
Note that in (101), the parameter γ can be optimized as in (77).

3.3.3 Numerical Analysis

The normal approximation and the saddlepoint approximation of the MC bound as well as the
corresponding upper bounds and lower bounds presented in Section 3.3.1 and in Section 3.3.2
are studied in the cases of the BSC, the AWGN channel and the SαS channel. In the following
figures, Figure 10 - Figure 12, the function C in (76), which is bounded by using Theorem 6
and Theorem 7, is studied. On the first hand, its normal approximation α̃

(
n, 2nR, PX , QY , γ

)
in (87) is plotted in black diamonds, whereas the corresponding lower and upper bounds, i.e.,
D̃
(
n, 2nR, PX , QY , γ

)
in (85) and Ñ

(
n, 2nR, PX , QY , γ

)
in (86), are respectively plotted in red

circles and blue squares. On the second hand, its saddlepoint approximation β̃
(
n, γ, θ, PX , QY ,

2nR
)
in (100), is plotted in black stars whereas the corresponding upper and lower bounds, i.e.,

S̃
(
n, γ, θ, PX , QY , 2

nR
)
in (99) and G̃

(
n, γ, θ, PX , QY , 2

nR
)
in (98), are plotted in blue upward-

pointing triangles and red downward-pointing triangles respectively. These functions are plotted
only when their values are positive. The channel inputs are discrete X = {−1, 1}, PX is the
uniform distribution, QY is equal to the distribution PY , i.e. the marginal of PXPY |X , γ is
chosen to maximize the function C in (76), and θ is chosen to be the unique solution in t to the
equality in (102).
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Figure 10 concerns the case of a BSC with cross-over probability δ = 0.11 and R = 0.42 bits
per channel use. The function C in (76) can be calculated exactly and thus, it is plotted in
magenta asterisks. Therein, it can be observed that both the saddlepoint approximation β̃ and
the function C overlap. These observations are in line with those reported in [15], in which the
saddlepoint approximations of the RCU bound and the MC bound are both shown to be precise
approximations.
Figure 11 and Figure 12 concern the cases of a real-valued AWGN channel and a SαS channel,
respectively. Moreover, the signal to noise ratio (SNR) is SNR = 1 for both channels. The
information rate is R = 0.425 bits per channel use for the AWGN channel and R = 0.38 bits
per channel use for the SαS channel, with (α, σ) = (1.4, 0.6) . In both cases, the function C
in (76) can not be computed explicitly and hence does not appear in Figure 11 and Figure 12. In
addition, the lower bound D̃ (n,M,PX , QY , γ) obtained from Theorem 6 is non-positive in these
cases, and thus, does not appear on the figures.
Note that in Figure 10 - Figure 12, the upper bound Ñ

(
n, 2nR, PX , QY , γ

)
is several orders of

magnitude far away from the normal approximation α̃
(
n, 2nR, PX , QY , γ

)
. From this perspective,

a proper analysis on the MC bound (Lemma 3) based on Theorem 6 does not lead to relevant
conclusions. These observations are in line with those reported in Figure 7 - Figure 9.
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Figure 10: Normal and saddlepoint approximations to the function C in (76) as functions of
the blocklength n for the case of a BSC with cross-over probability δ = 0.11 at information
rate R = 0.42 bits per channel use. The channel input distribution PX is chosen to be the
uniform distribution, the output distribution QY chosen to be the channel output distribution
PY , γ chosen to maximize C in (76), and θ chosen to be the unique solution in t of the equality
in (102).
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Figure 11: Normal and saddlepoint approximations to the function C in (76) as functions of
the blocklength n for the case of a real-valued AWGN channel with discrete channel inputs,
X = {−1, 1}, and signal to noise ratio SNR = 1 at information rate R = 0.425 bits per channel
use. The channel input distribution PX is chosen to be the uniform distribution, the output
distribution QY chosen to be the channel output distribution PY , γ chosen to maximize C
in (76), and θ chosen to be the unique solution in t of the equality in (102).
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Figure 12: Normal and saddlepoint approximation to the function C in (76) as functions of
the blocklength n for the case of a real-valued symmetric α-stable noise channel with discrete
channel inputs, X = {−1, 1}, a shape parameter α = 1.4 and a dispersion parameter σ = 0.6
at information rate R = 0.38 bits per channel use. The channel input distribution PX is chosen
to be the uniform distribution, the output distribution QY chosen to be the channel output
distribution PY , γ chosen to maximize C in (76), and θ chosen to be the unique solution in t of
the equality in (102).
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4 Discussions and Further Work
One of the main results of this work is Theorem 3, which gives an upper bound on the error
induced by the saddlepoint approximation of the CDF of a sum of i.i.d. random variables.
This result paves the way to study channel coding problems at any finite blocklength and any
constraint on the DEP. In particular, Theorem 3 is used to bound the DT and MC bounds
in point-to-point memoryless channels. This leads to tighter bounds than those obtained from
Berry-Esseen Theorem (Theorem 1), c.f., examples in Section 3.2.3 and Section 3.3.3, particularly
for the small values of the DEP.
The bound on the approximation error presented in Theorem 2 uses a triangle inequality in the
proof of Lemma 4, which is loose. This is essentially the reason why Theorem 2 is not reduced
to the Berry-Esseen Theorem when the parameter θ is equal to zero. An interesting extension
of this work is to tighten the inequality in Lemma 4 such that the Berry-Esseen Theorem can be
obtained as a special case of Theorem 2, i.e., when θ = 0. If such improvement on Theorem 2 is
possible, Theorem 3 will be strongly improved and it would be more precise everywhere and in
particular in the vicinity of the mean of the sum in (1).
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Appendices
A Proof of Theorem 2
The proof of Theorem 2 relies on the notion of exponentially tilted distributions. Let ϕY be the
moment generating function of the distribution PY . Given θ ∈ ΘY , let Y

(θ)
1 , Y (θ)

2 , . . ., Y (θ)
n be

random variables whose joint probability distribution, denoted by P
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

, satisfies for all
(y1, y2, . . . , yn) ∈ Rn,

dP
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

dPY1Y2...Yn

(y1, y2, . . . , yn) =
exp

(
θ
∑n
j=1 yj

)
(ϕY (θ))

n . (103)

That is, the distribution P
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

is an exponentially tilted distribution with respect to
PY1Y2...Yn . Using this notation, for all A ⊆ R and for all θ ∈ ΘY ,

PXn(A)=EPXn [1{Xn∈A}] (104a)

=EPY1Y2...Yn

[
1{∑n

j=1 Yj∈A}
]

(104b)

=EP
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

[
dPY1Y2...Yn

dP
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

(Y
(θ)
1 , Y

(θ)
2 , . . . , Y (θ)

n )1{∑n
j=1 Y

(θ)
j ∈A

}
]

(104c)

=EP
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

(dP
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

dPY1Y2...Yn

(Y
(θ)
1 , Y

(θ)
2 , . . . , Y (θ)

n )

)−1

1{∑n
j=1 Y

(θ)
j ∈A

}
 (104d)

=EP
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n


exp

(
θ
∑n
j=1 Y

(θ)
j

)
(ϕY (θ))

n

−1

1{∑n
j=1 Y

(θ)
j ∈A

}
 (104e)

=(ϕY (θ))
n EP

Y
(θ)
1 Y

(θ)
2 ...Y

(θ)
n

exp

−θ n∑
j=1

Y
(θ)
j

1{∑n
j=1 Y

(θ)
j ∈A

}
 (104f)

For the ease of the notation, consider the random variable

Sn,θ =

n∑
j=1

Y
(θ)
j , (105)

whose probability distribution is denoted by PSn,θ . Hence, plugging (105) in (104f) yields,

PXn(A)=(ϕY (θ))
n EPSn,θ

[
exp (−θSn,θ)1{Sn,θ∈A}

]
. (106)

The proof continues by upper bounding the following absolute difference∣∣∣PXn(A)− (ϕY (θ))
n EPZn,θ

[
exp (−θZn,θ)1{Zn,θ∈A}

]∣∣∣ , (107)

where Zn,θ is a Gaussian random variable with the same mean and variance as Sn,θ, and prob-
ability distribution denoted by PZn,θ . The relevance of the absolute difference in (107) is that
it is equal to the error of calculating PXn(A) under the assumption that the resulting random
variable Sn follows a Gaussian distribution. The following lemma provides an upper bound
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on the absolute difference in (107) in terms of the Kolmogorov-Smirnov distance between the
distributions PSn,θ and PZn,θ , denoted by

∆
(
PSn,θ , PZn,θ

)
, sup

x∈R

∣∣FSn,θ (x)− FZn,θ (x)
∣∣ , (108)

where FSn,θ and FZn,θ are the CDFs of the random variables Sn,θ and Zn,θ, respectively.

Lemma 4 Given θ ∈ ΘY and a ∈ R consider the following conditions:
(i) θ 6 0 and A = (−∞, a], and
(ii) θ > 0 and A = (a,∞).
If at least one of the above conditions is satisfied, then the absolute difference in (107) satisfies,∣∣∣PXn(A)−(ϕY (θ))

n EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]∣∣∣6 (ϕY (θ))
n

exp(θa)
min

(
1, 2 ∆(PSn,θ , PZn,θ )

)
.(109)

Proof: The proof of Lemma 4 is presented in Appendix D.
The proof continues by providing an upper bound on ∆

(
PSn,θ , PZn,θ

)
in (109) leveraging the

observation that Sn,θ is the sum of n independent and identically distributed random variables.
This follows immediately from the assumptions of Theorem 2, nonetheless, for the sake of com-
pleteness, the following lemma provides a proof of this statement.

Lemma 5 For all θ ∈ ΘY , Y
(θ)
1 , Y (θ)

2 , . . ., Y (θ)
n are mutually independent and identically dis-

tributed random variables with probability distribution PY (θ) . Moreover, PY (θ) is an exponential
tilted distribution with respect to PY . That is, PY (θ) satisfies for all y ∈ R,

dPY (θ)

dPY
(y) =

exp (θy)

ϕY (θ)
. (110)

Proof: The proof of Lemma 5 is presented in Appendix E.
Lemma 5 paves the way for obtaining an upper bound on ∆

(
PSn,θ , PZn,θ

)
in (109) via the Berry-

Essen Theorem (Theorem 1). Let µθ, Vθ and ξθ be the mean, the variance and the third absolute
central moment of the random variable Y (θ), whose probability distribution is PY (θ) in (110).
More specifically:

µθ=EP
Y (θ)

[Y (θ)] = EPY
[
Y exp (θY )

ϕY (θ)

]
, (111)

Vθ=EP
Y (θ)

[(Y (θ) − µθ)2] = EPY
[

(Y − µθ)2 exp (θY )

ϕY (θ)

]
, and (112)

ξθ =EP
Y (θ)

[|Y (θ) − µθ|3] = EPY
[
|Y − µθ|3 exp (θY )

ϕY (θ)

]
. (113)

From Theorem 1, it follows that ∆
(
PSn,θ , PZn,θ

)
in (109) satisfies:

∆(PSn,θ , PZn,θ ) 6 min

(
1,

c ξθ√
n(Vθ)3

)
6

c ξθ√
n(Vθ)3

, (114)

where c = 0.476. Plugging (114) in (109) yields,∣∣∣∣PXn(A)− (ϕY (θ))
n

exp(θb)
EPZn,θ [exp (−θZn,θ)1 {Zn,θ ∈ A}]

∣∣∣∣6 (ϕY (θ))
n

exp(θa)
min

(
1, 2

c ξθ√
n(Vθ)3

)
, (115)
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under the assumption that at least one of the conditions of Lemma 4 is met.
The proof ends by obtaining a closed-form expression of the term EPZn,θ

[
exp (−θZn,θ) 1{Zn,θ∈A}

]
in (115) under the assumption that at least one of the conditions of Lemma 4 is met. First, as-
suming that condition (i) in Lemma 4 holds, it follows that:

EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]
=

∫ a

−∞
exp (−θz) 1√

2πnVθ
exp

(
− (z − nµθ)2

2nVθ

)
dz (116a)

=

∫ a

−∞

1√
2πnVθ

exp

(
−z

2 − 2 z nµθ + n2µ2
θ + 2nθ Vθ z

2nVθ

)
dz (116b)

=

∫ a

−∞

1√
2πnVθ

exp

(
− (z − nµθ + nθVθ)

2 − n2θ2V 2
θ + 2nµθ nθVθ

2nVθ

)
dz (116c)

= exp

(
−θnµθ +

1

2
nVθθ

2

)∫ a

−∞

1√
2πnVθ

exp

(
− (z − nµθ + nθVθ)

2

2nVθ

)
dz (116d)

= exp

(
−θnµθ +

1

2
nVθθ

2

)∫ a−nµθ+nθVθ√
nVθ

−∞

1√
2π

exp

(
− t

2

2

)
dt (116e)

= exp

(
−θnµθ +

1

2
nVθθ

2

)
Q

(
−a− nµθ + nθVθ√

nVθ

)
. (116f)

Second, assuming that condition (ii) in Lemma 4 holds, it follows that:

EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]
=

∫ ∞
a

exp (−θz) 1√
2πnVθ

exp

(
− (z − nµθ)2

2nVθ

)
dz (117a)

=

∫ ∞
a

1√
2πnVθ

exp

(
−z

2 − 2 z nµθ + n2µ2
θ + 2nθ Vθ z

2nVθ

)
dz (117b)

=

∫ ∞
a

1√
2πnVθ

exp

(
− (z − nµθ + nθVθ)

2 − n2θ2V 2
θ + 2nµθ nθVθ

2nVθ

)
dz (117c)

= exp

(
−θnµθ +

1

2
nVθθ

2

)∫ ∞
a

1√
2πnVθ

exp

(
− (z − nµθ + nθVθ)

2

2nVθ

)
dz (117d)

= exp

(
−θnµθ +

1

2
nVθθ

2

)∫ ∞
a−nµθ+nθVθ√

nVθ

1√
2π

exp

(
− t

2

2

)
dt (117e)

= exp

(
−θnµθ +

1

2
nVθθ

2

)
Q

(
a− nµθ + nθVθ√

nVθ

)
, (117f)

where Q in (116f) and (117f) is the complementary cumulative distribution function of the
standard Gaussian distribution defined in (13).
The expressions in (116f) and (117f) can be jointly written as follows:

EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]
= exp

(
−θnµθ +

1

2
nVθθ

2

)
Q

(
(−1)1{θ60}

a− nµθ + nθVθ√
nVθ

)
,(118)

under the assumption that at least one of the conditions (i) or (ii) in Lemma 4 holds.
Finally, under the same assumption, plugging (118) in (115) yields∣∣∣∣∣PXn(A)− exp

(
nln (ϕY (θ))− nθµθ +

1

2
nθ2Vθ

)
Q

(
(−1)1{θ60}

a+ nθVθ − nµθ√
nVθ

) ∣∣∣∣∣
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6 exp (nln (ϕY (θ))− θa) min

(
1,

2 c ξθ

V
3/2
θ

√
n

)
. (119)

Under condition (i) in Lemma 4, the inequality in (119) can be written as follows:∣∣∣∣∣FXn(a)− exp

(
nln (ϕY (θ))− nθµθ +

1

2
nθ2Vθ

)
·Q
(

(−1)1{θ60}
a+ nθVθ − nµθ√

nVθ

) ∣∣∣∣∣
6 exp (nln (ϕY (θ))− θa) min

(
1,

2 c ξθ

V
3/2
θ

√
n

)
. (120)

Alternatively, under condition (ii) in Lemma 4, it follows from (119) that∣∣∣∣∣1− FXn(a)− exp

(
nln (ϕY (θ))− nθµθ +

1

2
nθ2Vθ

)
·Q
(

(−1)1{θ60}
a+ nθVθ − nµθ√

nVθ

) ∣∣∣∣∣
6 exp (nln (ϕY (θ))− θa) min

(
1,

2 c ξθ

V
3/2
θ

√
n

)
. (121)

Then, jointly writing (120) and (121), it follows that for all a ∈ R and for all θ ∈ ΘY ,∣∣∣∣FXn(a)−1{θ>0}−(−1)1{θ>0}exp

(
nln (ϕY (θ))−nθµθ+

1

2
nθ2Vθ

)
Q

(
(−1)1{θ60}

a+ nθVθ − nµθ√
nVθ

)∣∣∣∣
6 exp (nln (ϕY (θ))− θa) min

(
1,

2 c ξθ

V
3/2
θ

√
n

)
, (122)

which can also be written as

|FXn(a)− ηY (θ, a, n)| 6 exp (nKY (θ)− θ a) min

(
1,

2 c ξY (θ)

(K
(2)
Y (θ))3/2

√
n

)
. (123)

This completes the proof.

B Proof of Lemma 1
Let g : R2 × N→ R be for all (θ, a, n) ∈ R2 × N,

g(θ, a, n) = nKY (θ)− θa = nln (ϕY (θ))− θ a. (124)

First, note that for all θ ∈ ΘY and for all n ∈ N, the function g is a concave function of a. Hence,
from the definition of the function h in (31), h is concave.
Second, note that 0 ∈ ΘY given that φY (0) = 1 < ∞. Hence, from (31), it holds that for all
a ∈ R,

h(a) 6 nKY (0) = nln (ϕY (0)) = nln (1) = 0. (125a)

This shows that the function h in (31) is not positive.
Third, the next step of the proof consists of proving the equality in (33). For doing so, Let
θ? : R× N→ R be for all (a, n) ∈ R× N,

θ?(a, n) = arg inf
θ∈ΘY

g(θ, a, n). (126)
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Note that the function g is a convex in θ. This follows by verifying that its second derivative
with respect to θ is positive. That is,

d

dθ
g(θ, a, n) =

n

ϕY (θ)

d

dθ
ϕY (θ)− a, and (127a)

d2

dθ2
g(θ, a, n)=

n

(ϕY (θ))
2

(
ϕY (θ)

d2

dθ2
ϕY (θ)−

(
d

dθ
ϕY (θ)

)2
)

(127b)

=n

(
1

ϕY (θ)

d2

dθ2
ϕY (θ)−

(
1

ϕY (θ)

d

dθ
ϕY (θ)

)2
)

(127c)

=n

(
1

ϕY (θ)

d2

dθ2
EPY [exp(θY )]−

(
1

ϕY (θ)

d

dθ
EPY [exp(θY )]

)2
)

(127d)

=n

(
EPY [Y 2 exp(θY )]

EPY [exp(θY )]
−
(
EPY [Y exp(θY )]

EPY [exp(θY )]

)2
)

(127e)

=n

(
EPY

[
Y 2 exp(θY )

EPY [exp(θY )]

]
−
(
EPY

[
Y exp(θY )

EPY [exp(θY )]

])2
)

(127f)

=n

(
EPY

[
Y 2 exp(θY )

EPY [exp(θY )]

]
− 2EPY

[
Y exp(θY )

EPY [exp(θY )]

]
K

(1)
Y (θ) +

(
K

(1)
Y (θ)

)2
)

=nEPY


(
Y −K(1)

Y (θ)
)2

exp(θY )

EPY [exp(θY )]

 > 0. (127g)

Hence, if the first derivative of g with respect to θ (see (127a)) admits a zero in ΘY , then θ?(a, n)
is the unique solution in θ to the following equality:

d

dθ
g(θ, a, n)=

n

ϕY (θ)

d

dθ
ϕY (θ)− a = 0. (128)

Equation (128) in θ can be rewritten as follows,

a

n
=

1

ϕY (θ)

d

dθ
ϕY (θ) (129a)

=
1

EPY [exp(θY )]

d

dθ
EPY [exp(θY )] (129b)

=
1

EPY [exp(θY )]
EPY [Y exp(θY )] (129c)

=EPY
[

Y exp(θY )

EPY [exp(θY )]

]
(129d)

=K
(1)
Y (θ). (129e)

From (129d), it follows that a
n is the mean of a random variable that follows an exponentially

tilted distribution with respect to PY . Thus, there exists a solution in θ for (129d) if and only if
a
n ∈ intCY . Hence, the equality in (33).
Finally, from (129d), a = nEPY [Y ] implies that θ?(a, n) = 0. Hence, h(nEPY [Y ]) = 0 from (33).
This completes the proof for h(nEPY [Y ]) = 0.
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C Proof of Theorem 3
From Lemma 1, it holds that given (a, n) ∈ R× N such that a

n ∈ intCY ,

nK
(1)
Y (θ?) = a. (130)

Then, plugging (130) in the expression of ηY (θ?, a, n), with function ηY defined in (26), the
following holds

ηY (θ?, a, n)

=1{θ?>0}+(−1)1{θ?>0}exp

(
1

2
n(θ?)2K

(2)
Y (θ)+nKY (θ?)−θ?a

)
Q

(−1)1{θ?60}
a+nθ?K

(2)
Y (θ?)−a√

nK
(2)
Y (θ?)

(131a)
=1{θ?>0}+(−1)1{θ?>0}exp

(
1

2
n(θ?)2K

(2)
Y (θ)+nKY (θ?)−θ?a

)
Q

(
(−1)1{θ?60}θ?

√
nK

(2)
Y (θ?)

)
(131b)

=1{θ?>0}+(−1)1{θ?>0}exp

(
1

2
n(θ?)2K

(2)
Y (θ)+nKY (θ?)−θ?a

)
Q

(
|θ?|
√
nK

(2)
Y (θ?)

)
(131c)

= F̂Xn(a), (131d)

where equality in (131d) follows (12). Finally, plugging (131d) in (27) yields

∣∣∣FXn(a)− F̂Xn(a)
∣∣∣ 6 exp (nKY (θ?)− θ?a) min

1,
2 c ξY (θ?)(

K
(2)
Y (θ?)

)3/2√
n

 . (132)

This completes the proof by observing that a
n ∈ intCY is equivalent to a ∈ intCXn .

D Proof of Lemma 4
The left-hand side of (109) satisfies∣∣∣PXn(A)− (ϕY (θ))

n EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]∣∣∣
=(ϕY (θ))

n
∣∣∣EPSn,θ [exp (−θSn,θ)1{Sn,θ∈A}

]
− EPZn,θ

[
exp (−θZn,θ)1{Zn,θ∈A}

]∣∣∣ . (133)

The focus is on obtaining explicit expressions for the terms EPSn,θ
[
exp (−θSn,θ)1{Sn,θ∈A}

]
and

EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]
in (133). First, consider the case in which the random vari-

able Sn,θ is absolutely continuous and denote its probability density function by fSn,θ and its
cumulative distribution function by FSn,θ . Then,

EPSn,θ
[
exp (−θSn,θ)1{Sn,θ∈A}

]
=

∫
A

exp (−θx) fSn,θ (x)dx. (134)

Using integration by parts in (134), under the assumption (i) or (ii) in Lemma 4, the following
holds:

EPSn,θ
[
exp (−θSn,θ)1{Sn,θ∈A}

]
=(−1)1{θ>0} exp (−θa)FSn,θ (a)−

∫
A
θ exp (−θx)FSn,θ (x)dx.(135)
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Second, consider the case in which the random variable Sn,θ is discrete and denote its probability
mass function by pSn,θ and its cumulative distribution function by FSn,θ . Let the support of Sn,θ
be {s0, s1, . . ., s`} ⊂ R, with ` ∈ N. Assume that condition (i) in Lemma 4 is satisfied. Then,

A ∩ {s0, s1, . . . , sl} = {s0, s1, . . . , su}, (136)

with u 6 `, and

EPSn,θ
[
exp (−θSn,θ)1{Sn,θ∈A}

]
=

u∑
k=0

exp (−θsk) pSn,θ (sk) (137a)

= FSn,θ (s0) exp (−θs0) +

u∑
k=1

(
FSn,θ (sk)− FSn,θ (sk−1)

)
exp (−θsk) (137b)

=

u∑
k=0

FSn,θ (sk) exp (−θsk)−
u∑
k=1

FSn,θ (sk−1) exp (−θsk) (137c)

=

u∑
k=0

FSn,θ (sk) exp (−θsk)−
u−1∑
k=0

FSn,θ (sk) exp (−θsk+1) (137d)

= FSn,θ (su) exp (−θsu)−
u−1∑
k=0

FSn,θ (sk) (exp (−θsk+1)− exp (−θsk)) (137e)

= FSn,θ (su) exp (−θsu)−
u−1∑
k=0

∫ sk+1

sk

θ exp (−θt)FSn,θ (sk)dt (137f)

= FSn,θ (su) exp (−θsu)−
∫ su

s0

θ exp (−θt)FSn,θ (t)dt (137g)

= FSn,θ (a) exp (−θa)−FSn,θ (a) exp (−θa)+FSn,θ (su) exp (−θsu)−
∫ su

s0

FSn,θ (t)θ exp (−θt) dt(137h)

=FSn,θ (a) exp (−θa)−FSn,θ (su) exp (−θa)+FSn,θ (su) exp (−θsu)−
∫ su

s0

θ exp (−θt)FSn,θ (t)dt(137i)

= FSn,θ (a) exp (−θa)− FSn,θ (su) (exp (−θa)− exp (−θsu))−
∫ su

s0

θ exp (−θt)FSn,θ (t)dt (137j)

= FSn,θ (a) exp (−θa)−
∫ a

su

θ exp (−θt)FSn,θ (su)dt−
∫ su

s0

θ exp (−θt)FSn,θ (t)dt (137k)

= exp (−θa)FSn,θ (a)−
∫ a

s0

θ exp (−θt)FSn,θ (t)dt (137l)

= exp (−θa)FSn,θ (a)−
∫ a

−∞
θ exp (−θt)FSn,θ (t)dt, (137m)

which is an expression of the same form as the one in (135). Alternatively, assume that condi-
tion (ii) in Lemma 4 holds. Then,

A ∩ {s0, s1, . . . , sl} = {su, su+1, . . . , sl}, (138)

with u 6 `, and

EPSn,θ
[
exp (−θSn,θ)1{Sn,θ∈A}

]
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=

l∑
k=u

exp (−θsk) pSn,θ (sk) (139a)

=
(
FSn,θ (su)− FSn,θ (a)

)
exp (−θsu) +

l∑
k=u+1

(
FSn,θ (sk)− FSn,θ (sk−1)

)
exp (−θsk) (139b)

= −FSn,θ (a) exp (−θsu) +

l∑
k=u

FSn,θ (sk) exp (−θsk)−
l∑

k=u+1

FSn,θ (sk−1) exp (−θsk) (139c)

= −FSn,θ (a) exp (−θsu) +

l∑
k=u

FSn,θ (sk) exp (−θsk)−
l−1∑
k=u

FSn,θ (sk) exp (−θsk+1) (139d)

= FSn,θ (sl) exp (−θsl)−FSn,θ (a) exp (−θsu)−
l−1∑
k=u

FSn,θ (sk) (exp (−θsk+1)− exp (−θsk)) (139e)

= −FSn,θ (a) exp (−θsu)−
∫ ∞
sl

θ exp (−θst)FSn,θ (sl)dt−
l−1∑
k=u

∫ sk+1

sk

θ exp (−θt)FSn,θ (sk)dt (139f)

= −FSn,θ (a) exp (−θsu)−
∫ ∞
su

θ exp (−θt)FSn,θ (t)dt (139g)

= FSn,θ (a) exp (−θa)−FSn,θ (a) exp (−θa)−FSn,θ (a) exp (−θsu)−
∫ ∞
su

θ exp (−θt)FSn,θ (t)dt(139h)

= −FSn,θ (a) exp (−θa)−FSn,θ (a) (exp (−θsu)− exp (−θa))−
∫ ∞
su

θ exp (−θt)FSn,θ (t)dt (139i)

= −FSn,θ (a) exp (−θa)−
∫ su

a

θ exp (−θt)FSn,θ (a)dt−
∫ ∞
su

θ exp (−θt)FSn,θ (t)dt (139j)

= −FSn,θ (a) exp (−θa)−
∫ ∞
a

θ exp (−θt)FSn,θ (t)dt, (139k)

which is an expression of the same form as those in (135) and (137m).
Note that under the assumption that at least one of the conditions in Lemma 4 holds, the
expressions in (135), (137m), and (139k) can be jointly written as follows:

EPSn,θ
[
exp (−θSn,θ)1{Sn,θ∈A}

]
= (−1)1{θ>0} exp (−θa)FSn,θ (a)−

∫
A
θ exp (−θx)FSn,θ (x)dx.(140)

The expression in (140) does not involve particular assumptions on the random variable Sn,θ other
than being discrete or absolutely continuous. Hence, the same expression holds with respect to
the random variable Zn,θ in (133). More specifically,

EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]
= (−1)1{θ>0} exp (−θa)FZn,θ (a)−

∫
A
θ exp (−θx)FZn,θ (x)dx,

(141)

where FZn,θ is the cumulative distribution function of the random variable Zn,θ.
The proof ends by plugging (140) and (141) in the right-hand side of (133). This yields,∣∣∣PXn(A)− (ϕY (θ))

n EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]∣∣∣
= (ϕY (θ))

n
∣∣∣(−1)1{θ>0} exp (−θa)FSn,θ (a)−

∫
A
θ exp (−θx)FSn,θ (x)dx
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−(−1)1{θ>0} exp (−θa)FZn,θ (a) +

∫
A
θ exp (−θx)FZn,θ (x)dx

∣∣∣ (142a)

=(ϕY (θ))
n

∣∣∣∣(−1)1{θ>0} exp (−a)
(
FSn,θ (a)−FZn,θ (a)

)
−
∫
A
θ exp (−θx)

(
FSn,θ (x)−FZn,θ (x)

)
dx

∣∣∣∣(142b)
≤ (ϕY (θ))

n

(∣∣exp (−θa)
(
FSn,θ (a)−FZn,θ (a)

)∣∣+∣∣∣∣∫
A
θ exp (−θx)

(
FSn,θ (x)− FZn,θ (x)

)
dx

∣∣∣∣)(142c)
≤ (ϕY (θ))

n

(
exp (−θa) ∆

(
PSn,θ , PZn,θ

)
+

∫
A
|θ exp (−θx)|∆

(
PSn,θ , PZn,θ

)
dx

)
(142d)

= (ϕY (θ))
n

(
exp (−θa) ∆

(
PSn,θ , PZn,θ

)
+ ∆

(
PSn,θ , PZn,θ

) ∣∣∣∣∫
A
θ exp (−θx) dx

∣∣∣∣) (142e)

= (ϕY (θ))
n (

exp (−θa) ∆
(
PSn,θ , PZn,θ

)
+ ∆

(
PSn,θ , PZn,θ

)
exp (−θa)

)
(142f)

= 2
(ϕY (θ))

n

exp(θa)
∆
(
PSn,θ , PZn,θ

)
. (142g)

Finally, under the assumption that at least one of the conditions in Lemma 4 holds. Then,∣∣∣PXn(A)− (ϕY (θ))
n EPZn,θ

[
exp (−θZn,θ)1{Zn,θ∈A}

]∣∣∣
≤(ϕY (θ))

n
max

(
EPSn,θ [exp (−θSn,θ)1 {Sn,θ ∈ A}] ,EPZn,θ [exp (−θZn,θ)1 {Zn,θ ∈ A}]

)
(143a)

≤(ϕY (θ))
n

exp (−θa) =
(ϕY (θ))

n

exp(θa)
. (143b)

Under the same assumption, the expressions in (142g) and (143b) can be jointly written as
follows:∣∣∣PXn(A)−(ϕY (θ))

n EPZn,θ
[
exp (−θZn,θ)1{Zn,θ∈A}

]∣∣∣ 6 (ϕY (θ))
n

exp(θa)
min

(
2∆
(
PSn,θ , PZn,θ

)
, 1
)
.

(144)

This concludes the proof of Lemma 4.

E Proof of Lemma 5
In the case in which Y is discrete (pY , pY (θ) , p

Y
(θ)
1 Y

(θ)
2 ...Y

(θ)
n

denote probability mass functions)
or absolutely continuous random variables (pY , pY (θ) , p

Y
(θ)
1 Y

(θ)
2 ...Y

(θ)
n

denote probability density
functions), the following holds for all (y1, y2, . . . , yn) ∈ Rn,

dP
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

dPY1Y2...Yn

(y1, y2, . . . , yn)=
p
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

(y1, y2, . . . , yn)∏n
j=1 pY (yj)

, (145)

and for all y ∈ R,

dPY (θ)

dPY
(y)=

pY (θ)(y)

pY (y)
. (146)

Equating the right-hand side of both (103) and (145), it yields for all (y1, y2, . . . , yn) ∈ Rn

p
Y

(θ)
1 Y

(θ)
2 ...Y

(θ)
n

(y1, y2, . . . , yn)=

n∏
j=1

exp (θyj)

ϕY (θ)
pY (yj). (147)
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Hence, Y (θ)
1 , Y (θ)

2 , . . ., Y (θ)
n are mutually independent and identically distributed. Moreover, for

all y ∈ R,

pY (θ)(y)=
exp (θy)

ϕY (θ)
pY (y). (148)

Finally, plugging (148) in (146) yields, for all y ∈ R,

dPY (θ)

dPY
(y)=

exp (θy)

ϕY (θ)
, (149)

which completes the proof.

F Proof of Theorem 5
Note that for a given distribution PX subject (51) and for a random transformation in (41)
subject to (42), the upper bound T (n,M,PX) in (49) can be written in the form of a weighted
sum of the CDF and the complementary CDF of the random variables variables Wn and Vn that
are sums of i.i.d random variables, respectively. That is

Wn=

n∑
t=1

ι(Xt;Yt), and (150)

Vn =

n∑
t=1

ι(X̄t;Yt), (151)

where (Xt, Yt) ∼ PXPY |X and (X̄t, Yt) ∼ PX̄PY with PX = PX̄ . More specifically, the function
T in (49) can be rewritten in the form

T (n,M,PX)=FWn

(
ln

(
M − 1

2

))
+
M − 1

2

(
1− FVn

(
ln

(
M − 1

2

)))
, (152)

where FWn
and FVn are the CDFs of Wn and Vn, respectively.

The next step consists in deriving the upper and lower bounds on FWn

(
ln
(
M−1

2

))
and 1 −

FVn
(
ln
(
M−1

2

))
by using the result of Theorem 3. That is,

FWn

(
ln

(
M − 1

2

))
6ζι(X;Y )

(
θ,ln

(
M −1

2

)
,n

)
+exp

(
nln
(
ϕι(X;Y )(θ)

)
−θln

(
M − 1

2

))
min

(
1,

2 c ξι(X;Y )(θ)(
Vι(X;Y )(θ)

)3/2√
n

)
, (153)

FWn

(
ln

(
M − 1

2

))
>ζι(X;Y )

(
θ,ln

(
M −1

2

)
,n

)
−exp

(
nln
(
ϕι(X;Y )(θ)

)
−θln

(
M − 1

2

))
min

(
1,

2 c ξι(X;Y )(θ)(
Vι(X;Y )(θ)

)3/2√
n

)
, (154)

1− FVn
(
ln

(
M − 1

2

))

61−ζι(X̄;Y )

(
θ,ln

(
M −1

2

)
,n

)
+exp

(
nln
(
ϕι(X̄;Y )(θ)

)
−θln

(
M − 1

2

))
min

1,
2 c ξι(X̄;Y )(θ)(

Vι(X̄;Y )(θ)
)3/2√

n

,(155)
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and

1− FVn
(
ln

(
M − 1

2

))

>1−ζι(X̄;Y )

(
θ,ln

(
M −1

2

)
,n

)
−exp

(
nln
(
ϕι(X̄;Y )(θ)

)
−θln

(
M − 1

2

))
min

1,
2 c ξι(X̄;Y )(θ)(

Vι(X̄;Y )(θ)
)3/2√

n

,(156)
where θ and τ satisfy

nµι(X;Y )(θ)=ln

(
M − 1

2

)
= nµι(X̄;Y )(τ), (157)

with for all t ∈ R,

ϕι(X;Y )(t)=EPXPY |X [exp(t ι(X;Y ))] , (158)
ϕι(X̄;Y )(t)=EPX̄PY

[
exp

(
t ι(X̄;Y )

)]
, (159)

µι(X;Y )(t)=EPXPY |X

[
ι(X;Y )

exp(t ι(X;Y ))

ϕι(X;Y )(t)

]
, (160)

µι(X̄;Y )(t)=EPX̄PY

[
ι(X̄;Y )

exp
(
t ι(X̄;Y )

)
ϕι(X̄;Y )(t)

]
, (161)

Vι(X;Y )(t)=EPXPY |X

[(
ι(X;Y )− µι(X;Y )(t)

)2 exp(t ι(X;Y ))

ϕι(X;Y )(t)

]
, (162)

Vι(X̄;Y )(t)=EPX̄PY

[(
ι(X̄;Y )− µι(X̄;Y )(t)

)2 exp
(
t ι(X̄;Y )

)
ϕι(X̄;Y )(t)

]
, (163)

ξι(X;Y )(t) =EPXPY |X

[∣∣ι(X;Y )− µι(X;Y )(t)
∣∣3 exp(t ι(X;Y ))

ϕι(X;Y )(t)

]
, (164)

ξι(X̄;Y )(t) =EPX̄PY

[∣∣ι(X̄;Y )− µι(X̄;Y )(t)
∣∣3 exp

(
t ι(X̄;Y )

)
ϕι(X̄;Y )(t)

]
, (165)

and for all (t, a, n) ∈ R2 × N

ζι(X;Y )(t, a, n)

,1{t>0}+(−1)1{t>0} exp

(
1

2
nt2Vι(X;Y )(t) + nln

(
ϕι(X;Y )(t)

)
− ta

)
Q
(
|t|
√
nVι(X;Y )(t)

)
, (166)

ζι(X̄;Y )(t, a, n)

,1{t>0}+(−1)1{t>0} exp

(
1

2
nt2Vι(X̄;Y )(t) + nln

(
ϕι(X̄;Y )(t)

)
− ta

)
Q
(
|t|
√
nVι(X̄;Y )(t)

)
.(167)

The next step consists in simplifying the expressions in the right hand-side of (155) and (156)
by studying the relation between ϕι(X;Y ) and ϕι(X̄;Y ), θ and τ , Vι(X;Y ) and Vι(X̄;Y ), ξι(X;Y ) and
ξι(X̄;Y ).
First, from (158), using the change of measure from PXPY |X to PX̄PY because PXPY |X is
absolutely continuous with respect to PX̄PY , it holds that

ϕι(X;Y )(t)=EPX̄PY
[

dPXPY |X

dPX̄PY

(
X̄;Y

)
exp(t ι(X̄;Y ))

]
(168)
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=EPX̄PY
[
exp

(
(t+ 1) ι(X̄;Y )

)]
. (169)

Then, from (158) and (159), it holds that

ϕι(X;Y )(t)=ϕι(X̄;Y )(t+ 1). (170)

This concludes the relation between ϕι(X;Y ) and ϕι(X̄;Y ).
Second, from (160), using the change of measure from PXPY |X to PX̄PY , it holds that

µι(X;Y )(t)=EPX̄PY
[
ι(X̄;Y )

exp(t ι(X̄;Y ))

ϕι(X;Y )(t)

dPXPY |X

dPX̄PY

(
X̄;Y

)]
(171)

=EPX̄PY

[
ι(X̄;Y )

exp
(
(t+ 1) ι(X̄;Y )

)
ϕι(X;Y )(t)

]
. (172)

Then, from (170) and (172), it holds that

µι(X;Y )(t)=EPX̄PY

[
ι(X̄;Y )

exp
(
(t+ 1) ι(X̄;Y )

)
ϕι(X̄;Y )(t+ 1)

]
. (173)

From (161) and (173), it holds that

µι(X;Y )(t)=µι(X̄;Y )(t+ 1). (174)

This concludes the relation between µι(X;Y ) and µι(X̄;Y ).
Third, from (157) and (174), it holds that

τ = θ + 1. (175)

This concludes the relation between τ and θ.
Fourth, from (162), using the change of measure from PXPY |X to PX̄PY , it holds that

Vι(X;Y )(t)=EPX̄PY
[(
ι(X̄;Y )− µι(X;Y )(t)

)2 exp(t ι(X̄;Y ))

ϕι(X;Y )(t)

dPXPY |X

dPX̄PY

(
X̄;Y

)]
(176)

=EPX̄PY

[(
ι(X̄;Y )− µι(X;Y )(t)

)2 exp
(
(t+ 1) ι(X̄;Y )

)
ϕι(X;Y )(t)

]
. (177)

From (170), (174) and (177), it holds that

Vι(X;Y )(t)=EPX̄PY

[(
ι(X̄;Y )− µι(X̄;Y )(t+ 1)

)2 exp
(
(t+ 1) ι(X̄;Y )

)
ϕι(X̄;Y )(t+ 1)

]
. (178)

From (163) and (178), it holds that

Vι(X;Y )(t)=Vι(X̄;Y )(t+ 1). (179)

This concludes the relation between Vι(X;Y ) and Vι(X̄;Y ).
Fifth, from (164), using the change of measure from PXPY |X to PX̄PY , it holds that

ξι(X;Y )(t)=EPX̄PY
[∣∣ι(X̄;Y )− µι(X;Y )(t)

∣∣3 exp(t ι(X̄;Y ))

ϕι(X;Y )(t)

dPXPY |X

dPX̄PY

(
X̄;Y

)]
(180)
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=EPX̄PY

[∣∣ι(X̄;Y )− µι(X;Y )(t)
∣∣3 exp

(
(t+ 1) ι(X̄;Y )

)
ϕι(X;Y )(t)

]
. (181)

From (170), (174) and (181), it holds that

ξι(X;Y )(t)=EPX̄PY

[∣∣ι(X̄;Y )− µι(X̄;Y )(t+ 1)
∣∣3 exp

(
(t+ 1) ι(X̄;Y )

)
ϕι(X̄;Y )(t+ 1)

]
. (182)

From (165) and (182), it holds that

ξι(X;Y )(t)=ξι(X̄;Y )(t+ 1). (183)

This concludes the relation between ξι(X;Y ) and ξι(X̄;Y ).
Sixth, plugging (170), (174), and (179) into (166), for all t ∈ R, it holds that

ζι(X̄;Y )(t, a, n)

,1{t>0}+(−1)1{t>0}exp

(
1

2
nt2Vι(X;Y )(t−1)+nln

(
ϕι(X;Y )(t−1)

)
−ta
)
Q
(
|t|
√
nVι(X;Y )(t−1)

)
.(184)

Then, from (65) and (184), it holds that

ζι(X̄;Y )

(
t, ln

(
M − 1

2

)
, n

)
= 1− β2(n,M, t− 1, PX). (185)

Then, plugging (170), (174), (175), (179), (183), and (185) into the right hand-side of (155), it
holds that

1− FVn
(

ln

(
M − 1

2

))
6β2(n,M, θ, PX)+exp

(
nln

(
ϕι(X;Y )(θ)

)
−(θ + 1) ln

(
M − 1

2

))
min

(
1,

2 c ξι(X;Y )(θ)(
Vι(X;Y )(θ)

)3/2√
n

)
(186)

6 β2(n,M, θ, PX) + exp

(
nln

(
ϕι(X;Y )(θ)

)
− (θ + 1) ln

(
M − 1

2

))
2 c ξι(X;Y )(θ)(

Vι(X;Y )(θ)
)3/2√

n
. (187)

Alternatively, plugging (170), (174), (175), (179), (183), and (185) into the right hand-side of
(156), it holds that

1− FVn
(

ln

(
M − 1

2

))
>β2(n,M, θ, PX)−exp

(
nln

(
ϕι(X;Y )(θ)

)
−(θ + 1) ln

(
M − 1

2

))
min

(
1,

2 c ξι(X;Y )(θ)(
Vι(X;Y )(θ)

)3/2√
n

)
(188)

> β2(n,M, θ, PX)− exp

(
nln

(
ϕι(X;Y )(θ)

)
− (θ + 1) ln

(
M − 1

2

))
2 c ξι(X;Y )(θ)(

Vι(X;Y )(θ)
)3/2√

n
(189)

= G2(n,M, θ, PX), (190)

where the equality in (190) follows from (67). Observing that 1−FVn is a positive function, then
from (189), it holds that
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1−FVn
(
ln

(
M − 1

2

))
>max (0, G2(n,M, θ, PX)) . (191)

Seventh, from (64) and (166), it holds that

ζι(X;Y )

(
t, ln

(
M − 1

2

)
, n

)
= β1(n,M, t, PX). (192)

Then, plugging (170), (174), (175), (179), (183), and (192) into the right hand-side of (153), it
holds that

FWn

(
ln

(
M − 1

2

))
6 β1(n,M, θ, PX) + exp

(
nln

(
ϕι(X;Y )(θ)

)
− θ ln

(
M − 1

2

))
min

(
1,

2 c ξι(X;Y )(θ)(
Vι(X;Y )(θ)

)3/2√
n

)
(193)

6 β1(n,M, θ, PX) + exp

(
nln

(
ϕι(X;Y )(θ)

)
− θ ln

(
M − 1

2

))
2 c ξι(X;Y )(θ)(

Vι(X;Y )(θ)
)3/2√

n
. (194)

Alternatively, plugging (170), (174), (175), (179), (183), and (185) into the right hand-side of
(154), it holds that

FWn

(
ln

(
M − 1

2

))
> β1(n,M, θ, PX)− exp

(
nln

(
ϕι(X;Y )(θ)

)
− θ ln

(
M − 1

2

))
min

(
1,

2 c ξι(X;Y )(θ)(
Vι(X;Y )(θ)

)3/2√
n

)
(195)

> β1(n,M, θ, PX)− exp

(
nln

(
ϕι(X;Y )(θ)

)
− θ ln

(
M − 1

2

))
2 c ξι(X;Y )(θ)(

Vι(X;Y )(θ)
)3/2√

n
(196)

= G1(n,M, θ, PX), (197)

where the equality in (197) follows from (66). Observing that FWn
is a positive function, then

from (196), it holds that

FWn

(
ln

(
M − 1

2

))
> max (0, G1(n,M, θ, PX)) . (198)

Finally, plugging (187) and (194) in (152), it holds that

T (n,M,PX)

6β1(n,M,θ,PX)+
M−1

2
β2(n,M,θ,PX)+exp

(
nln

(
ϕι(X;Y )(θ)

)
−θln

(
M − 1

2

))
4cξι(X;Y )(θ)(

Vι(X;Y )(θ)
)3/2√

n
(199)

= β(n,M, θ, PX)+exp

(
nln

(
ϕι(X;Y )(θ)

)
−θ ln

(
M − 1

2

))
4 c ξι(X;Y )(θ)(

Vι(X;Y )(θ)
)3/2√

n
, (200)

where the equality in (200) follows from (72). Observing that T (n,M,PX) 6 1, from (200), it
holds that

T (n,M,PX)6min

(
1, β(n,M, θ, PX)+exp

(
nln

(
ϕι(X;Y )(θ)

)
−θ ln

(
M−1

2

))
4 c ξι(X;Y )(θ)(

Vι(X;Y )(θ)
)3/2√

n

)
(201)
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=S(n,M, θ, PX), (202)

where the equality in (197) follows from (69).
Alternatively, plugging (190) and (197) in (152), it holds that

T (n,M,PX)>max (0, G1(n,M, θ, PX)) +
M − 1

2
max (0, G2(n,M, θ, PX)) (203)

=G(n,M, θ, PX), (204)

where the equality in (197) follows from (69). Combining (202) and (204) concludes the proof.

G Proof of Theorem 7
Note that for given distributions PX subject (51), QY subject to (81), and for a random trans-
formation in (41) subject to (42), the lower bound C(n,M ,PX ,QY ,γ) in (76) can be written in
the form of a weighted sum of the CDF and the complementary CDF of the random variables
variables Wn and Vn that are sums of i.i.d random variables, respectively. That is

Wn=

n∑
t=1

ι̃(Xt;Yt|QY ), (205)

Vn =

n∑
t=1

ι̃(X̄t;Yt|QY ), (206)

where (Xt, Yt) ∼ PXPY |X and (X̄t, Yt) ∼ PX̄QY with PX = PX̄ . More specifically, the function
C in (76) can be written in the form

C(n,M,PX , QY , γ)=FWn
(ln (γ)) + γ (1− FVn (ln (γ)))− γ

M
, (207)

where FWn
and FVn are the CDFs of the random variables Wn and Vn, respectively.

The next step consists in deriving the upper and lower bounds on FWn
(ln (γ)) and 1−FVn (ln (γ))

by using the result of Theorem 3. That is

FWn
(ln (γ))

6ζι̃(X;Y |QY )(θ, ln (γ) , n)+exp
(
nln

(
ϕι̃(X;Y |QY )(θ)

)
−θln (γ)

)
min

(
1,

2 c ξι̃(X;Y |QY )(θ)(
Vι̃(X;Y |QY )(θ)

)3/2√
n

)
, (208)

FWn
(ln (γ))

>ζι̃(X;Y |QY )(θ, ln (γ) , n)−exp
(
nln

(
ϕι̃(X;Y |QY )(θ)

)
−θln (γ)

)
min

(
1,

2 c ξι̃(X;Y |QY )(θ)(
Vι̃(X;Y |QY )(θ)

)3/2√
n

)
, (209)

1− FVn (ln (γ))

61−ζι̃(X̄;Y |QY )(θ, ln (γ) , n)+exp
(
nln

(
ϕι̃(X̄;Y |QY )(θ)

)
−θln (γ)

)
min

1,
2 c ξι̃(X̄;Y |QY )(θ)(

Vι̃(X̄;Y |QY )(θ)
)3/2√

n

,(210)
and

1− FVn (ln (γ))

>1−ζι̃(X̄;Y |QY )(θ, ln (γ) , n)−exp
(
nln

(
ϕι̃(X̄;Y |QY )(θ)

)
−θln (γ)

)
min

1,
2 c ξι̃(X̄;Y |QY )(θ)(

Vι̃(X̄;Y |QY )(θ)
)3/2√

n

,(211)
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where θ and τ satisfy

nµι̃(X;Y |QY )(θ)=ln (γ) = nµι̃(X̄;Y |QY )(τ), (212)

with for all t ∈ R

ϕι̃(X;Y |QY )(t)=EPXPY |X [exp (t ι̃(X;Y |QY ))] , (213)
ϕι̃(X̄;Y |QY )(t)=EPX̄QY

[
exp

(
t ι̃(X̄;Y |QY )

)]
, (214)

µι̃(X;Y |QY )(t)=EPXPY |X

[
ι̃(X;Y |QY )

exp(t ι̃(X;Y |QY ))

ϕι̃(X;Y |QY )(t)

]
, (215)

µι̃(X̄;Y |QY )(t)=EPX̄QY

[
ι̃(X̄;Y |QY )

exp
(
tι̃(X̄;Y |QY )

)
ϕι̃(X̄;Y |QY )(t)

]
, (216)

Vι̃(X;Y |QY )(t)=EPXPY |X

[(
ι̃(X;Y |QY )− µι̃(X;Y |QY )(t)

)2 exp(t ι̃(X;Y |QY ))

ϕι̃(X;Y |QY )(t)

]
, (217)

Vι̃(X̄;Y |QY )(t)=EPX̄QY

[(
ι̃(X̄;Y |QY )− µι̃(X̄;Y |QY )(t)

)2 exp
(
tι̃(X̄;Y |QY )

)
ϕι̃(X̄;Y |QY )(t)

]
, (218)

ξι̃(X;Y |QY )(t) =EPXPY |X

[∣∣ι̃(X;Y |QY )− µι̃(X;Y |QY )(t)
∣∣3 exp(t ι̃(X;Y |QY ))

ϕι̃(X;Y |QY )(t)

]
, (219)

ξι̃(X̄;Y |QY )(t) =EPX̄QY

[∣∣ι̃(X̄;Y |QY )− µι̃(X̄;Y |QY )(t)
∣∣3 exp

(
tι̃(X̄;Y |QY )

)
ϕι̃(X̄;Y |QY )(t)

]
, (220)

and for all (t, a, n) ∈ R2 × N

ζι̃(X;Y |QY )(t, a, n)

,1{t>0}+(−1)1{t>0}exp

(
1

2
nt2Vι̃(X;Y |QY )(t)+nln

(
ϕι̃(X;Y |QY )(t)

)
−ta
)
Q
(
|t|
√
nVι̃(X;Y |QY )(t)

)
,(221)

ζι̃(X̄;Y |QY )(t, a, n)

,1{t>0}+(−1)1{t>0}exp

(
1

2
nt2Vι̃(X̄;Y |QY )(t)+nln

(
ϕι̃(X̄;Y |QY )(t)

)
−ta
)
Q
(
|t|
√
nVι̃(X̄;Y |QY )(t)

)
.(222)

The next step consists in simplifying the expressions in the right hand-side of (210) and (211) by
studying the relation between ϕι̃(X;Y |QY ) and ϕι̃(X̄;Y |QY ), θ and τ , Vι̃(X;Y |QY ) and Vι̃(X̄;Y |QY ),
ξι̃(X;Y |QY ) and ξι̃(X̄;Y |QY ) when the PY |X is absolutely continuous with respect to QY .
First, from (213), using the change of measure from PXPY |X to PX̄QY because PXPY |X is
absolutely continuous with respect to PX̄QY , it holds that

ϕι̃(X;Y |QY )(t)=EPX̄QY
[

dPXPY |X

dPX̄QY

(
X̄;Y

)
exp(t ι̃(X̄;Y |QY )

]
(223)

=EPX̄QY
[
exp

(
(t+ 1) ι̃(X̄;Y |QY )

)]
. (224)

Then, from (213) and (214), it holds that

ϕι̃(X;Y |QY )(t)=ϕι̃(X̄;Y |QY )(t+ 1). (225)

This concludes the relation between ϕι̃(X;Y |QY ) and ϕι̃(X̄;Y |QY ).
Second, from (215), using the change of measure from PXPY |X to PX̄QY , it holds that

µι̃(X;Y |QY )(t)=EPX̄QY
[
ι̃(X̄;Y |QY )

exp(t ι̃(X̄;Y |QY )

ϕι̃(X;Y |QY )(t)

dPXPY |X

dPX̄QY

(
X̄;Y

)]
(226)
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=EPX̄QY

[
ι̃(X̄;Y |QY )

exp
(
(t+ 1) ι̃(X̄;Y |QY )

)
ϕι̃(X;Y |QY )(t)

]
. (227)

Then, from (225) and (227), it holds that

µι̃(X;Y |QY )(t)=EPX̄QY

[
ι̃(X̄;Y |QY )

exp
(
(t+ 1) ι̃(X̄;Y |QY )

)
ϕι̃(X̄;Y |QY )(t+ 1)

]
. (228)

From (216) and (228), it holds that

µι̃(X;Y |QY )(t)=µι̃(X̄;Y |QY )(t+ 1). (229)

This concludes the relation between µι̃(X;Y |QY ) and µι̃(X̄;Y |QY ).
Third, from (212) and (229), it holds that

τ = θ + 1. (230)

This concludes the relation between τ and θ.
Fourth, from (217), using the change of measure from PXPY |X to PX̄QY , it holds that

Vι̃(X;Y |QY )(t)=EPX̄QY
[(
ι̃(X̄;Y |QY )− µι̃(X;Y |QY )(t)

)2 exp(t ι̃(X̄;Y |QY )

ϕι̃(X;Y |QY )(t)

dPXPY |X

dPX̄QY

(
X̄;Y

)]
(231)

=EPX̄QY

[(
ι̃(X̄;Y |QY )− µι̃(X;Y |QY )(t)

)2 exp
(
(t+ 1) ι̃(X̄;Y |QY )

)
ϕι̃(X;Y |QY )(t)

]
. (232)

From (225), (229) and (232), it holds that

Vι̃(X;Y |QY )(t)=EPX̄QY

[(
ι̃(X̄;Y |QY )− µι̃(X̄;Y |QY )(t+ 1)

)2 exp
(
(t+ 1) ι̃(X̄;Y |QY )

)
ϕι̃(X̄;Y |QY )(t+ 1)

]
. (233)

From (218) and (233), it holds that

Vι̃(X;Y |QY )(t)=Vι̃(X̄;Y |QY )(t+ 1). (234)

This concludes the relation between Vι̃(X;Y |QY ) and Vι̃(X̄;Y |QY ).
Fifth, from (219), using the change of measure from PXPY |X to PX̄QY , it holds that

ξι̃(X;Y |QY )(t)=EPX̄QY
[∣∣ι̃(X̄;Y |QY )− µι̃(X;Y |QY )(t)

∣∣3 exp(t ι̃(X̄;Y |QY )

ϕι̃(X;Y |QY )(t)

dPXPY |X

dPX̄QY

(
X̄;Y

)]
(235)

=EPX̄QY

[∣∣ι̃(X̄;Y |QY )− µι̃(X;Y |QY )(t)
∣∣3 exp

(
(t+ 1) ι̃(X̄;Y |QY )

)
ϕι̃(X;Y |QY )(t)

]
. (236)

From (225), (229) and (236), it holds that

ξι̃(X;Y |QY )(t)=EPX̄QY

[∣∣ι̃(X̄;Y |QY )− µι̃(X̄;Y |QY )(t+ 1)
∣∣3 exp

(
(t+ 1) ι̃(X̄;Y |QY )

)
ϕι̃(X̄;Y |QY )(t+ 1)

]
.(237)

From (220) and (237), it holds that

ξι̃(X;Y |QY )(t)=ξι̃(X̄;Y |QY )(t+ 1). (238)
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This concludes the relation between ξι̃(X;Y |QY ) and ξι̃(X̄;Y |QY ).
Sixth, plugging (225), (229), and (234) into (221), for all t ∈ R, it holds that

ζι̃(X̄;Y |QY )(t, a, n)

,1{t>0}+(−1)1{t>0}exp

(
1

2
nt2Vι̃(X;Y |QY )(t−1)+nln

(
ϕι̃(X;Y |QY )(t−1)

)
−ta
)
Q
(
|t|
√
nVι̃(X;Y |QY )(t−1)

)
.(239)

Then, from (95) and (239), it holds that

ζι̃(X̄;Y |QY )(t, ln (γ) , n) = 1− β̃2(n, γ, t− 1, PX , QY ). (240)

Then, plugging (225), (229), (230), (234), (238), and (240) into the right hand-side of (210), it
holds that

1− FVn (ln (γ))

6β̃2(n, γ, θ, PX , QY )+exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− (θ + 1) ln (γ)

)
min

(
1,

2cξι̃(X;Y |QY )(θ)(
Vι̃(X;Y |QY )(θ)

)3/2√
n

)
(241)

6 β̃2(n, γ, θ, PX , QY ) + exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− (θ + 1) ln (γ)

)
2 c ξι̃(X;Y |QY )(θ)(

Vι̃(X;Y |QY )(θ)
)3/2√

n
. (242)

Alternatively, plugging (225), (229), (230), (234), (238), and (240) into the right hand-side of
(211), it holds that

1− FVn (ln (γ))

>β̃2(n, γ, θ, PX , QY )−exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− (θ + 1) ln (γ)

)
min

(
1,

2cξι̃(X;Y |QY )(θ)(
Vι̃(X;Y |QY )(θ)

)3/2√
n

)
(243)

> β̃2(n, γ, θ, PX , QY )− exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− (θ + 1) ln (γ)

)
2 c ξι̃(X;Y |QY )(θ)(

Vι̃(X;Y |QY )(θ)
)3/2√

n
(244)

= G̃2(n, γ, θ, PX , QY ), (245)

where the equality in (245) follows from (97). Observing that 1−FVn is a positive function, then
from (244), it holds that

1− FVn (ln (γ)) > max
(

0, G̃2(n, γ, θ, PX , QY )
)
. (246)

Seventh, from (94) and (221), it holds that

ζι̃(X;Y |QY )(t, ln (γ) , n) = β̃1(n, γ, t, PX , QY ). (247)

Then, plugging (225), (229), (230), (234), (238), and (247) into the right hand-side of (208), it
holds that

FWn (ln (γ))

6β̃1(n, γ, θ, PX , QY )+exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− θ ln (γ)

)
min

(
1,

2 c ξι̃(X;Y |QY )(θ)(
Vι̃(X;Y |QY )(θ)

)3/2√
n

)
(248)

6 β̃1(n, γ, θ, PX , QY ) + exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− θ ln (γ)

)
2 c ξι̃(X;Y |QY )(θ)(

Vι̃(X;Y |QY )(θ)
)3/2√

n
. (249)
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Alternatively, plugging (225), (229), (230), (234), (238), and (240) into the right hand-side
of (209), it holds that

FWn
(ln (γ))

>β̃1(n, γ, θ, PX , QY )−exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− θ ln (γ)

)
min

(
1,

2 c ξι̃(X;Y |QY )(θ)(
Vι̃(X;Y |QY )(θ)

)3/2√
n

)
(250)

> β̃1(n, γ, θ, PX , QY )− exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− θ ln (γ)

)
2 c ξι̃(X;Y |QY )(θ)(

Vι̃(X;Y |QY )(θ)
)3/2√

n
(251)

= G̃1(n, γ, θ, PX , QY ), (252)

where the equality in (252) follows from (96). Observing that FWn
is a positive function, then

from (251), it holds that

FWn
(ln (γ)) > max

(
0, G̃1(n, γ, θ, PX , QY )

)
. (253)

Finally, plugging (242) and (249) in (207), it holds that

C(n,M,PX , QY , γ)

6β̃1(n,γ,θ,PX,QY )+γβ̃2(n,γ,θ,PX,QY )+exp

(
nln
(
ϕι̃(X;Y |QY )(θ)

)
−θln (γ)

)
4cξι̃(X;Y |QY )(θ)(
Vι̃(X;Y |QY )(θ)

)3/2√
n
− γ

M

(254)

= β̃(n, γ, θ, PX , QY ,M) + exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− θ ln (γ)

)
4cξι̃(X;Y |QY )(θ)(

Vι̃(X;Y |QY )(θ)
)3/2√

n
, (255)

where the equality in (251) follows from (100). Observing that C(n,M,PX , QY , γ) + γ
M 6 1,

from (255), it holds that

C(n,M,PX , QY , γ)

6min

(
1, β̃(n, γ, θ, PX , QY )+exp

(
nln

(
ϕι̃(X;Y |QY )(θ)

)
− θ ln (γ)

)
4 c ξι̃(X;Y |QY )(θ)(

Vι̃(X;Y |QY )(θ)
)3/2√

n

)
(256)

= S̃(n, γ, θ, PX , QY ,M), (257)

where, (257) follows from (99).
Alternatively, plugging (245) and (252) in (207), it holds that

C(n,M,PX , QY , γ)>max
(

0, G̃1(n, γ, θ, PX , QY )
)

+γmax
(

0, G̃2(n, γ, θ, PX , QY )
)
− γ

M
(258)

=G̃(n, γ, θ, PX , QY ,M), (259)

where the equality in (259) follows from (98). Combining (257) and (259) concludes the proof.
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