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SAMPLING THE FLOW OF A BANDLIMITED FUNCTION

AKRAM ALDROUBI, KARLHEINZ GROCHENIG, LONGXIU HUANG, PHILIPPE JAMING,
ILYA KRISHTAL, AND JOSE LUIS ROMERO

ABSTRACT. We analyze the problem of reconstruction of a bandlimited function f from the
space-time samples of its states f; = ¢; = f resulting from the convolution with a kernel ¢;. It
is well-known that, in natural phenomena, uniform space-time samples of f are not sufficient
to reconstruct f in a stable way. To enable stable reconstruction, a space-time sampling
with periodic nonuniformly spaced samples must be used as was shown by Lu and Vetterli.
We show that the stability of reconstruction, as measured by a condition number, controls
the maximal gap between the spacial samples. We provide a quantitative statement of this
result. In addition, instead of irregular space-time samples, we show that uniform dynamical
samples at sub-Nyquist spatial rate allow one to stably reconstruct the function f away from
certain, explicitly described blind spots. We also consider several classes of finite dimensional
subsets of bandlimited functions in which the stable reconstruction is possible, even inside the
blind spots. We obtain quantitative estimates for it using Remez-Turan type inequalities. En
route, we obtain Remez-Turan inequality for prolate spheroidal wave functions. To illustrate
our results, we present some numerics and explicit estimates for the heat flow problem.

1. INTRODUCTION

In this paper, we consider the sampling and reconstruction problem of signals u = wu(t, x)
that arise as an evolution of an intial signal f = f(z) under the action of convolution op-
erators. The intial signal f is assumed to be in the Paley-Wiener space PW,., ¢ > 0 (fixed
throughout this paper) given by

PW, = {f e L*(R) : supp(f) < [—c, c]}

with the Fourier transform normalized as f(£) = § f(H)e ™ dt.

The functions u are solutions of initial value problems stemming from a physical system.
Thus, due to the semigroup properties of such solutions, there is a family of kernels {¢; : ¢t > 0}
such that u(t, ) = ¢y = f(x), prrs = Py = s for all t, s € (0,00), and f = tlil(gr o+ f, fe LA(R).

As we are primarily interested in physical systems, we typically consider the following set
of kernels:

(1.1) ®. = {¢ e L'(R) : there exists r, > 0 such that xg < qg({) <1 for [£| < ¢, QAS(O) = 1}.

Observe that ¢ € L' implies that QAﬁ is continuous and, therefore, the existence of k4, > 0
such that ¢ > k4 on [—c, | is equivalent to ¢ > 0 on [—c,c|]. We remark that some of our
results hold for a less restrictive class of kernels.

1



2 A. ALDROUBI, K. GROCHENIG, L. HUANG, PH. JAMING, I. KRISHTAL, AND J.-L. ROMERO

Example 1.1. A prototypical example is the diffusion process with (Bt(é) = e >
It corresponds to the initial value problem (IVP) for the heat equation (with a diffusion
parameter o % 0)

(1.2

?

u(x,0) = f(x)

for which the solution is given by u(x,t) = (¢ * f)(x).
Other examples include the IVP for the fractional diffusion equation

{&tu(x, t) = (0>)*?u(x,t) forreR and t >0

{8tu(x,t) = 0%0%u(x,t) forxeRandt >0

0 < a<1,

u(x,0) = f(x)

for which the solution is given by u(x,t) = (¢ = f)(z) with $t(§) = ¢~ t¥I" and the IVP for
the Laplace equation in the upper half plane

)

Au(z,y) =0 forreRandy >0
{U(w, 0) = f(x)
for which the solution is given by u(z,y) = (¢, * f)(z) with @(5) = eVl
The following problem serves as a motivation for this paper.

Problem 1. Let ¢ € &, L > 0, and A < R be a discrete subset of R. What are the conditions
that allow one to recover a function f € PW, in a stable way from the data set

(1.3) {(f+d)(\): Ae A 0<t<L)?

The set of measurements (1.3) is the image of an operator 7 : PW, — L? (A x [0, L]) Thus,
the stable recovery of f from (1.3) amounts to finding conditions on A, ¢ and L such that T
has a bounded inverse from T (PW,) to PW. or, equivalently, the existence of A, B > 0 such
that

L
(14) Al < f SYU(F = 6N di < BIfI, for all f € PW,.

0 XeA

If for a given ¢ and L the frame condition (1.4) is satisfied, we say that A = A, 1, is a stable
sampling set.

Remark 1.2. It was shown in [5, Theorem 5.5] that Ay is a stable sampling set for some
L > 0, if and only if A, is a stable sampling set. Thus, for qualitative results, we will only
consider the case of L = 1. For quantitative results, however, we may keep L in order to
estimate the optimal time length of measurements.

Remark 1.3. Whenever (1.4) holds, standard frame methods can be used for the stable re-
construction of f [11].

Let us discuss Problem 1 in more detail in the case of our prototypical example.
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1.1. Sampling the heat flow. Consider the problem of sampling the temperature in a heat
diffusion process initiated by a bandlimited function f € PW,.:

ft::f*(bt? Ogtgl?

where ¢; is the heat kernel at time ¢:
(1.5) Cgt(f) = e 7,

with a parameter o + 0. According to Shannon’s sampling theorem, f can be stably recon-
structed from equispaced samples {f(k/T') : k € Z} if and only if the sampling rate T is bigger
than or equal to the critical value T" = E, known as the Nyquist rate. The Nyquist bound
is universal in the sense that it also appfires to irregular sampling patterns: if a bandlimited
function can be stably reconstructed from its samples at A < R, then the lower Beurling
density

D~ (A) := liminf inf #A e —re+7])

r—o0 xeR 2r

satisfies D~ (A) = —. Recall that the upper Beurling density is defined by

3o

D*(A) := limsup sup #AAz = T])

r—o0  xeR 2r

We are interested to know if the spatial sampling rate can be reduced by using the infor-
mation provided by the following spatio-temporal samples:

(1.6) (F(k)T) ke Z,0 <t < 1}.

Observe that the amount of collected data in (1.6) is not smaller than that in the case of
sampling at the Nyquist rate 7" = E. T < E, however, the density of sensors is smaller,
and thus such a sampling procedurezr may provige considerable cost savings.

Lu and Vetterli showed [16] that for all T < € there exist bandlimited signals with norm

1 that almost vanish on the samples (1.6), i.e. stﬂable reconstruction is impossible from (1.6).
As a remedy, they introduced periodic, nonuniform sampling patterns A € R that do lead to
a meaningful spatio-temporal trade-off: there exist sets A € R that have sub-Nyquist density
and, yet, lead to the frame inequality:

1
(L.7) AllfI2 < f S (F)NdE < BIFIE, for all £ PW,,

0 XeA

with A, B > 0; see Example 4.1 for a concrete construction. The emerging field of dynamical
sampling investigates such phenomena in great generality (see, e.g., [1, 2, 3, 4, 5]).

As follows from Example 4.1, the estimates (1.7) may hold with an arbitrary small sensor
density. The meaningful trade-off between spatial and temporal resolution, however, is limited
by the desired numerical accuracy. For example, in the following theorem we relate the
maximal gap of a stable sampling set to the bounds from (1.7).
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Theorem 1.4. Let A < R be such that (1.7) holds. Then there exists an absolute constant

K > 0 such that, for R > K max 1
c

In particular, we have D~(A) > K~'min (4,¢) and D*(A) < KB.

and every a € R, we have [a— R,a+ R|n A # .

Theorem 4.4, which is a more general version of the above result, provides a more explicit
dependence of K on the parameters of the problem.

Besides the constraints implied by Theorem 1.4, the special sampling configurations of
Lu and Vetterli that lead to (1.7) lack the simplicity of regular sampling patterns. In this
article, we explore a different solution to the diffusion sampling problem. We consider sub-
Nyquist equispaced spatial sampling patterns (1.6) with 7" = é, m € N, and restrict the

sampling/reconstruction problem to a subset V' < PW,, aiming for an inequality of the form:

(18) a<[3

Specifically, we consider the following signal models.

2
f(Z5k)| at< BIfI fev.

Away from blind spots. We will identify a set £ with measure arbitrarily close to 1 such
that (1.8) holds with V' = Vi = {f € PW, : supp f < E}. In effect, E is the set [—c, c]\O
where O is a small open neighborhood of a finite set, i.e., F avoids a certain number of “blind
spots.”

Theorem 1.5. Let ¢ € ® and m = 2 be an integer. Then for any r > 0 there exists a certain
compact set E < [—c, c] of measure at least 2c —r such that any f € Vi can be recovered from

:{ft<?k) kezZ0<t<1f

The set E in the above theorem depends only on ¢ and the choice of . The stable recovery
in this case means that (1.8) holds with B = 1 and some A > 0 which is estimated in a more
explicit version of the above result, Theorem 2.8.

the samples

i a stable way.

Prolate spheroidal wave functions. The Prolate Spheroidal Wave Functions (PSWF's)
are eigenfunctions of an integral operator known as the time-band liminting operator or sinc-
kernel operator

! sinme(y — )

Qi) = | S r)ay.

Using the min-max theorem, we get that 1), . is the norm-one solution of the following ex-
tremal problem

max {“ﬂlﬁ L fe PW,, fespan{u, k<n}*}
L2

where the condition f € span{whC : k <n}tis void for n = 0. The family (¢, .)n=0 forms an
orthogonal basis for PW, and has the property to form an orthonormal sequence in L*(—1,1).
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We consider the N-dimensional space
(1.9) Vn = span{yyg, ..., ¥y} < PW..

The Landau-Pollak-Slepian theory shows that this subspace provides an optimal approxi-
mation of a bandlimited function that is concentrated on [—1,1]. More precisely, V = Vy
minimizes the approximation error

1
sup inf f (@) - g(@)? da.
frepwe 96V J_1

[fll2=1

among all N-dimensional subspaces of PW..

Sparse sinc translates with free nodes. In this model, we let

N
(1.10) Vy = {Z cpsince(r — \,) cq,...,cn € C, Al,...,ANeR}

n=1

be the class of linear combinations of N arbitrary translates of the sinc kernel sinc(z) = S‘%
Note that Vi is not a linear space. However, Viy — Viy € Von. Therefore, (1.8) with V' = Vap
implies

1
mm mm |2
Al - gl < [ 5[5 (Z20) — 0 ("EH)[ < BIF-glf fgev,
0 kez ¢ ¢
which ensures the numerical stability of the sampling problem f — {f;(mnk/c):keZ:0 <
t < 1} restricted non-linearly to the class V. In other words, if (1.8) holds with V' = V,y
then any f € Vi can be stably reconstructed from the samples (1.6).

Fourier polynomials. As our last model, we consider the Fourier image of the space of
polynomials of degree at most IV restricted to the unit interval. Explicitly,

N
(1.11) VN = {Z ¢, D" sinc ¢ :cO,...,cNe(C},

n=0
where D : PW, — PW, is the differential operator D f = f’. Observe that the union of such
Vn, N € N| is dense in PW..

In this article, we show that each of the above-mentioned signal models regularizes the
diffusion sampling problem, albeit with possibly very large condition numbers.

Theorem 1.6. Let m > 2 be an integer, ® be given by (/Is(ﬁ) = e, Let V = Vy be given
by (1.9), (1.10), or (1.11). Then (1.8) holds with

cko(c)

A= 0
(0c)2 +m

exp(—kal(c)N —m*(—ra(c)Ino + k3(c)o” + In m)), B =1,

where the Kk;’s are positive constants that depend on c only.
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We provide a more precise expression for the lower frame constant in Theorem 3.5. Note
that the lower bound deteriorates when o? — 0 (no diffusion) and 02 — 400 (very rapid
diffusion). This agrees with the intuition and numerical experiments for (non-bandlimited)
sparse initial conditions presented in [20]: if o2 is very small, because of spatial undersampling,
some components of f may be hidden from the sensors, while for large ¢? the diffusion
completely blurs out the signal and no information can be extracted.

Remark 1.7. To simplify the discussion we take ¢ = 1/2 in this remark. There are instances
when Theorem 1.6 applies for a signal f € Viy which cannot be recovered simply from its
samples on, say, 2Z. As an example, we offer V; given by (1.10) with A; = 1. The samples
at time ¢t = 0 are not sufficient to identify each signal since sinc(- — 1) € Viy vanishes on mZ,
m > 2. Similarly, for Theorem 1.5: the function sin(w-) sinc(=), with an appropriately chosen
a and w, belongs to Vg and vanishes on mZ for m > 2. In finite dimensional subspaces Vy,
e.g., given by (1.9) and (1.11), sampling at time ¢ = 0 with any m € N may be sufficient for
stable recovery. However, the expected error of reconstruction in the presence of noise will
be reduced if temporal samples are used in addition to those at ¢t = 0. Theorems 1.5 and 1.6
can be used together. For example, a function f can be reconstructed away from the blind

spots using Theorem 1.5 and approximated around the blind spots using Theorem 1.6.

1.2. Technical overview. Lu and Vetterli explain the impossibility of subsampling the heat-
flow of a bandlimited function on a grid (1.6) as follows [16]. The function with Fourier
transform

fi=0_r—9dr
is formally bandlimited to I = [—c,c] if T < ¢, and vanishes on the lattice ZZ. Moreover, f
is an eigenfunction of the diffusion operator since

~

> —to2(—T)2 —to2T?2 —to2T?2
Jo=e O p— e oy = e

see (1.2) and (1.5). Hence, all the diffusion samples (1.6) vanish, although f % 0. While
no Paley-Wiener function is infinitely concentrated at {—7,7}, a more formal argument
can be given by regularization. If n : R — R is continuous and supported on [—1,1] and
n.(z) = e~ In(x/e), then f - 7. € PW, and provides a counterexample to (1.4), provided that
¢ is sufficiently small.

As we show below in Subsection 2.1, a similar phenomenon holds for more general diffusion
kernels ¢ as in (1.1). Indeed, an analysis along the lines of the Papoulis sampling theorem [18]
shows that the diffusion samples (1.6) of a function f € PW, do not lead to a stable recovery
of f However, these samples do allow for the stable recovery away from certain blind spots
determined by ¢; that is, one can effectively recover f 1p, for a certain subset £ < I of
positive measure (1 denotes the characteristic function of the set E). If we, furthermore,
restrict the sampling problem to one of the finite dimensional spaces V' = V}y given by (1.9),
(1.10), or (1.11), we may then infer all other values of /. The main tools, in this case, are
Remez-Turdan-like inequalities of the form:

”J?ll|| < OEHJ/C\]-E”a feV.
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For Fourier polynomials (1.11) the classical Remez-Turén inequality provides an explicit con-
stant Cg, while the case of sparse sinc translates (1.10) is due to Nazarov [17]. The corre-
sponding inequality for prolate spheroidal wave functions (1.9) is new and a contribution of
this article (our technique relies on [15]).

1.3. Paper organization and contributions. In Section 2, we show that uniform dynam-
ical samples at sub-Nyquist rate allow one to stably reconstruct the function f away from
certain, explicitly described blind spots determined by the kernel ¢. We also provide an
upper and lower estimate for the lower frame bound in (1.8). The upper estimate relies on
the standard formulas for Pick matrices (see, e.g. [7, 10]). The lower estimate is far more
intricate and is based on the analysis of certain Vandermonde matrices. We also provide some
numerics and explicit estimates in the case of the heat flow problem.

In Section 3, we restrict the problem to the sets V' = Vi given by (1.9), (1.10), or (1.11).
We provide quantitative estimates for the frame bounds in (1.8). En route, we obtain an
explicit Remez-Turan inequality for prolate spheroidal wave functions — a result which we
find interesting in its own right.

In Section 4, we discuss the case of irregular spacial sampling. We recall that a stable
reconstruction may be possible with sets A that have an arbitrarily small (but positive) lower
density. Nevertheless, we show that the maximal gap between the spacial samples (and,
hence, the lower Beurling density) is controlled by the condition number of the problem
(i.e. the ratio £ of the frame bounds).

2. RECOVERING A BANDLIMITED FUNCTION AWAY FROM THE BLIND-SPOT

2.1. Dynamical sampling in PW,.. In this section, we recall some of the results on dynam-
ical sampling from [4, 5] and adapt them for problems studied in this paper.
For ¢ € L', consider the function

Op(x) = D O(a — 20k) 1 (x — 2ck),

keZ

that is, the 2c-periodization of the piece of $ supported in [—c,c). Recall that we consider
kernels from the set ® given by (1.1). Hence,

Ko <Op(E) <1, EeR

We also write

fi(€) == F(©)¢(€), fe PW..

Next, we introduce the sampled diffusion matriz, which is the m x m matrix-valued function

o) 1
Ba(©) = | [ @ (Zc+0) @ (2o n) at - [ e nanena,
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auen = (@5 (Grern))
- (@5 (%) - @ (Eerm-n)) e Mo

Remark 2.1. Observe that the matrix function B, is m-periodic. Its eigenvalues, however,
are 1-periodic because the matrices B,,(§) and B,,(§ + k), k € Z, are similar via a circular
shift matrix.

where

The following lemma explains the role of the sampled diffusion matrix. In the lemma, we

let
P (%)
e w0 = (D (Gern)) - : ¢ My (©).

..... m—1 ~
P (e rm-)
Note that if we recover (&) for £ € [0,1] then we can recover f,. Observe also that
m—1 2 m—1 ~2¢(j+1)/m
m ~
[ irerae="3 [ [ (Ze+n)| a2 % [ 10
7=0

c j=0 Y2cj/m
m
= [Cieras =2 [ foras

(2.14)

In other words, f — 4/2%f : PW, — L*([0,1], M;,1(C)) is an isometric isomorphism.

Lemma 2.2. For f e PW,,

(2.15) L k%

Proof. Observe that it suffices to prove the result in PW,.nS(R) (the Schwarz class). Consider

the function
Z f; (—k’) —2irk

keZ

o (") ar = () fo ) Ba©)F(€) e

mi

Using the Poisson summation formula and the definition of f;, we get

bEt) = EZﬁ( 5+y) — ) ¢<ij<£+y>)f( <§+]>>
3

—mogsj<p—

::a;Z (2 ) P (e ).
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Note that the functions b(-, ) are l-periodic

(2.16) b(&,t) = —An(&,)E(E),
and thus ) )
LIM&Uth—(i%>f@ﬁsm@ﬁgygeR.

Combining the last equation with the Parseval’s relation
! mm |2
(2.17) | we.orag = 3315 (22w
0 c

keZ
yields the desired conclusion. U

Remark 2.3. Lemma 2.2 shows that the stability of reconstruction from spatio-temporal
samples is controlled by the condition number of the self-adjoint matrices B,,(£) in (2.12).
For symmetric ¢ € & and m > 2, however,
f )\min Bm = )\min Bm 0)) = 07
b Auin (B (€)) (B (0))

which precludes the stable reconstruction of all f € PW,, see, e.g., [4]. This adds to our
explanation of the phenomenon of blind spots in Subsection 1.2. We can nonetheless hope
to find a large set £ < [0,1] such that Ay (Bn(§)) = & for ¢ € E. Then, repeating the
computation in (2. 14) we get

, hEkCE

1

()] = () | rerBa@n@ = (-5) | iR

mm 0

CR ~
5o | 1R ae

<E+m)mpq4

In the following example, we offer some numerics. To simplify the computations, we repre-
sent B,,(€) in (2.12) as a Pick matrix (see, e.g., [7, 10]). For £ € [—c, ¢), we write ¢(£) = e ¥(©),
so that ¥ > 0 and ¥(0) = 0, and obtain for j,k =0,...,m — 1,

e = [ 8 (K ) & (Eern)) a

where the indices j', k" are in the set

2c
m

where FE = (

(2.19) I, = {n €Z: HTH e[—1/2, 1/2)} ,

m divides |j — /| and |k — /|, and j, k, and £ are not 0 simultaneously. Thus

(Bm)jk(§) = JOI ot (W (ZeriN) re(2Etk))) gt

(2:20) 2c 2c ! 2 (60 ) ) s 26 (£ I
_ (¢ <E(€ +]-/)) + 1 (E(f " k’))) (1 _ o () 4o (2 ek )))>
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Observe that (B,,)00(0) = 1.

Example 2.4. Here, we choose ¢ to be the Gaussian function, i.e.,
o) = (&) =7
for various values of o # 0. Hence, 1(£) = 0%£2, and we get
m2 ] — e (Za(EriN )
Bu)iel®) = 1252 e e T €7 P
with 5/, K, and (B,,)00(0) as above.

In Figure 1, we show the condition numbers of the matrices B,,(£) with £ = 0.45, ¢ = 1/2,
m € {2,3,5}, and o varying from 1 to 200.

m=2,L=1 and ¢=0.45

m=3,L=1 and ¢=0.45 0 m=5,L=1 and ¢=0.45

number

(a) (b) ()

F1GURE 1. Condition numbers of B,,(§) for m € {2,3,5}, ¢ = 1/2, £ = 0.45,
and o € [1,200].

In Figure 2, we also show the condition numbers of the matrices B,,(£). This time, however,
still ¢ = 1/2, the parameter o is fixed to be 200, whereas the point ¢ is allowed to vary from
0.35 to 0.49. We still have m € {2, 3, 5}.

2.2. Estimating the minimal eigenvalue of the sampled diffusion matrix. In this
subsection, we use Vandermonde matrices to obtain a lower estimate for the eigenvalue )\1(:17;12(5 )
of the matrices B,,(§) in (2.12). We also present an upper estimate for /\Eﬁz(f ), which follows
from the general theory of Pick matrices [7, 10].

We begin with the following auxiliary result.

Lemma 2.5. Let vy, vy, . .. Uy_1 be m distinct non-zero real numbers and let v = (vg, ..., Upn_1).
For k € N, define a function ¥y : R — R by W(t) = % if t # 1 and (1) = k. For
7=0,...,m—1, define

m—1 ;

m ifv; =1
Z j
= T otherwise

<
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m=5,L=1 and =200 10 m=3,L=1 and 7=200

,,,,,,,,
............
.......

F1GURE 2. Condition numbers of B,,(§) for m € {2,3,5}, ¢ = 1/2, ¢ = 200,
and ¢ € [0.35,0.49].

/
Let 0 = (Z;n:_ol 0]2-) , Y- = min; |v;] > 0, v, = max; |v;| and let

m—1\ 2z
a=< g ) H lv; — v

0<j<k<m—1

1 1

For N € N, let Wy be the (mN)xm Vandermonde matriz associated to vy = (v, v, ...

1.€.,
i—1

Wy = [UN

J

] 1<i<mN,0<j<m—1

Then for each x € C™, we have
Uy (y-)2]* < [Waa|* < o* U ().
Proof. let V' be the m x m Vandermonde matrix associated to v:
V= [U;]0<i$m71,0$j<mfl-

Note that the Frobenius norm of V' and its determinant are given by

IVilp =0 and [detV]= ] |o;—wl.

0<j<k<m—1

Recall from [23] an estimate for the minimal singular value of an m x m matrix A:

(m—1)/2
m—1
(2.21) Umin(A) = (m) ]det A|

11

Specifying this to V' we get omin(V) = a. As |V < ||V||F, it follows that, for all z € C™,

(2.22) o’la* < [Va|* < o®|=]*.

Let Dy be the diagonal matrix with vy on the main diagonal. Since
N—1 N—1

[Wya|® = WiWya,ay = ) ((DY)*V*V Dy, x) = Y [VDya|?,
=0 =0
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we deduce from (2.22) that

N-1

>, ?IDja| < Wz < Z o*| Dia[*.
£=0

2¢ 2

Moreover, we have v~ |z|? < |D§z|? < ¥ |lz|* by definition of Dy. The conclusion now

follows by summing the two geometric sequences. U
Note that the function Wy is increasing on (0, +00) and that, for t # 1, ¢ > 0

1 —¢2
2Int

1 1—¢
2.2 lim —W =
(2.23) NS N n(t) = limy o N(1 — e2nt/N)

Corollary 2.6. With the notation of Lemma 2.5, assume further that 0 < v < wv; < 1 and
m = 2. Let

(2.24) a=e 2y H |v; — vgl.

0<j<k<m—1

Then for each x € C™, we have
AUy () |z* < [Wyz|* < m*N|z|*.

1soUy(v) < Upn(y-) and Uy (vy) < Wn(1)
Further, since v; < 1, 0 < m?. Moreover, the derivative of (- ) =02 _

(t—1)/2
1 1 1 1
—1-- —+In{1—- <0
(m—1)/2
-1 t—1 1
(m_) > lim exp [ In <1 — —)] = e 12,
m t—+00 2 t

It follows that « in the statement of Lemma 2.5 satisfies

Proof. Indeed, v < v_ < vy <

e

for t > 1. Thus,

N H0<j<k<m71 [vj — Vg
= Jemm=1/2 ’

and the result is established. O

Proposition 2.7. Let ¢ € . Define

2 ~
a©= T |6 (2e49) -3 (Xiern))
0<j<k<m—1
Then, for each x € C™, we have
1 1-— mi/m

2
2em™
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1

~ /2 =
Proof. We fix ¢ and apply Corollary 2.6 to v; = (¢), <EC(§ + j)) . With a given by (2.24),
m—1 ~ 2c 1/m ~ 2c L/m
~ _ o -1/2  —mL 4C . . “C
a=ems ] ¢p(m(5+y>) ¢p(m<§+k>) ,
0<j<k<sm—1

we get
Uy (k")) < [Wye|* < m?Na|?.
On the other hand, =W Wy equals the left-end mN-term Riemann sum for the integral

mN
defining B,,(§). It follows that

: 1 « . 1 9
<Bm(§)l',l'> - lezLHéo mN<WNWNm7x> = ]\lfli{l)o m—NHWNLL'H .
Using (2.23), we get

_2/m

~2 K 2 ~ B < 2
T T I < Bu(©r,2) < ma

Finally, note that if 0 < a,b < 1, using the mean value theorem, there is an 7 € (a,b) such
that ) .
la¥™ — bV = —|a — bl FY™ = Z|a —b).
m m

R % ‘ 1/m R %2 1/m
Pp (%(5"‘])) — & (E(€+k)>

Therefore

~ _ _m—1
Ozzel/zm 2 H

0<j<k<m—1

> ViR A () — e VBT A

establishing the postulated estimates. U

For an upper estimate of the minimal eigenvalue Afﬁ{(g ) we use the estimates of the singular
values of Pick matrices by Beckerman-Townsend [7]. For p; e C, j =1,...,m, and 0 < a <
Ty <Xy <+ < Ty <blet

Pj + D .

2.25 P =————, Jk=1,...,m,
( ) ( )]k zj + T J m

be the corresponding Pick matrix. Then the smallest singular value s,,;, of P, is bounded
above by

, ~2m/2)
(2.26) Smin < min < 1,4 [exp S s
M min ~ Y 2 ln (@) max»

a

where s,y 18 the largest singular value.

~

If (Pn)jk = L=¢% then ]Bm is related to a Pick matrix of the form (2.25) via the diagonal

Tjt+x)’

matrix D = diag(1 + ¢;):

1 ~
gD ' PuD = Py

. 1—c;
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In our case, see (2.20), z; = ¥ (2(¢+j)) and ¢; = e € (0,1], so Id < D < 2Id
and the singular values of B,,(§) and the corresponding Pick matrix P, differ at most by
a factor 4. Therefore, (2.26) holds with a(¢) = min{¢ (2(+k)): ke I} and b(§) =
max {¢ (2(& +k)) : k € I}, I defined in (2.19), and an additional factor 4 provided that
a(§) # 0.

For our main examples, we have ¢ (§) = |£|*, a > 0. This yields

¢ 2 1 2c “
Ze-n <o lel<3 - (Zie))

So for the smallest singular value of B,,(£) we obtain the estimate

b(&) < ¢ and a(&) = min{ %(5 — k)

—2|m/2]

71'2

A (e) < 42 [ exp

min

(2.27) 2Ind (ﬁy
< 16m exp ( (m — D)z ) :

m

" Inl6 + 20 In 7

Observe that the Beckerman-Townsend estimate (2.26) holds for all Pick matrices with
the same values for ¢ = minz; and b = maxaz; and is completely independent of the par-
ticular distribution of the z;. Regardless, it shows that the condition number grows nearly
exponentially with m, establishing limitations on how well the space-time trade-off can work
numerically. Of course, the condition number may be much worse if two values x; and x;;
are close together (if x; = x;41, then P, is singular). Thus, (2.27) is an optimistic upper

)

estimate for A" (£). By comparison, our lower estimate in Proposition 2.7 depends crucially

min
on the distribution of the parameters x; and is much harder to obtain. It does, however,
establish an upper bound on the condition number and, thus, shows that the space-time

trade-off may be useful. A precise result is formulated in the following subsection.
2.3. Partial recoverability.

Theorem 2.8. Let ¢ € ®, m > 2 an integer and Ec]= [0,1] be a compact set. Assume
that there exists 6 > 0 such that, for every 0 < j <k <m —1 and every { € £

b <2C(§ +j)) -4 (%(g + k))' > 6.

m

% . ~
Let B = —C(E + Z)) N [—c,c]. Then for any f € PW,, the function flg can be recovered
m
from the samples
(2.28) M={ft<mk>:kez,0<t<1}
c

i a stable way. Moreover, we have

(2.29) Allf1g]? < f >

mm_\ |2 N
1 (BER)[ @t < SRR,
0 kez ¢ 7T
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where

c omim=1 /ij,/m -1

A

2
dem? mltm Ink
(o)

Proof. Recall from (2.15) that we need to estimate

L2

The upper bound follows directly from Proposition 2.7, and (2.14):

c

(") = () L ) BAO)F(€) e

mi

| rerBa©r©as <m | is©Fas - IR

m(m—1)

Let us now prove the lower bound using (2.18). First, A,,(§) = § . It follows from

Proposition 2.7 that, if £ € E then

2/m

£(€)* Bo(€)F(€) = —2

~ 2em™ In K

o).

2/m
Ky —1

Taking x = §mm=1) in (2.18) gives the result. O

2em™” In K,
Remark 2.9. The condition number implied by the above theorem is not the best possible one
can obtain through this method. For instance, a better estimate for the o,,;, of a Vandermonde
matrix may be used in place of (2.21).

However, the method will always lead to a deteriorating estimate of the condition number
as m increases. This follows from the Beckerman-Townsend estimate (2.26) we discussed in
the previous subsection.

Corollary 2.10. Assume that ¢ € P, (ZAS 15 even and strictly decreasing on Ry, and m = 2 is
~ 2c  ~
an integer. Givenn e (0,3), let E = [—54+n,—n]u[n,5—n] and E = (—C(E + Z)) n[—c,c].
m
Then there exists A > 0 such that, for any f € PW,,

Al < [ 3l ()< 1
0 kez

Proof. We look into the main condition of Theorem 2.8: there exists 6 > 0 such that, for
every0 < j<k<m-—1and every§ e &/

(2:30) b (e ) -0, (s m)| =0

m

For a general ¢ € ®, the function QAS is continuous and, therefore, ggp is continuous, except
possibly on ¢ + 2¢Z where a jump discontinuity occurs if ¢(—c) # ¢(c). Under current
assumptions, however, ¢ is even and, therefore ¢, is continuous everywhere.
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1<§+€ 1

ForO</<m—1and¢el, we have —— <1—— and
2m m 2m
~ /9 14
y $ £(§+£)> if£; <1/2
¢p<a(f+€)>: ~ /2 E+74 :
) —(§+€—m)> if >1/2
m

Thus, the condition of Theorem 2.8 would be satisfied with E = I if |<$] were one-to-one
on I, that is, either strictly decreasing or strictly increasing. However, gg is even and strictly
decreasing on R, so that ngﬁp is continuous, strictly decreasing on [0, ¢] and strictly increasing
on [—c,0]. It follows that (2.30) may only fail in small intervals around the points £ € I

where ¢, (—C(f + j)) — ¢ (—C(f + k‘)> = 0 for some j, k € Z. Such points must satisfy
m m

_£+] §+¢ m_1<€<m—1.
m

=1—->2-— 0<7<
m J 2

Thus, we need £ = 3(m—j—{), i.e. £ € {0, £3}. In view of the continuity of ggp, it follows that
there exists n > 0 such that (2.30) holds for & € £ = [—3 +n,—n] U [n, 2 —n]. It remains to
observe that with any given n € (0, 1) inequality (2.30) will hold for ¢ sufficiently small. [

2.4. Explicit quantitative estimates for the Gaussian.
To obtain explicit estimates, we need to establish a precise relation between 7 and ¢ in

the proof of Corollary 2.10. In other words, we need to estimate min ¢ (§), where, as above,
(eE

E = [—1+n,—n]un i —n],ne(0,1), and the function ¢ is given by

b %(& +j)) -0, (%C(g ¥ k)> ‘ .

Lemma 2.11. Let E and E be as in Corollary 2.10. Assume that the kernel ¢ € ® is such
that ¢ is differentiable on E and

w() = min

rg&{l’ﬁ(f)’ > R.
Then
minw(§) > 4CR77.
¢ek m
Proof. Observe that
min iy %(5 +j)' - %(é + k)H = %277-

With this, the assertion of the lemma follows immediately from the mean value theorem. [J

The above observation leads to the following explicit estimate for the Gaussian kernel.
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Proposition 2.12. Let &5(5) = e 5 £0, and m = 2 be an integer. Given 1 € (0, le), let
~ 20 ~
E=[-3+n-nulni—n]ad E = (—C(E - Z)) N [—c,c]. Then, for any f € PW,., we
m

have

(2.31) A fLslP < f >

where

2 12
fi (k)| ar< 11

c (4cRn)™m=1)

2.32 A=
(2:32) 2en2(2(0c)? +m) mi-mt2m?

with R = 20 min {176_(‘”7)2, ce_("c)2} .

Proof. Observe that Lemma 2.11 applies with R given by (2.32). It remains to apply Theorem
2.8 with kg = e~°9* and § = 4cRn/m. We deduce that (2.31) holds with

m(m—1) 2/m 1 —M m(m—1)
g © ) hg —1 ¢ 1-e m (4cRn)
dem mitm*  Inkg 2em?  2(00)? m2-—m+2m?
1—et 1
Using ; > P we obtain the claimed bound. U

We remark that the estimate in the above proposition is quite pessimistic. Our numerical
experiments showed that the true bound may be much better.

3. REMEZ-TURAN PROPERTY AND FIXING THE BLIND SPOTS

In Theorem 2.8, the main issue is that the lower bound is only in terms of || f1z|| and not
|| || so that stability is not obtained. In this section, we consider a certain class of subsets of
PW., for which Theorem 2.8 does lead to stable reconstruction.

3.1. Remez-Turan Property.

Definition 3.1. Let V < PW, and write V = {f : fe V} « L*([~c,¢]). We will say that V
has the Remez-Turén property if, for every E < [—c¢, ¢]| of positive Lebesgue measure, there
exists C' = C(E, V) such that, for every f eV,

(3.33) 1f1Ell2 = Cllf1—cqllo-

When V is a finite dimensional subspace of PW, such that V consists of analytic functions
(restricted to I), then V has the Remez-Turdn property since Hfl gll2 is then a norm on
V' which, by finite dimensionality of V', is equivalent to ||f1[,c,c]H2. However, the previous
argument does not provide any quantitative estimate on the constant C'(E, V). Let us start
with two fundamental examples of spaces that have the Remez-Turan property, and for which
quantitative estimates are known.
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3.2. Fourier polynomials. Let Viy be given by (1.11), so that Vy = {P1[_cq, P € Cy[z]}
is the space of polynomials of degree at most N, restricted to I. The quantitative form
of the Remez-Turan property for ‘A/N is then known as the Remez Inequality [9]: for every
polynomial of degree at most N,

8o\ N+12
(3.34) [PL—cqll2 < (E) | P1g]|2.

3.3. Sparse sinc translates with free nodes. Let Viy be given by (1.10), so that Vy =

N
{Pl[_c,c] P& = Z cnezi’“\"f}. Recall that Vy is not a linear subspace. The fact that
n=1

‘A/N has the Remez-Turdn property is a deep result of Nazarov [17]: for every exponential

polynomial of order at most N, i.e. every P of the form P(€) = 3 ¢,e®™¢ one has

e N+1/2
(3.35) 1P1 ol < (Tiﬂ) 1P1g]

where 7y is an absolute constant.

3.4. Prolate spheroidal wave functions (PSWF'). The Prolate spheroidal wave functions
(PSWFs) denoted by (¢n.(:))ns0, are defined as the bounded eigenfunctions of the Sturm-
Liouville differential operator L., defined on C?([—1,1]), by

d*y dip

2 22

(336) ﬁc(w) = —(1 — X )@ + 233% +c'z w

They are also the eigenfunctions of the finite Fourier transform F,, as well as the ones of the
c

operator Q, = 2—]—";}"0, which are defined on L?([—1,1]) by
™

1

B30 D) - [ e ad Q) - [ A g ay

They are normalized so that [yc|r2(-1,1)) = 1 and 1, (1) > 0. We call (xn(c))n=0 the
corresponding eigenvalues of L., u,(c) the eigenvalues of F.

1
(3‘38) Mn(C)%,c(I) = ¢n,6(y>€_w$y dy, e [_17 1]'

~1
and \,(c) the ones of Q. which are arranged in decreasing order. They are related by

M(e) = o0

A well known property is then that |1, | z2®) = \/}\17() Further, their Fourier transform is
n(c

given by
R L L Cy P
’ R ¢ |pn(c)? 7 \ e
The crucial commuting property of £. and Q. has been first observed by Slepian and co-
authors [21], whose name is closely associated with all properties of PSWFs, the spectrum
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of the operators L. and . and almost time- and band-limited functions. Among the basic
properties of PSWFs, we cite their analytic extension to the whole real line and their unique
properties to form an orthonormal basis of L?([—1,1]) and an orthogonal basis of PW..
The prolate spheroidal wave functions admit a good representation in terms of the or-
thonormal basis of Legendre polynomials. In agreement with the standard practice, we will
be denoting by P, the classical Legendre polynomials, defined by the three-term recursion

2k +1 k

Pria(z) = P z P (r) — P 1Pk—1(I);

with the initial conditions
Po(,CE) = 1,P1(.Z') = XT.

These polynomials are orthogonal in L?([—c, ¢]) and are normalized so that

1
1
P.(1)=1 d Py(x)?*dr = ——.
(1) o L f(w) de = s
. . S 2k +1 x
We will denote by P . the normalized Legendre polynomial P .(z) = 5 P, <—> and
c c

the P .’s then form an orthonormal basis of L*([—¢,c]).
We start from the following identity relating Bessel functions of the first kind to the finite
Fourier transform of the Legendre polynomials, see [6]: for every = € R,

1
(3.40) f ™ P (y) dy = 2i*j,(2), ke N,
-1

. Note that

1d\*sinz
rdr x
Jr has the same parity as k and recall that, for x > 0, ji(z) = /55 Jks1/2(7) where J, is the

Bessel function of the first kind. In particular, from the well-known bound |.J,,(z)| < %,
valid for all x € R, we deduce that

where jj is the spherical Bessel function defined by jj(z) = (—z)" <

: jzl*
< , keN.
k()] ﬁQ’f“F(k: 32 " °
Using the bound I'(z) > v/2m2% V/2e~% we get
k+3/2
(3.41) ¢ lz|F, ke N.

0l < oo

We have the following lemma.

Lemma 3.2. Write Jn\c = D=0 B (¢)Prc. Then for every k,{ =0

2l < e ()
U 2N, (o) \ 2k + 3

This bound is an adaptation of techniques from [15] to improve the proof of the exponential

decay from [22].
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Proof. Using (3.39), we have

BI?(C) = <wn,ca kac>L2(I) = @(%)P]@,C(.ﬁ) d.CE

(— 1)’“‘::(())’22:@ Une(x/C) Py <C> da

Ly tn(©) )
(- CWM()P¢@:* @) Pla)d

(—1)F 7T\/4]€ +

_ —icxy P,
2|y (c f—l —1wn6( e dy Fyle) d

with (3.38). Recalling that A, (c) = 2i|,un(c)]2 and using Fubini, we get
m

’“2\/419
gre) = 2 S 2 f LPk e g, (y) dy
k4«/4k:+
= ( 03/2)\ f ¢€ ]k

with (3.40). But then, from (3.41) and Cauchy-Schwarz, we deduce that

B < %%%i;([:%@ymov2

N
(2k + 3)F 132X, (c) ( f vl dy)

1 . k41
= 4?2 i
\ﬁec3/2/\n(c) (Qk + 3)
As 44/2e < 10, the result follows. O

We will also need the following estimate.

Lemma 3.3. The eigenvalues (3.38) of Q. satisfy

N i 1 12 _ V3 +ec - if N < max(ec,2)
M An(c) 7

(3.42) .
n=0 <%) *if N > max(ec, 2)

Proof. Precise pointwise estimates of the A,(c)’s have been obtained in [15, Section 4 &
Appendix C] and have been further improved in [8] to

2n+1
An(c) < <ﬁ) for n > max (n, %) :

while we always have \,(c) < 1.
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It follows that

ZN: N+1<3+ec if N < max(ec,
2N+1
= An(c AN(C) > (2(N+1)> if N > max(ec,

ec

2)
2)

The result follows.
We can now prove our Remez lemma for Prolate spheroidal wave functions.
Theorem 3.4 (Remez’s Lemma for PSWF). Let N be an integer and
Vi = span{tboc, ..., Ync} < PWe.

Then, for every 1y € 17N and every E < [—c,c| of positive measure,

N
(543 <2 (3" e
where
(3.44) K(N) = fmax [3200 3+€C)w ﬁgﬂ) if N < max(2,ec),
max ( 20, N, [ \EI D if N > max(2, ec)

Proof. Let ¢ = 3™ b, 50 that, by orthogonality and the fact that |4, || = A, (c) 72,

On the other hand

N
&ZZWZ;=ZC£Z@§ ) Pc-
n=0 n=0 k>0

Let K be an integer that will be fixed later and write

’QZ) ZCEZBk Pkc+ZC€ZBk Pkc:_FK+RK
n=0 k=0

n=0 k>K

Note that F is a polynomial of degree K so that

8c Kty
(3.45) IFitcoall < (G5)  IFxtel

by (3.34). On the other hand,

Ri = 2 (Z Cnﬁl?(C)) P

E>K \n=0
so that
N 2\ 1/2 1/2
IRl < Rt eqll = | ]3] eaile) (2 PIENCIEAC ) 91
k>K |n=0 k>K n=0
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by Cauchy-Schwarz. We now apply Lemma 3.2 to get

10 N . 2k+2\ 1/2
|Brte] < 22 ( ) 141
KEE 32 k;o;) An(c) \ 2k + 3
1/2 2k+2\ /2
0 (Y 1 ( e )
= =5 [[]]
c3/2 7;) )\n(c)> (kg( 2k + 3 )
1/2 K+l
12 (& 1 e
< .
c3/2 7;) )\n(c)> (2K + 5) Ul

Using Lemmas 3.3 and 3.2 we can rewrite this in the form ||Rxlg| < Av®x||¢| with

V3 +ec if N < max(ec,?2) 19 . K+1
Ay = 1 d & = — '
" <%>N+2 if N > max(ec,?2) o o <2K + 5)

Next

1
; 21\
016 > 1Ftel = el > (1) 1Fetiall = IRt cal

1 1

|E| K+§ N |E| K+§
> | — — 11 — Rili_..
(SC |41l i [ R

1
|E| K+§ .
> (B 1 - 2l

K+3
since F < [—c¢, c] implies <%> * < 1. Therefore

R B K+1 3¢ K+1 R
161> (1) (1 ~2nve (S2) )11

1 |E| K+1
It remains to choose K so that Ay®r < 1 <8_) .
c

First, if N < max(ec,2), then we want

e 1/2 e K+1/2 e K+1 _ B2 B K+3
2K +5 2K +5 \2K +5 T 48y/3 + ec \ 8¢

? e |E|
< — so we take

e
< d <
9K +5 4823 +ec) 2K 15 Sc
2 4
e (2225 2]

so that it is enough that

3

On the other hand, if N > max(ec,2), then we want

. 1/2 o K+1/2 - e K+1 _ 1 o N+3 B K+3
2K +5 2K +5 - \2K +5 T4 \2(N +1) 8¢
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Taking K := K(N) = max (20, N, [8(%71)]» we get

e Kt 1 ( e >K+1/2 _ 1 ec  |E| K172
2K +5 T4 \2K T4\ 2(N +1) 8¢

which gives the desired estimate since 2(N + 1) > ec and K > N. O

3.5. Sampling the heat flow. Equipped with the Remez-Turan Property, we are ready to
close the blind spots in Theorem 2.8. We do it only in the case of heat flow as it should be
clear how to obtain similar estimates in the case of other kernels ¢ € ®.

Theorem 3.5. Let gg(f) = e 540, andm =2 be an integer. Let V = Vi be given by
(1.9), (1.10), or (1.11). Then, for every f eV,

(3.40 i< 3

where

i (") ar < 7P,

cko(c) 2 2
(3.47) K= o+ m exp(—/il(c)N —m*(—ka2(c)Ino + k3(c)o” + In m))

with k; positive constants that depend on c only.

Remark 3.6. For V' = Vjy given by (1.10), (1.11) and for V' = Vy given by (1.9) when
N > max(2, ec), Ko, k1 do not depend on c.

1 ~
Proof. To obtain this result, we take n = 3 in Proposition 2.12. First note that if £ =

1 1 2c , ~ 1
l—g, —g] U [g, 2] and F = (EC(E + Z)) N [—c¢,c] then ﬁ > 3 (say). Then (2.31) tells

us that

(2.31) AllfL)? < j Z

for any f € PW,, where

2 712
fi (B2k) [ ae < 7P,

R/2 m(m—1) 1
A= ‘ (ch/2) — with R =20?min —e_("/g)g,ce_("c)2 .
2em?(2(0c)? +m) ml-m+2m 8
Note that ,
ﬁ = min {ca—e_(”/8)2 Pole (097 } <1
2 8
so that

(cR/2)m™(m=1) cR/2
nllfer2m2 = m

>m2 = e:x;p(—m2 (—711(c)Ino + 2(c)o* + In m))

Finally A > % exp (—m2 (=vi(c)Ino + ya(c)o? +In m)) where 79, 71(c), 72(c) are con-

(oc)?+m

stants depending on ¢ only.
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It remains to fix the blind spots || /1|2 with the help of a Remez type inequality. For
V = Vy given by (1.10), (1.11) and f € Vi, we simply have || f1g|> = +2¥*!||f||> where
v3 < 1 is a constant.

For V = Vy given by (1.9), [|f1g]2 = v2%™)|| £||2 where K(N) is given by (3.44)

max [w] ’ [4ec]> < 74(c) if N < max(2, ec),

IET
K(N) =
M= s 20, N, [3052]) < 64(N + 1) if N > max(2, ec).
Adding the estimates for fixing the blind spot yields (3.47). U

Remark 3.7. Theorem 3.5 immediately implies Theorem 1.6. We also note that if V = Vy is
given by (1.9) or (1.11), the reconstruction can be done from measurements at a finite number
of spacial locations. Indeed, our results imply that in this case one can find the coefficients
of f in its decomposition in a basis of V' via simple least squares.

4. SENSOR DENSITY, MAXIMAL SPATIAL GAPS AND CONDITION NUMBERS

In this section, we discuss irregular spatio-temporal sampling. We establish that stable
reconstruction from dynamical samples may occur when the set A has an arbitrarily small
density. More importantly, however, we show that the density cannot be arbitrarily small for
fixed frame bounds in (1.4). In fact, we provide an explicit estimate for the maximal spatial
gap in terms of the condition number %

Example 4.1. In this example, we take ¢ = 1/2 to simplify discussion. Assume that ¢ €
is such that @ is real, even, and decreasing on [0,1/2]. Let Ag = mZ, with m € N odd,

A = mnZ + k, where n is any fixed odd number and k = 1,... mT_l . Then A = |J Ay has
k=0
density D~ (A) < 1/n+ 1/m and is a stable set of sampling, i.e., (1.7) is satisfied.

The claim in the last example follows by stringing together several theorems on dynamical
sampling. Firstly, [4, Theorems 2.4 and 2.5] yield that any f € £2(Z) can be recovered from the
space-time samples {¢’ = f(z) : 7 =0,...,m — 1, x;, € A} and that the problem of sampling
and reconstruction in PW, on subsets of Z is equivalent to the sampling and reconstruction
problem of sequences in ¢?(Z). Secondly, combining [5, Theorems 5.4 and 5.5] shows that for
¢ € ®, f e PW, can be stably reconstructed from {¢’ = f(zy) : j =0,...,m — 1, x; € A} if
and only if (1.7) is satisfied.

Example 4.1 thus shows that (1.7) can hold with sets having arbitrarily small densities.
The goal of this section is to show that the maximal gap in such sets is controlled by the
condition number B/A.

We first establish the following lemma, which parallels [13, Proposition 4.4].

Lemma 4.2. Let ¢ € ® be such that ngﬁ is Ct-smooth on I = [—c,c]. Then there exists a finite
constant Cy 1, such that

L c
(4.48) J (sinc(c) « ) ()2 dt < L for all z € R.

0 1"‘{)327
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L_
On the other hand, setting cy 1, = Wn;) > 0, for |z| < 7/2¢c, we have
L

(4.49) J ((sine x6y) ()2 dt > ez
0

Proof. Firstly, writing the Fourier inversion formula shows that

: 1 ‘n i
(4.50 (inec) » 0)(x) = 5 | (3()' e
from which it follows that

. L[~
(1.51) (sine(e) +o)(o)] < 5 [ 131 de <1

due to || < 1
Secondly, note that, due to its smoothness, ¢’ is bounded by Eg := supgc[_. [¢'(§)] < +0
on [—c, ] Then, integrating (4.50) by parts leads to
Qg icx th —icx 1 C P ~
s(sine(e) » gn)(w) = LI OO L neygioe)d) ag

2ic 2ic J_.

~

and, as Ky < ¢ < 1 on I, we deduce that
|z (sinc(c:) * ¢p) (z)] <

Consequently,

L L1 B, \? K L £ Pl
2 : D x 2dt < f S+ =) dt=2 (- +=2L) -5
x L |(sinc(c-) * @) ()] s \c + Ko 3L, & i Ko )

and the estimate (4.48) follows in view of (4.51).
On the other hand (4.50) implies that

(sinc(c?) » 60)(@)] > [Rsine(c) = 6z |ﬂ—j¢ mww4

But, for [£| < ¢, we have HE) = Ky Further, if we also have || < m/2¢, then cos2x§ >
Therefore,

C

1 (¢ ~ 1 2
|(sinc(c) = ¢y)(z)] = % () coswEdE = Iﬁfﬁ% cos z€ d€ = Ky sinc(cz) = %m;

2
since sinc(cz) is decreasing on [0, 7/2¢| and sinc (021) = —. It follows that
T
f |(sinc *¢y ) (x)]* dt = —J Ko dt = —1 > 0,
7T2 In kg

and we get the desired result. O
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2¢2

Remark 4.3. If ngS(f) =e 7% 0 £ 0, then ry = e~@9” and we may take E, = \/g|a|.
Therefore, the constants ¢y, and Cy r, in the above lemma can be taken as

2(1 _ 672L(ac)2)
2

1 2 (0c)®\ 713
(4.52) Cor = i (1+ 0% )L° and ¢4 = (00)

For the estimate of Cy ;, we have used that

2

1 b
3 —(a + ab) = a®b + aab® + Zb3<a3+§(1+2a3/2+a2)<a3+b2(1+a2)
«

with Holder.

Theorem 4.4. Let ¢ € ® and assume that qg is Ct-smooth on [—c,c]. Assume that A € R is
a stable sampling set for Problem 1 with frame bounds A, B (i.e., (1.4) holds:

(1.4) Al < f2|f o) dt < BIfIE, for all f € PW,.

0 xeA

8c B C.
Let cg 1, and Cy 1, be the constants from Lemma 4.2. Then for R > max (Z, oc b <1>,L) and

C 7TAC<1>7L

A
every a € R, we have [a—R, a+R]|nA # &. Further, we have D~ (A) > min 2; 120 5 éﬁ;i)

and D*(A) < 4£
Co,L

Proof. Denoting I, = [a — w/4c,a + w/4c], a € R, let us bound the covering number
ny:=sup# (Anl,).

aeR
L
We use (4.49), i.e., the fact that f |(sinc(c:) = ¢¢)(x)|* dt = cqp, for |z| < 7/2¢, and our
0

first observation to obtain

HANT) < f (sinc(c:) * é) (A — a)2dt
C‘I’ L xeAnI,

B
< f |(sinc(c:) * ) (A — a)2dt < ——||sincc(t — a)||?
Co L \eZ Co. L

where we applied (1.4) to f(t) = sincc(t — a) for all a € R. As f(£) = %1[_076], Parseval’s
relation gives || f||* = T hence

(4.53) na < %%

As a first consequence, this implies that D (A) < 4%.

’ , Anfag— Rya0 + R = . As
1.4) holds for A, it also holds for

Now we assume that for some a¢ € R, and some R >

f\mlﬁ

the Paley-Wiener space is invariant under translation, if
its translates, so that we may assume that ay = 0.
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L

From Lemma 4.2, there exists Cg 1 such that f |(sinc(c:) = @) (z)[Pdt < Cop /(1 + 22).

0
Therefore, we have the following estimates

Cor
%A < ;\J sinc(c-) « ¢y) (M) dt < Z +)\

O@ L = C(I) L
=) 2. Sy 2 T
k=0 AeAn[R+kn/2¢c,R+(k+1)m/2c] k=0 AeAn[—R—(k+1)m/2¢c,—R—km/2c|
0
C CorB [* d
< 2”“2 ,L 2<4 ®,L f 552
=1+ (R+ km/2c) cor. Jp_mpe L+
Q0
< 4C<1>7LB f d_azc _ Coe,1.B
Co.L Jrp ¥ Cq> LR
. 80 B C<1> L . .. .
since we assumed that R > 7 /c. It follows that R < . Finally, note that this implies
m Co,L
that D™ (A) = 55. O
Remark 4.5.

gap in spacial measurements grows with L, Wthh 1s to be expected. For the Gaussian, we
may take the constant 2 to be O(L?) (see (4.52)). The above results also shows that for

Cl-smooth functions ¢, stable sampling sets must have positive lower density.

Remark 4.6. Theorem 4.4 immediately implies Theorem 1.4.
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