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Abstract

The COVID-19 epidemic started in the Hubei province in China in December 2019 and
then spread around the world reaching the pandemic stage at the beginning of March 2020.
Since then, several countries went into lockdown. We estimate the effect of the lockdown in
France on the contact rate and the effective reproduction number R. of the COVID-19. We
obtain a reduction by a factor 7 (Re = 0.47, 95%-CI: 0.45-0.50), compared to the estimates
carried out in France at the early stage of the epidemic. We also estimate the fraction of the
population that would be infected by the beginning of May, at the official date at which the
lockdown should be relaxed. We find a fraction of 3.7% (95%-CI: 3.0-4.8%) of the total French
population, without taking into account the number of recovered individuals before April 1st,
which is not known. This proportion is seemingly too low to reach herd immunity. Thus,
even if the lockdown strongly mitigated the first epidemic wave, keeping a low value of R. is
crucial to avoid an uncontrolled second wave (initiated with much more infectious cases than
the first wave) and to hence avoid the saturation of hospital facilities. Our approach is based
on the mechanistic-statistical formalism, which uses a probabilistic model to connect the data
collection process and the latent epidemiological process, which is described by a SIR-type
differential equation model.

Keywords. COVID-19, lockdown, SIR model, mechanistic-statistical model, Bayesian inference,
effective reproduction number, herd immunity

1 Introduction

COVID-19 epidemic started in the Hubei province in China in December 2019 and then spread
around the world reaching the pandemic stage at the beginning of March 2020 [1]. To slow down
the epidemic, several countries went into lockdown with different levels of restrictions. In the Hubei
province, where the lockdown has been set long before the other countries (on January 23), the
epidemic has reached a plateau, with only sporadic new cases by April 15 (from the data of Johns



Hopkins University Center for Systems Science and Engineering [2]). In France, the first cases of
COVID-19 were detected on January 24, and the lockdown has been set on March 17.

The basic reproduction number Ry corresponds to the expected number of new cases generated
by a single infectious case in a fully susceptible population [3]. Several studies, mostly based on
Chinese data, aimed at estimating the Ry associated with the COVID-19 epidemic, leading to
values from 1.4 to 6.49, with an average of 3.28 [4]. As the value of Ry can be interpreted as the
product of the contact rate and of the duration of the infectious period, and since the objective
of the lockdown and associated restriction strategies are precisely to decrease the contact rate, an
important effect on the number R, of secondary cases generated by an infectious individual is to
be expected. This value R, is often referred to as ’effective reproduction number’, and corresponds
to the counterpart of Ry in a population that is not fully susceptible [5]. If R, > 1, the number
of infectious cases in the population follows an increasing trend, and the larger R, the faster this
trend. On the contrary, if R, < 1, the epidemic will gradually die out. The study [6] showed that
containment policies in Hubei province indeed led to a subexponential growth in the number of
cases, consistent with a decrease in the effective reproduction number R..

Standard epidemiological models generally rely on SIR (Susceptible-Infected-Removed) systems
of ordinary differential equations and their extensions (for examples of application to the COVID-19
epidemic, see [7, 8]). With these models, and more generally for most deterministic models based on
differential equations, when the loss of observation due to the observation process is heavy, specific
approaches have to be used to bridge the gap between the models and the data. Omne of these
approaches is based on the mechanistic-statistical formalism, which uses a probabilistic model to
connect the data collection process and the latent variable described by the ODE model. Milestone
articles and textbook have been written about this approach or related approaches [9], which is
becoming standard in ecology [10, 11]. The application of this approach to human epidemiological
data is still rare.

In a previous study [12], we applied this framework to the data corresponding to the beginning of
the epidemic in France (from February 29 to March 17), with a SIR model. Our primary objective
was to assess the infection fatality ratio (IFR), defined as the number of deaths divided by the
number of infected cases. As the number of people that have been infected is not known, this
quantity cannot directly measured, even now (on April 15). The mechanistic-statistical framework
allowed us to compute an IFR of 0.8% (95%-CIL: 0.45-1.25%), which was consistent with previous
findings in China (0.66%) and in the UK (0.9%) [13] and lower than the value previously computed
on the Diamond Princess cruse ship data (1.3%) [14]. In this previous study, we also computed the
Ry in France, and we found a value of 3.2 (95%-CI: 3.1-3.3). Although the number of tests at that
stage was low, an advantage of working with the data from the beginning of the epidemic was that
the initial state of the epidemic was known.

Here, we develop a new mechanistic-statistical approach, based on a SIRD model (D being the
dead cases compartment), in the aim of

e estimating the effect of the lockdown in France on the contact rate and the effective repro-
duction number R.;

e estimating the number of infectious individuals and the fraction of the population that has
been infected by the beginning of May (at the official date at which the lockdown should be
relaxed).



2 Materials and Methods

2.1 Data.

We obtained the number of positive cases and deaths in France, day by day from Santé Publique
France [15], from March 31 to April 14. We obtained weekly data on the number of individuals
tested (in private laboratories and hospitals) from the same source. We assumed that during each
of these weeks the number of tests per day was constant. This assumption is consistent with the
small variations between the number of tests during the first week (111 690) and the second week of
observation (132392). As the data on the number of positive cases are not fully reliable (fewer cases
during weekends with a rebound on Monday), we smoothed the data with a moving average over
5 days. Official data on the number of deaths by COVID-19 since the beginning of the epidemic in
France only take into account hospitalised people. About 728 000 people in France live in nursing
homes (EHPAD, source: DREES [16]). The number of deaths in these structures has only been
reported recently, and cannot be obtained day by day. Latest data from Santé Publique France
indicate a total number of 10643 deaths at hospital and 6524 deaths in nursing homes by April
15. The total number of deaths therefore corresponds to about 1.6 times the number of deaths at
hospital. The same factor had been estimated in [12] based on local dataset in the French Grand
Est region.

2.2 Mechanistic-statistical framework.

The mechanistic-statistical framework consists in the combination of a mechanistic model that
describes the epidemiological process, a probabilistic observation model and an inference procedure.

2.2.1 Mechanistic model.

The dynamics of the epidemic are described by the following SIRD compartmental model:

S'(t) = —5 SO 1),

I'(t) = = SO 1) = (B+7) 1), (1)
R(t) = BI(t),

D'(t) =y 1(t),

with S the susceptible population, I the infectious population, R the recovered population, D the
number of deaths due to the epidemic and N the total population. For simplicity, we assume that
N is constant, equal to the current French population, thereby neglecting the effect of the small
variations of the population on the coefficient a/N. The parameter « is the contact rate (to be
estimated) and 1/0 is the mean time until an infectious becomes recovered. Based on the results in
[17], the median period of viral shedding is 20 days, but the infectiousness tends to decay before the
end of this period: the results in [18] show that infectiousness starts from 2.5 days before symptom
onset and declines within 7 days of illness onset. Based on these observations we assume here that
1/p = 10 days. The parameter v corresponds to the death rate of the infectious (to be estimated).

Initial conditions. The model is started at a date ¢y corresponding to April 1st. The initial number
of infectious I(tg) = Iy is not known and will be estimated. The total number of recovered at time ¢g



is also not known. However, as the compartment R has no feedback on the other compartments, we
may assume without loss of generality that R(¢yo) = 0, thereby considering only the new recovered
individuals, starting from the date to. We fixed D(tp) = 3523, the number of deaths at hospital by
March 31. The initial S population at the beginning of the period, should still be close to the total
French population: by March 31 only 52 128 cases had been observed in France, corresponding to
0.08% of the total population. A factor 8 had been estimated in [12] between the cumulated number
of observed cases and the actual number of cases at the beginning of the epidemic. Even though
this factor may have changed, e.g. increased by a factor 5, this means that the proportion of the
total population that has been infected by March 31 is still small. We may assume any value for
S(to) between 60 - 10 and 67-10° without changing much the results of our study (as S/N remains
close to 1). For our computation, we assumed that S(tg) = 66 - 105, corresponding to about 98.5%
of the French population.

Numerical method. The ODE system (1) was solved thanks to a standard numerical algorithm,
using Matlab® ode/5 solver.

2.2.2 Observation model.

The number of cases tested positive on day ¢, denoted by St, is modelled by independent binomial
laws, conditionally on the number of tests n; carried out on day ¢, and on p; the probability of
being tested positive in this sample: .

ot ~ Bi(ng, p). (2)

The tested population consists of a fraction of the infectious cases and a fraction of the susceptibles:
ny = 11(t) I(t) + m2(t) S(¢). Thus,
oI(t)
I(t)+ ke S(t)
with k¢ := 72(t)/71(t), the relative probability of undergoing a screening test for an individual of
type S wvs an individual of type I. We assumed that the ratio x was independent of ¢ over the
observation period. The coefficient ¢ corresponds to the sensitivity of the test. In most cases,
RT-PCR tests have been used and existing data indicate that the sensitivity of this test using
pharyngeal and nasal swabs is about 63 — 72% [19]. We assumed here o = 0.7 (70% sensitivity).
Each day, the number of new observed deaths (excluding nursing homes), denoted by [, is
modelled by independent Poisson distributions conditionally on the process D(t), with mean value
D(t) — D(t — 1) (which measures the daily increment in the number of deaths):

Pt =

fir ~ Poisson(D(t) — D(t — 1)). (3)

Note that the time ¢ in (1) is a continuous variable, while the observations 6; and 1; are reported
at discrete times. For the sake of simplicity, we used the same notation ¢ for the days in both the
discrete and continuous cases. In the formulas (2) and (3) I(¢), S(¢) and D(t) are computed at the
end of day ¢.

2.2.3 Statistical inference.

The unknown parameters are «, v, & and Ip. We used a Bayesian method [20] to estimate the
posterior distribution of these parameters.



Computation of the likelihood function. The likelihood L is defined as the probability of the observa-
tions (here, the increments {d;, fi}) conditionally on the parameters. Using the observation models
(2) and (3), and using the assumption that the increments 6, and iz are independent conditionally
on the underlying SIRD process and that the number of tests n; is known, we get:

‘C(a’,)/aﬁﬂlo) - P({Staﬂt}la v, R, IO) = P({St}‘a777l€710) P({ﬂt}|a’77ﬁ710)

ty N
D(t) — D(t — 1))
fH Pt ) 6tHe p(t)-p(—1y) (D) — D(t — 1))

I(ne — 0y)! fit!

with ¢; the date of the first observation and ¢ the date of the last observation. In this expression
L(a, 7y, K, Ip) depends on «, 7, k, Iy through p; and D(t).

Posterior distribution. The posterior distribution corresponds to the distribution of the parameters
conditionally on the observations:

L(Oé, Y5 Ky IO) 7T'(Oé, LD IO)

C )
where 7(a, 7y, K, Iy) corresponds to the prior distribution of the parameters (detailed below) and C
is a normalization constant independent of the parameters.

P(O{, s Ry IO‘{StD lat}) =

Prior distribution. Regarding the contact rate «, the initial number of infectious cases Iy and
the probability x, we used independent non-informative uniform prior distributions in the intervals

€ (0,1), Ip € (1,107) and x € (0,1). To overcome identifiability issues, we used an informative
prior distribution for . This distribution, say f,, was obtained in [12] during the early stage of
the epidemic (f, is depicted in the Appendix, Fig. S1). In [12], the number of infectious cases Iy at
the beginning of the epidemic was known (equal to 1), and did not need to be estimated. Thus, we
estimated in [12] the distribution of the parameter v by computing the distribution of the infectious
class and using the formula D’(t) = v I(¢) together with mortality data (which were not used for
the estimation of the other parameters, unlike in the present study). Finally, the prior distribution
is defined as follows:

7T(047’Y» ’437[0) = ]l(a,n,Ig)G((),l)x(0,1)><(1,1(]7) fg(7)~

The numerical computation of the posterior distribution is performed with a Metropolis-Hastings
(MCMC) algorithm, using 5 independent chains, each of which with 10° iterations, starting from the
posterior mode. To find the posterior mode we used the BFGS constrained minimisation algorithm,
applied to —In(L) — In(7), via the Matlab ® function fmincon. In order to find a global minimum,
we applied this method starting from 4000 random initial values.

3 Results

Model fit. Denote by (a*,v*, k*, I) the posterior mode, and S*(t), I*(t), R*(t), D*(t) the solutions
of the system (1) associated with these parameter values. The observation model (2) implies that
the associated expected number of cases tested positive on day ¢ is n; p; (expectation of a binomial)
with
. o I*(t)
by = * * Qi :
I(t) 4 w* 5*(t)
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Figure 1: Expected number of observed cases and deaths associated with the posterior
mode vs number of cases actually detected (total cases). The blue curve corresponds to
the expected number of cases tested positive Cy + X,—1 . 43nsps given by the model, the red
curve corresponds to the expected cumulated number of deaths D*(t) (excluding nursing homes).
The crosses correspond to the observations (blue crosses: cumulated number of positive cases, red
crosses: cumulated number of deaths). Cp is the number of cases tested positive on March 31
(Co = 52128).

The observation model (3) implies that the expected cumulated number of deaths on day t is D*(¢).

To assess model fit, we compared these expectations and the observations, i.e., the cumulated
number of cases tested positive, 3; := CO+E{S:tO,..,,t0+13}55 with Cj the number of cases tested pos-
itive by March 31 (Cy = 52128) and the cumulated number of deaths M; := Mo+ (o—y,, .. 1,413} /s,
with My the number of reported deaths (at hospital) by March 31 (My = 3123). The results are
presented in Fig. 1. We observe a good match with the data.

The pairwise posterior distributions of the parameters (o, Iy), (o, ), (o, k), (7, Io), (7, k), (K, Io)
are depicted in Appendix, Fig. S2. With the exception of the parameter v (Fig. S1), for which we
chose an informative prior, the posterior distribution is clearly different from the prior distribution,
showing that new information was indeed contained in the data.

Contact rate and effective reproduction number. The effective reproduction number can be simply
derived from the relation R, = /3 [3]. The distribution of R, is therefore easily derived from the
marginal posterior distribution of the contact rate a (since we assumed § = 1/10; see Section 2.2).
It is depicted in Fig. 2. We observe a mean value of R, of 0.47 (95%-CI: 0.45-0.50).

Dynamics of the infectious class. The marginal posterior distribution of I indicates that the
number of infectious individuals at the beginning of the considered period (i.e. April 1st) is 1.4-10°
(95%-CIL: 1.1-105—1.8-105). The computation of the solution of (1) with the posterior distribution
of the parameters leads to a number of infectious I(¢;) = 7.0 - 10° and a total number of infected
cases (including recovered) (I+ R)(ts) = 2.0-10° at the end of the observation period (April 14). By
May 10, if the restriction policies remain unchanged, we get a forecast of I(T) = 1.6 - 10° infectious
cases (95%-CIL: 1.3 - 10° — 2.1-10%) and (I + R)(T) = 2.5 - 10% infected cases including recovered
(95%-CT: 2.0 - 105 — 3.2 - 10%). The dynamics of the distributions of I and I + R are depicted in
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Figure 2: Posterior distribution of the effective reproduction number R. in France.
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Figure 3: Distribution of the number of infectious cases I(t) and cumulated number of
infected cases I(t) + R(t) across time. Solid lines: average value obtained from the posterior
distribution of the parameters. Shaded areas: 0.025-0.975 interquantile ranges.

Fig. 3. By May 10, the total number of infected cases (including recovered) therefore corresponds
to a fraction of 3.7% of the total French population. This value does not include the recovered cases
before April 1st.

4 Discussion

Many studies focused on the estimation of the basic reproductive number R of the COVID-19
epidemic, based on data-driven methods and mathematical models (e.g., [21, 4]) describing the
epidemic from its beginning. In average, the estimated value of Ry was about 3.3. We focused here
on an observation period that began after the lockdown was set in France.

We obtained an effective reproduction number that was divided by a factor 7, compared to the
estimate of the Ry carried out in France at the early stage of the epidemic, before the country went
into lockdown (a value Ry = 3.2 was obtained in [12]). This indicates that the restriction policies



were very efficient in decreasing the contact rate and therefore the number of infectious cases. In
particular, the value R, = 0.47 is significantly below the threshold value 1 were the epidemic starts
dying out. By the time we submit this manuscript, a new preprint [22] indicates a very similar
value of R. = 0.5 in France during the lockdown. This new study also gives a value for the IFR
(0.53%) that is consistent ours in [12].

The decay in the number of infectious cases can also be observed from our simulations. It has
to be noted that, although the number of infectious cases is a latent, or 'unobserved’ process, the
mechanistic-statistical framework allowed us to estimate its value (Fig. 3). The cumulated number
of infected cases that we obtained by May 10 (I + R) corresponds to a fraction of 3.7% (95%-CL:
3.0-4.8%) of the total French population, without taking into account the number of recovered
individuals before April 1st, which is not known. Based on a value Ry = 3.2, the herd immunity
threshold, corresponding to the minimum fraction of the population that must have immunity to
stop the epidemic, would be 1 — 1/Ry ~ 69% (a threshold of 80% was proposed in [23]). This
proportion will probably not be reached by May 10. As emphasised by [24], a too fast relaxation
of the lockdown-related restrictions before herd immunity is reached or efficient prophylaxis is
developed), would expose the population to an uncontrolled second wave of infection. In the worst-
case scenario, the effective reproduction number R, would approach the initially estimated value
of Ry, and the second wave would start with about 1.6 - 10° infectious individuals (to be compared
with the few cases that initiated the first wave in France; e.g., by March 1st, the estimated number
of infectious was about 1000, [12]) and about 64-10° susceptible individuals. Keeping a low value of
R, is therefore crucial to avoid the saturation of hospital facilities. These conclusions are consistent
with those in the study [22] that was carried out in parallel, despite the very different methods that
were used. This indicates that the obtained results are robust to the choice of model.
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Figure S1: Prior and marginal posterior distributions of the death rate ~.

Appendix

- The prior and marginal posterior distributions of the death rate  are depicted in Fig. S1.

- The pairwise posterior distributions of the parameters («, Ip), (a,7), (a, k), (v, 1o), (7, k),
(k, Ip) are depicted in Fig. S2.
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Figure S2: Joint posterior distributions of (a, Iy), (o, 7), (a, k), (7, o), (7,%) and (k, Ip).
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