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Abstract 

Adhesive bondline mechanical behaviour is frequently described with cohesive zone models 

(CZM). For mode I loading condition these phenomenological laws simply represent the 

evolution of the peel stress as a function of the two adherends relative displacement normal to 

the joint. Generally, these laws are identified rather than really measured using experimental 

data obtained from crack initiation and propagation experiments such as the Double 

Cantilever Beam Test (DCB). The uncertainty on parameter estimation are generally not 

indicated, as for a DCB test it is only the critical energy release rate that has the most 

influence on the results. However, the uncertainties on the other parameters prevent the use of 

the identified TSL for other mechanical tests where mode I solicitations are predominant. In 

this article, the purpose is to evaluate the methodologies reliability for the assessment of 

mode I CZM. To do so, several methods used to evaluate CZM parameters are compared in 

terms parameter estimation reliability. Synthetic noisy data are considered for a χ² function 

minimisation. Then, sensitivity calculations are performed to determine the estimated 

parameters standard deviation. By applying this procedure on different type of synthetic 

measurements (respectively P(), J(,), backface strain and DIC) the ability of these 

different techniques to capture the best parameters for a chosen CZM shape can be rigorously 

evaluated.  



Keywords: DCB; Cohesive zone model; Chi-square; sensitivity; confidence interval; 

comparative study; DIC  



Nomenclature 

𝑎 = Parameters vector 

𝑎0 = Initial crack tip length (mm) 

C = Covariance matrix 

𝑐𝑜𝑟𝑟 = Correlation matrix 

Δ = Opening at loading point (mm) 

 = Opening at crack tip (mm) 

𝜀𝑠 = Adherend deformation measured by gauges (μdef) 

𝐸 = Young’s modulus of the adherend(MPa) 

𝐸𝑎 = Young’s modulus of the adhesive (MPa) 

𝐺𝑎 = Shear modulus of the adhesive (MPa) 

𝐺𝑐 = Critical energy release rate (N/mm) 

𝐼 = Quadratic moment (𝑚4) 

J = Integral J (N/mm) 

k = Parameters’ index number 

L = Bonded overlap length (mm) 

𝑛𝑑 = Number of measured data 

𝑛𝑝 = Number of parameters 

P = Force (N) 

𝜎 = Stress in the adhesive (MPa) 

𝜎𝑚𝑎𝑥 = CZM Maximal stress (MPa) 

𝜎𝑛𝑜𝑖𝑠𝑒 = Gaussian noise standard deviation 

𝜎𝑌 = Standard deviation 

S = Sensitivity function 



θ = Rotation at loading point (rad) 

t = Adherend thickness (mm) 

𝑡𝑎 = Adhesive bond thickness (mm) 

𝑡𝑖 = Data index number 

𝑣𝑝 = Displacement jump at propagation (μm) 

w = adherend width (mm) 

𝜒2 = Chi square function 

𝑥 = abscissa along the overlap (mm) 

𝑌 = Experimental data vector 

𝑌̂ = Theoretical data vector 

𝑌0 = Area under the TSL elastic part (N/mm) 

   

 

Abbreviations 

CI  Confidence Interval 

CZM  Cohesive zone model 

DCB  Double cantilever beam 

DIC  Digital image correlation 

FE  Finite Element 

Std  Standard deviation 

TS = Traction separation 

TSL = Traction separation law 

 

  



1 Introduction 

Adhesive bonding has gained growing interest in many fields in particular in the 

transportation industry. Indeed, this joining technique is known to offer a very competitive 

strength to mass ratio. It is very adequate for composite structure assembly and leads to 

drastic reduction of the fasteners numbers. However, the reliability of bonded joints is 

difficult to assess especially in the aeronautical sector where the certification procedure for 

structural parts are very demanding. The variability on the bonded joint strength may be due 

to strong sensitivity to any surface pollution, or uncontrolled ageing phenomena but is also a 

consequence of inadequate mechanical testing protocols. Indeed, the bonded interface 

behaviour is still mainly determined with standard procedure, the tensile test on single lap 

joint specimen being the most common one. The test results are known to be dependent on 

the test conditions such as the loading rate, but also on the specimen geometry (adherend and 

adhesive thicknesses, overlap length) and not only on the interface properties. 

These past years Cohesive Zone Model (CZM) were introduced to describe the interface 

behaviour and simulate the joint behaviour. These phenomenological laws have been also 

used to simulate delamination processes in laminates. They represent the cohesive stresses 

versus interface relative displacement evolution and could be considered as more robust 

models since they describe not only the interface elastic behaviour but also irreversible 

phenomena such as damage and/or plasticity. They enable a refined evaluation of the 

cohesive stresses distribution along the interface during monotonous loading of the joint.  

These models have been studied extensively from a theoretical and numerical point of view 

and many contributions have used them for failure load prediction of many different 

materials [1] [2] [3]. Considering pure mode I loading condition, these models are 

alternatively called traction separation laws (TSL). Their shapes and corresponding 

parameters are usually empirically chosen according to the expected material global 



behaviour (i.e. brittle, ductile). TS parameters are adjusted using iterative procedure so that a 

good agreement is found between experimental data and theoretical value found with an 

analytical [4] or numerical model [5] [6]. The data used for the identification are generally 

simple applied load versus resulting displacement even if more sophisticated technique are 

also described.  

The use of CZM should improve the joint strength prediction through more precise 

description of the interface mechanical behaviour. However, the prediction of both crack 

initiation and propagation regime may still suffer from a lack of precision mainly because the 

TSL shape is chosen empirically rather than really being measured. Previous contributions 

have evidenced that the predicted mechanical response of the joint depends on the TSL shape 

especially for ductile adhesives [7] [8] [9]. This is why an extensive work has been ongoing 

for the development of specialized experimental techniques for measuring precisely the 

interface separation law (i.e. cohesive stress versus displacement jump across the interface). 

These new characterization protocols lead to the use of new specimen and loading systems 

such as the DCB fixture developed by Sørensen et al. which enable the direct determination 

of the TSL through the differentiation of the J-integral [10] [11]. This same technic is used by 

Anderson et al. but the adhesive elongation is measured with interference patterns [12]. The 

development of digital image correlation over the last decades has also given access to a 

whole new range of mechanical response. As it is possible to monitor the adherends’ 

deflection and rotation throughout the entire test. Shen and Paulino then used a hybrid inverse 

method based on finite element analysis and Digital Image Correlation (DIC) to determine 

the TSL shape and associated parameters [13]. DIC was also used by Lelias et al as a direct 

method to extract the CZM using the differentiation of displacement and rotation at crack tip 

[14]. More systematic routine to identify CZM from DCB test with digital image correlation 

monitoring has been proposed by Alfano et al. [15] and Blaysat et al. [16]. Adherends’ 



deformation can also be measured using optical [17] or resistive [18] strain gauges. As it 

enable a precise location of the crack tip but can also be used for the direct identification of 

the CZM through the differentiation of the backface strain signal evolution [19]. Direct 

inversion techniques have also been proposed for the CZM reconstruction from the 

experimental data obtain with BSM and J() techniques. On the contrary inverse methods 

should be used to analyse DIC and P() measurements [14]. In these cases, some 

assumptions are made on the TSL shape which must be set arbitrary and which can lead to 

errors on latter predictions [20]. Moreover, the incorrect estimation of the TSL parameters 

can also lead to erroneous prediction when applied to other kind of mechanical tests that are 

subjected to mode I or more complex solicitations (i.e. SLJ, DLJ, … ).  

Then, this contribution aims at proposing a systematic procedure to evaluate the sensitivity of 

the four methods (P(), DIC, J(,), BSM) to evaluate a triangular TSL parameters such as 

interface stiffness, strength and fracture energy. A simple semi-analytical model of a DCB 

experiment considering non-linear interface behaviour is used to generate synthetic 

experimental data with known interface behaviour. Some Gaussian noise [21] is added to the 

data then a Levenberg-Marquart algorithm is used to minimize an error function and identify 

the triangular TSL parameters. The Confidence domains for the group of fitted parameters are 

obtained at the end of the minimization procedure for all four measurement-techniques. They 

can be used for the evaluation of the identification quality and the techniques’ comparison.  

 

2 χ2 minimisation and confidence intervals theoretical background 

Obtaining model parameters from a set of experimental data can be achieved with different 

techniques. The most common technique consists in minimizing an error function which may 

exhibit significantly non-linear behaviour. In the following, least square minimization is 

realised considering the Chi square, 𝜒2, function defined with relation : 



𝜒2(𝑎) = ∑ [
𝑌(𝑡𝑖) − 𝑌̂(𝑎, 𝑡𝑖)

𝜎𝑌(𝑡𝑖)
]

2𝑛𝑑

𝑡𝑖=1

 (eq 1) 

In equation (eq 1) Y(𝑡𝑖), 𝑡𝑖={1,…, 𝑛𝑑} represent the 𝑛𝑑 measured data used to identify the 𝑎𝑘 

k={1,…,p} parameters. 𝑌̂ are the corresponding theoretical data obtained with the model. In 

equation (eq 1), the terms in the sum are weighted by the measurement error on the 

experimental data 𝜎𝑌. This function is minimized using steepest gradient technique such as 

Levenberg-Marquart algorithm until the minimum 𝜒2value is found and the corresponding 

optimum set of parameters is determined. The quality of the optimization process can then be 

evaluated using the R²-value. 

Once 𝑎, the optimal parameters’ vector is found, parameters confidence intervals can be 

evaluated by analysing the 𝜒2 function evolution near the minima. Indeed, the small variation 

of one or several parameters will lead to an increase of the 𝜒2 value, a steep increase meaning 

a high sensibility to any parameter fluctuation and then high reliability of the identification 

process. First, evaluation of the confidence interval is obtained by performing second order 

Taylor expansion of the 𝜒2 function near the minima. This results in a simple quadratic 

approximation of the error function given by:  

𝛥𝜒2 = 𝛿𝑎 𝐶−1𝛿𝑎 (eq 2) 

Where the covariance matrix is defined as 

𝐶 = 𝜎𝑌 
2(𝑆𝑆𝑇)−1 (eq 3) 

with S corresponding to sensitivity function: 

𝑆 = [𝑆𝑘(𝑡𝑖)] =
𝜕𝑌̂(𝑎, 𝑡𝑖)

𝜕𝑎𝑘
 (eq 4) 

Assuming the standard deviation, 𝜎𝑌 
2, is constant for all data points (eq 5), it can be 

estimated with the equation [22]: 



𝜎𝑌
2 =

∑ (𝑌(𝑡𝑖) − 𝑌̂(𝑝, 𝑡𝑖))
2

𝑛𝑑
𝑡𝑖=1

𝑛𝑑 − 𝑛𝑝
 𝑖 ∈ [1: 𝑛𝑑] (eq 5) 

The confidence intervals on the identified parameters can be obtained from the analysis of the 

𝜒2 function evolution near the minimum. Indeed, for a given reliability and number of degree 

of freedom (nd - identified parameters) the variation ∆𝜒2 of the error function due to 

parameters variation 𝛿𝑎 should be less than the value defined by 𝜒2 function values table. 

From the asymptotic analysis and expression, these confidence intervals can be estimated 

once the covariance matrix has been determined. The envelope of the confidence domain is 

then represented by an ellipsoid, when three parameters are identified. Likewise, for two 

parameters it is represented as an ellipse. However, the real shape of the confidence region 

might be different if the minimization problem is highly nonlinear. 

For visualisation and analysis purposes, it might be needed to reduce the number of 

parameters used. As joint confidence regions are larger than individual intervals for the same 

confidence. It is then possible to project the covariance matrix on a lesser dimension.  

The confidence region analysis can also give information on the correlation of the 

parameters. A correlation matrix can be determined using the covariance matrix [23]. It will 

give access to a normalised estimation of the linear correlation between each pair of 

parameters, diagonal parameters being equal to one. 

𝑐𝑜𝑟𝑟(𝑖. 𝑗) =
𝐶(𝑖, 𝑗)

√𝐶(𝑖, 𝑖)√𝐶(𝑗, 𝑗)
 (𝑖, 𝑗) ∈ [1: 𝑛𝑝] (eq 6) 

Knowing the correlation between parameters is important as it gives indication on how 

uncertainties on one parameter propagate to another.  

 

3 DCB mechanical response 



Parameter estimation and confidence regions determination for a model require numerous 

model calculation that can become quite time costly. In order to avoid too much calculation 

time, it appeared wiser to implement an analytical model rather than using finite element (FE) 

model. The purpose of this analytical model is to simulate the mechanical response that could 

be measured during an experimental DCB test. That is to say that it needs to give access to all 

the specimen mechanical response enabling the determination of the load, the opening at 

loading point, the rotation at loading point, the adherends’ deformation along the overlap and 

the adherends’ rotation along the overlap. These responses can be determined with the 

mechanical fields computed during the crack propagation along the overlap for an adhesive 

having a bilinear CZM.  

3.1 Modelling of DCB test with nonlinear interface behaviour 

The DCB specimen, illustrated in Figure 1, is modelled as two Timoshenko beams having 

rectangular cross section (width: w, thickness: t) and bonded with an adhesive layer whose 

TS behaviour is represented with a bilinear TSL. The length of the bonded part is L. On the 

right end of the specimen the two slabs are left unbounded over a distance equal to 𝑎0 and 

considered as the initial crack length.  

 

Figure 1: DCB specimen geometric data considered in the analytical model 

The solving the local beam equilibrium enables the determination of the load displacement 

and J(θ,) curves during the whole test, as well as the shear forces, bending moment, 

adherends deflection and along the overlap. The whole analytical resolution methodology is 

detailed in Jaillon et al. [20].  

3.2 Indirect traction-separation law identification techniques. 



To illustrate the need for TSL identification techniques, some DCB test simulations are 

carried out for three bilinear TSLs. The DCB test specimen characteristics are presented 

below considering triangular TSL which are defined by the adhesive effective modulus 𝐸𝑎, 

the maximum stress 𝜎𝑚𝑎𝑥, and the critical energy release rate 𝐺𝑐. The chosen values are 

summed up in Table 1.  

Table 1: Traction separation laws parameters 

Reference 𝑬𝒂 (MPa) 𝝈𝒎𝒂𝒙 (MPa) 𝑮𝒄 (𝑁/𝑚𝑚) 

TS1 146 14 1.4178 

TS2 20 11 1.4178 

TS3 300 20 1.4178 

These TSL can be displayed as stress function of displacement jump at crack tip, as Figure 2 

illustrates it. In order to emphasize the importance of the TSL on the bonded specimen 

mechanical response, these three laws will be used to compare the mechanical fields obtained 

for each measurement method commonly used for DCB tests. Moreover, as this test is most 

sensitive to the value of the critical energy rate, all three examples have the same one in order 

to better visualize the differences due to the TSL parameters’ value only. 

 

Figure 2: Three bilinear TSL. 

3.2.1 TSL identification from the P(Δ) measurement technique 

The first method proposed to evaluate TSL from DCB experiment is based on the analysis of 

the force, P, versus opening displacement evolution, Δ. Since the original analysis of DCB 



test [24], these data are systematically measured as it enables the evaluation of the interface 

critical energy release rate which is based on compliance measurement evolution. As it can 

be seen on Figure 3(a), P(Δ) curve is typically composed of three parts corresponding to the 

CZM. The first one is linear. Then, once the adhesive begins to soften, the force keeps 

increasing but nonlinearly and finally, when the critical energy release rate is reached crack 

propagation begins.  

  

(a) (b) 

Figure 3: Load-displacement curves: (a) Division of the P(Δ) curve according to the TSL 

phase; (b) Impact of the TSL on the P(Δ) response. 

The responses from the three TSLs are presented in Figure 3(b) showing how the TSL may 

affect the overall response of the specimen during testing. The TSL has an impact on the 

phases previous to the crack propagation and it appears that it will affect the maximum force, 

the opening displacement at crack propagation beginning and the nonlinearity of the peak. 

Moreover, when the modulus is high, its impact become less significant and can be concealed 

by the measurement noise. 

3.2.2 TSL identification from the J(,) measurement technique 

The J integral evolution during the DCB test is obtained directly by measuring the specimen 

end rotation together with the applied load [25] [26]. The J(,) evolution reduces to three 

different regions, the elastic ad softening ones showing parabolic evolutions but with 

opposite curvature and the third one being constant when J remains stationary as crack 



propagation begins (Figure 4(a)). It appears that the TSL has an impact on the curvature of 

the parabolas (Figure 4(b)). It also influences the opening value for which the energy release 

rate becomes constant. 

  

(a) (b) 

Figure 4: Integral J function of the opening at loading point: (a) Division of the J(θ,δ) curve 

according to the TSL phase; (b) Impact of the TSL on the J(θ,δ) response. 

3.2.3 TSL identification from the Backface Strain measurement technique 

Resistive gauges can be placed on the adherend’s upper face. The measurement of the slabs 

deformation, 𝜀𝑠, gives insight on the stress state of the adhesive bond directly underneath the 

gauges using the relation:  

𝜎 = −2
𝐸𝐼

 𝑤𝑡  

𝜕2𝜀𝑠

𝜕𝑥2
 (eq 7) 

The gauges response is an indicator of the stress state of the adhesive below which phases are 

given by Figure 5(a). It is worth noticing that the adherend deformation is maximal when the 

crack tip is close to the gauge and that its value and curvature is influenced by the TSL as 

illustrated in Figure 5(b).  



  

(a) (b) 

Figure 5: Gauges deformation function of the opening at loading point: (a) Division of the 

Gauge curve according to the TSL phase; (b) Impact of the TSL on the Gauge response. 

3.2.4 TSL identification from DIC measurement technique 

During a DCB test digital image correlation (DIC) can be used to determine the deflection 

and rotation of the adherends along the bonded area. Experimentally, this requires the use of 

a speckle pattern and one or a couple of cameras. In the analytical model, the adherends 

deflection and rotation of the neutral fibre are directly computed along the specimen without 

generating any images of the adherends side. Moreover, in order to only investigate the 

behaviour of the adhesive, the deflection and rotation of the adherend are analysed from the 

crack tip abscissa X = -50 mm to X = 120 mm. The test is also only considered for an opening 

at loading point included between Δ = 1 mm and Δ = 2 mm. Figure 6(a and b) highlights the 

adhesive behaviour according to the CZM phase. It also enables the visualization of the crack 

advances. The influence of the TSL is illustrated by Figure 6(c and d) for the deflection and 

rotation of the adherends for Δ = 1 mm. The impact seems to be negligible and the 

differences are likely to be concealed by experimental noise. 



  

(a) (b)  

  

(c) (d) 

Figure 6: Digital image correlation results along the overlap during a DCB test: (a) Division 

of the DIC – deflection curve according to the TSL phase; (b) Division of the DIC – rotation 

curve according to the TSL phase; (c) Impact of the TSL on the deflection response; (d) 

Impact of the TSL on the rotation response;  

 

4 Confidence regions identification methodology  

4.1 Material and geometric parameters 

The analytic model, presented earlier, is used to simulate a DCB specimen. Its geometric and 

material characteristics are summarized in Table 2. The adhesive, whose thickness is chosen 

at 247µm, is implemented using a triangular cohesive zone model whose chosen parameters 

of interests are arbitrarily chosen: the initial modulus the maximum stress and the 

displacement jump at propagation: 𝑎 = [𝐸𝑎, 𝜎𝑚𝑎𝑥 , 𝑣𝑝]. Table 2 includes the chosen nominal 



parameters and the associated critical energy release rate in mode I and surface area under the 

elastic part, respectively 𝐺𝑐  and 𝑌0. 

Table 2: DCB specimen geometric and material characteristics 

Adherends Adhesive TSL 

Total length (mm) 180 𝐸𝑎 (MPa) 146 

Overlap length (mm) 130 𝜎𝑚𝑎𝑥(MPa) 14 

Initial crack length (mm) 50 𝑣𝑝(µm) 101.27 

Thickness (mm) 10 𝑌0 (N/mm) 0.67 

Width (mm) 15 𝐺𝑐 (N/mm) 1.42 

Young modulus (GPa) 70   

Poisson ratio ( - ) 0.3   

 

4.2 Synthetic experimental data generation 

The analytical model is used to generate the nominal response of each mechanical field 

previously described. In order to carry out the inverse identification and to estimate the 

confidence intervals, a first approach is to generate synthetic experimental data by applying a 

Gaussian noise. This noise enables the representation of experimental uncertainties that are 

due to the measurement chain (i.e. load captors, gauges, DIC...). For each mechanical 

response, a custom noise is generated as a normal distribution whose mean is equal to zero 

and whose standard deviation is approximately 1% of the maximal mechanical response 

(Table 3). Figure 7 displays the associated experimental data and optimisation results. 

Table 3: Applied noise mean value for each mechanical response. 

Method P(Δ) J(,) Gauges DIC - Deflection DIC - Rotation 

Units N kJ/m² μdef mm rad 

𝝈𝒏𝒐𝒊𝒔𝒆 10 10 20 0.01 0.005 



 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7: Synthetic measurements data with its optimization result; (a) P(Δ); (b) J(,); (c) 

Gauges; (d) DIC - deflection; (e) DIC – rotation. 



The minimization and confidence interval identification procedure were carried out for each 

mechanical response that can be obtained on a DCB test. For clarity purpose, the process will 

only be detailed for the force-displacement curve as it is similar for the other methods. 

4.3 Application to the Force-displacement curve 

The χ² minimization is executed on experimental data in order to determine the optimized 

parameters triplet. To identify the confidence regions, sensitivity functions are determined 

analytically using equation (eq 4). Mechanical responses are computed for a ±5% variation of 

each parameters. The standard deviation (eq 5) between the optimized model data and the 

experimental data are then computed enabling the determination of the covariance matrix. It 

is possible to draw the confidence region in three-dimension, projected on 2-parameters plane 

and projected in 1 dimension which gives access to confidence regions and intervals. The 

confidence regions at 95% of the force-displacement curves are illustrated in Figure 8. The 

ellipsoid and ellipses are centred on the nominal value. As expected, the individual 

confidence intervals are smaller than the regions in two dimensions. It appears that the 95% 

confidence intervals (i.e. individual) for the modulus is comprised between 127.3MPa and 

164.7 MPa, for the maximal stress between [13.7, 14.5] MPa and for the displacement jump 

between [98.2, 104.4] µm. Moreover, in order to assess the quality of the minimization and 

confidence regions, the χ² optimization has been carried out 12 times for experimental data on 

which were applied a new random noise. The results of these minimizations are illustrated in 

Figure 8 as grey diamonds. It can be noticed that they are all included in the confidence 

regions and intervals which is a quality assurance of the minimization procedure and shows 

that the results are reproducible. 



  

(a) (b) 

  

(c) (d) 

Figure 8: Confidence regions at 95% for the Force-displacement response: (a) confidence 

ellipsoid; (b) confidence ellipse for 𝐸𝑎 and 𝜎𝑚𝑎𝑥; (c) confidence ellipse for 𝐸𝑎 and 𝑣𝑝; (b) 

confidence ellipse for 𝜎𝑚𝑎𝑥 and 𝑣𝑝 

The coupling between the parameters (i.e. 𝐸𝑎/𝜎𝑚𝑎𝑥, 𝐸𝑎/𝛿𝑝, 𝜎𝑚𝑎𝑥/𝛿𝑝) can also be obtained 

with the correlation matrix (eq 6), in the force-displacement case it gives:  

𝑐𝑜𝑟𝑟 = [
1 −0.51 0.50

−0.51 1 −0.99
0.5 −0.99 1

] (eq 8) 

The correlation matrix indicates that the variation of the maximal stress and displacement 

jump at propagation are so highly correlated that the variation of one can be quasi entirely 

compensated by the other one, posing the problem of evaluation reliability. This implicates 

that the parameters triplet chosen is not well defined for this mechanical response. To 



eliminate this constraint, one could want to study the variation of critical energy release rate 

instead of 𝑣𝑝 for instance. 

Moreover, the confidence regions and interval should be analysed carefully as the methods 

uses quadratic approximation when it is not necessarily true. Thus, the real confidence 

regions might not be regular ellipses and confidence intervals in one dimension might not be 

symmetric. However, this method enables the easy comparison of the different mechanical 

responses that can be used to determine the adhesive traction separation law parameters. 

5 Comparisons 

The analysis procedure presented earlier has been applied to the other mechanical response as 

well. From this study, an evaluation of the methods can be made from the comparison of the 

confidence intervals, confidence regions and parameters coupling.  

5.1 Confidence intervals and regions 

The most straightforward results to analyse are the confidence intervals for each parameter 

individually. They are symmetric and centred around the nominal value. Therefore, the 

comparison between the methods will only be made with the interval radius. The results for 

every method and every parameter for a 95% confidence interval are summarized in Table 4 

Table 4: 95% confidence intervals comparison 

Method P(Δ) J(,) Gauges DIC - Deflection DIC - Rotation 

𝑬𝒂  (MPa) 18.70 13.22 10.78 5.29 5.53 

𝝈𝒎𝒂𝒙 (MPa) 0.42 0.17 0.55 0.12 0.12 

𝒗𝒑 (μm) 3.10 1.21 4.03 1.23 1.15 

Overall, it appears that the results obtained using DIC are better than the other methods 

especially for the determination of the initial modulus where the deflection confidence 

interval (CI) radius is of 5.3 MPa. For the stress and the displacement jump, the DIC-rotation 



dominates once again with radius of 0.12 MPa and 1.15 μm respectively. However, J(,) 

gives close results with CI radius of 0.17 MPa and 1.21 μm. 

Another insight on the differences between the methods is given by the correlation matrix 

(Table 5). Indeed, for each method parameters coupling appears to be different but follow the 

same tendencies. The couple 𝜎𝑚𝑎𝑥/𝛿𝑝 appears to be strongly correlated for every methods. 

This implies that during the minimisation their correct value might not have been found 

accurately as a small variation of one compensate the deviation of the other. The two other 

couples are moderately correlated. The use of DIC-deflection seems to ensure a low 

correlation between the modulus and both 𝜎𝑚𝑎𝑥 and 𝛿𝑝.  

Table 5: Correlation between the parameters couple 

Method P(Δ) J(,) Gauges DIC - Deflection DIC - Rotation 

𝑬𝒂/𝝈𝒎𝒂𝒙 -0.510 -0.639 -0.751 -0.149 -0.551 

𝑬𝒂/𝜹𝒑 0.500 0.635 -0.747 0.160 0.476 

𝝈𝒎𝒂𝒙/𝜹𝒑 -0.990 -0.996 -0.998 -0.980 -0.975 

The visual analysis of the confidence ellipses given by the projection of the ellipsoid on two 

dimensions planes gives complementary information (Figure 9). The smallest interval regions 

are obtained for both DIC methods again. 

    

(a) (b) 



  

(c) 

Figure 9: Comparison of two-dimensions 95% interval regions comparison: (a) Modulus and 

maximal stress plane; (b) Modulus and displacement jump at propagation plane; (c) Maximal 

stress Modulus and displacement jump at propagation plane. 

The ellipsoid volume analysis gives the overall confidence intervals as it reflects the tightness 

of the confidence intervals in three dimensions. A small volume indicates a better estimation. 

Table 6 shows that the DIC in rotation gives the smallest volume.  

Table 6: 95% confidence ellipsoid volume 

 P(Δ) 

 

J(,) Gauge DIC - deflection DIC - rotation 

Volume 35.71 2.06 11.74 1.86 1.52 

 

5.2 TSL confidence envelop 

From the three dimensions confidence volume, it is possible to determine the TSL that are on 

the verge of the 95% confidence surface. Each parameter triplet, which is on the ellipsoid 

surface, is used to generate the CZM envelope illustrated in Figure 10(a,c,e,g,i). From these 

envelops the associated mechanical field envelop can be computed (Figure 10(b,d,f,h,j)). It 

appears that even for the broader envelops the impact on the computed mechanical fields 

seems to be negligible. That is to say that if the motivation of the CZM identification is only 

the simulation of the mechanical fields response, then each of these methods gives correct 



results. However, if the TSL parameters are used to simulate the behaviour of other kind of 

assemblies that can have a failure behaviour more sensitive to them than to 𝐺𝑐, then better 

results will be obtained for DIC or J(,) methods as the parameters identified are closer to 

the real nominal response.  
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Figure 10: Traction separation law envelope for 95% confidence regions: (a) P(Δ); (b) J(,); 

(c) Gauges; (d) DIC – deflection; (e) DIC – rotation 

Moreover, as the DCB test was designed to determine the critical energy release rate 𝐺𝑐 in 

mode I, another verification can be done using its evaluation for the 95% confidence ellipsoid 

surface. In Table 7, it appears that all methods except the gauges give a prediction with less 

than 0.05% variation from the nominal value, which is equal to 1.41780 N/mm. 

Table 7: Critical energy release rate evaluation for the 95% confidence volume 

 P(Δ) 

 

J(,) Gauge DIC - deflection DIC - rotation 

𝑮𝒄,𝒎𝒐𝒚 1.41708 1.41766 1.41622 1.41773 1.41775 

std 0.0071 0.0018 0.0049 0.0051 0.0048 

 



5.3 TSL application to a SLJ  

In order to highlight the importance of the TSL parameter estimation, a semi analytical model 

developed by Paroissien et al. has been used to simulate the force-versus displacement results 

of a single-lap-joint test [14] [27]. The test geometry presented in Table 8 has been chosen in 

order to obtain a failure caused predominantly by peeling rather than shear [28]. According to 

Martin et al. for this test case, the mode mixity is simply managed by setting the same TS law 

in mode II than in mode I. Moreover, the numerical results provided come from converged 

model in terms of element density per characteristic length [29]. Table 8 presents the 

geometric and material characteristics of the SLJ test.  

To evaluate the impact of the TSL, the superior and inferior boundaries of the P(Δ) CZM 

envelope were tested (Figure 11(a)). As illustrated in Figure 11(b), for a similar shear 

behaviour but different TSL in mode I, the differences obtained are quite important. It 

appears that there is a variation of 2000N in maximum load. This stresses out the importance 

of a reliable estimation of the TSL parameters when carrying out the identification on a 

different mechanical test. 

 

Table 8: SLJ specimen geometric and material characteristics 

Adherends Adhesive 

Length outside the overlap (mm) 50 𝐺𝑎 (MPa) 50 

Overlap length (mm) 50 𝑒𝑎(mm) 0.247 

Initial crack length (mm) 50 𝐸𝑎
𝑖𝑛𝑓

 (MPa) 163 

Thickness (mm) 10 𝜎𝑚𝑎𝑥
𝑖𝑛𝑓

(MPa) 13.3 

Width (mm) 25 𝐺𝑐
𝑖𝑛𝑓

 (N/mm) 1.4167 

Young modulus (GPa) 210 𝐸𝑎
𝑠𝑢𝑝

 (MPa) 129 



Poisson ratio ( - ) 0.3 𝜎𝑚𝑎𝑥
𝑠𝑢𝑝

(MPa) 14.7 

  𝐺𝑐
𝑠𝑢𝑝

 (N/mm) 1.4137 

 

  

(a) (b) 

Figure 11: (a) TSL envelope for the force-displacement; (b) Force versus displacement results 

of a SLJ  

 

Conclusion 

The DCB test is widely used to identify the adhesive behaviour. However, the identification 

of the correct TSL parameters from this test can be challenging because its mechanical 

response appears not to be very sensitive. However, a reliable estimation of the mode I TSL 

is needed when simulating other mechanical tests that are subjected to more complex 

solicitations. A virtual test campaign has then been carried out in order to determine if one or 

several of its mechanical fields enables a more accurate identification of the triangular TSL 

parameter. To do so, the χ² minimization has been applied on synthetic experimental data. Its 

analysis enables the identification of the parameters confidence domains, as well as their 

coupling. It showed that in order to determine the parameters of an arbitrarily chosen TSL 

shape (triangular) with an inverse method, the smallest confidence regions are given by 

digital image correlation. The overall parameter estimation is better when measuring the 



adherends’ rotation but the analysis of the deflection ensures a smaller coupling between the 

parameters. The slight augmentation of the confidence volume might be compensated by a 

more accurate prediction of the parameters. This is to be expected has DIC gives access to 

more data throughout the test. However, as the use of DIC needs a high investment in 

equipment, the parameters can also be obtained using the J(,) method. It gives similarly 

good results but its analysis needs to be done more carefully as its theoretical background is 

limiting.  
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