
HAL Id: hal-02548226
https://hal.science/hal-02548226

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Graham’s bound for cyclic scheduling
Philippe Chrétienne

To cite this version:
Philippe Chrétienne. On the Graham’s bound for cyclic scheduling. [Research Report] lip6.1999.013,
LIP6. 1999. �hal-02548226�

https://hal.science/hal-02548226
https://hal.archives-ouvertes.fr

On Graham's Bound for Cyclic SchedulingPhilippe Chr�etienneUniversit�e Pierre et Marie CurieLaboratoire LIP6April 10, 1999AbstractThis paper adresses the performance of list scheduling a cyclic set ofN non-preemptive dependent generic tasks on m identical processors.The reduced precedence graph is assumed to be strongly connectedbut the number of simultaneously active instances of a generic taskis not restricted to be at most one. Some properties on arbitraryschedules are �rst given. Then we restrict to regular schedules forwhich it is shown that the number of ready or active tasks at anyinstant is at least the minimum height H� of a directed circuit of thereduced precedence graph. The average cycle time of any regular listschedule is then shown to be at most (2�minfH�;mgm) times the absoluteminimum average cycle time. This result, which is similar well-known(2 � 1m) Graham's bound applying for non cyclic scheduling, showsto what extent regular list schedules take the parallelism of the cyclictask system into account.1 IntroductionCyclic scheduling addresses the problem of scheduling a cyclic set of inter-dependent tasks that may for example model the body of a program loopor the tasks involved in the mass production of an equipment.Cyclic scheduling is not less di�cult than non-cyclic scheduling since anynon-cyclic scheduling problem polynomially reduces to a cyclic problemwhere successive iterations do not overlap. Most of the research e�ort incyclic scheduling has concerned the basic cyclic scheduling problem [7], [8],[10], dominant subsets of periodic schedules for the cyclic scheduling prob-lem with m identical processors [3], complexity and e�cient algorithms for1

special cases [4],[6]. Unlike for non-cyclic scheduling where a lot of researchhas been devoted to approximation [1], [2], searching for the performance ra-tio of approximation algorithms has been relatively rare for cyclic schedulingproblems. In [5], non-cyclic list scheduling and the famous Graham's boundhave been combined to derive a strictly periodic schedule whose average cy-cle time is at most 2� (1=m)�opt+ (m� 1=m)(pmax � 1) where �opt is themaximum time-to-height ratio of a circuit in the reduced precedence graph.In [9], list schedules have been de�ned for cyclic scheduling problems withnon-reentrant generic tasks and have been shown to provide the performanceratio (2 � 1m). In [13], new priority lists have been de�ned and tested formore general cyclic-task systems modelled by timed Petri nets.This paper concerns the performance of list schedules for the general cyclicscheduling problem on m identical machines (GCSP in abbreviated form).In Section 2, the general cyclic scheduling problem onm identical processorsis speci�ed. In Section 3, a dominance property in the set of schedules aswell as some properties of arbitrary schedules are given; in particular thenumber of ready or active tasks at any instant is shown to be at least theminimum height H� of a directed circuit of the reduced precedence graph.In Section 4, the performance ratio of an arbitrary regular list schedule isshown to be (2� minfH�;mgm). This result, which may be seen as the analog ofthe Graham's bound for non-cyclic list scheduling, shows that minfH�; mg)is a good measure of the parallelism of the cyclic task system. The lastsection is devoted to some conclusions.2 The cyclic scheduling problem GCSPA scheduling problem is said to be cyclic if its in�nite task graph has aperiodic structure. In the case of GCSP , this structure is as follows:The tasksThe task set T is partitioned into an in�nite number of iterations whereeach iteration is an instance of a �nite set T = fT1; T2; � � � ; TNg of so-calledgeneric tasks. Each iteration is indexed by a natural number n � 1 and thetasks of the iteration n are denoted by Tnj ; Tj 2 T . The task Tnj is called theinstance n of Tj . Tasks are not preemptive and all the instances Tnj ; n � 1of the same generic task Tj have the same positive integer duration pj . Themaximum duration of a generic task is denoted by pmax.2

The precedence constraintsThe precedence constraints are de�ned from a �nite set U = fu1; � � � ; uP gof so-called generic uniform precedence constraints. Each uk is a triple(Ti; Tj ; h) where Ti = u�k and Tj = u+k are two generic tasks and where h isa natural number called the height of uk. The maximum height of a genericprecedence contraint is denoted by hmax. If uk = (Ti; Tj; h) is a genericprecedence constraint then for each iteration n � 1, the task Tni must becompleted before the task Tn+hj starts its execution.The precedence graph G is an in�nite directed acyclic graph with a periodicstructure (see Figure 1). The set of the immediate predecessors (resp. suc-cessors) in G of the task T pi is denoted by IN(T pi) (resp. OUT (T pi)).The directed graph bG = (T; U) whose nodes are the generic tasks and whosearcs correspond to the generic precedence constraints is called the reducedprecedence graph (see Figure 2).The reduced precedence graph of an instance of GCSP is assumed to be con-sistent (i.e: every simple circuit has a strictly positive height) and stronglyconnected. Consistency is needed for the set of schedules to be non emptywhile strong connectivity provides essential stability properties to schedules.Let H� be the minimum height of a simple circuit of bG. Since the heightof an arc is a non-negative integer, then any circuit of bG has a non-negativeheight and H� may be computed in polynomial time using any \all short-est paths" algorithm that de�nes the cost of an arc to be its height. As aconsequence, the consistency property may be decided in polynomial time.The resource constraintsm identical processors fP1; � � � ; Pmg are available to execute the tasks. Asusual, the execution of each task Tnj ; Tj 2 T; n � 1 requires one processorand, at any instant, one processor may execute at most one task.Schedule, average cycle time and optimizationAn instance I = (G; h; p;m) of GCSP is thus speci�ed by a strongly-connected graph bG = (T; U), non-negative integral arc heights h(u); u 2 U ,positive integral processing times pi; Ti 2 T and the number m of processors.A schedule S = (s; �) of I assigns each task T kj ; Tj 2 T; k � 1 a startingtime s(i; k) and a processor �(i; k) such that all the resource and precedenceconstraints are satis�ed. The completion time Cn(S) of iteration n is equalto maxfs(j; n)+pj j Tj 2 Tg and the average cycle time !(S) of S is de�ned3

T1

T2

T4

T3

it#6it#1 it#2 it#3 it#4 it#5

Figure 1: The precedence graph G.
4 generic tasks T1,T2,T3,T4
p1=3, p2=3, p3=4, p4=2
an arc is labelled by its height

T1 T2

T3

T4

1

1 1

2
1 0Figure 2: The reduced precedence graph bG.4

by lim supn!1(Cn(S)=n). The absolute minimum average cycle time �(I)is the greatest lower bound of the values !(S) over the set of schedules ofI . The scheduling problem is to determine a schedule whose average cycletime is as small as possible.Let K be a positive integer and let r be a positive rational number. Aschedule S is said to be K-periodic with period r if there exists a positiveinteger N0 such that for any generic task Ti, the sequence fs(i; n) j n � 0gsatis�es: 8n � N0: s(i; n + K) = s(i; n) + r. Note that in this case, wehave !(S) = limn!1 Cn(S)=n = r=K. K is called the periodicity factor ofS whereas N0 is the length of the transient phase of S.3 Schedule properties3.1 Arbitrary schedulesWe introduce in this section some general de�nitions and properties thatrefer to an arbitrary schedule S = (s; �) of an instance I of GCSP .The number of instances of Ti started in the time interval [0; t] (respectively[0; t[) is denoted by D+i (t) (respectively D�i (t)). The number of instancesof Ti completed in the time interval [0; t] is denoted by Fi(t). The taskT ki is said to be active at time t in S if s(i; k) < t < s(i; k) + pi. Thenumber Ai(t) of instances of Ti, which are active at time t in S is thus equalto D�i (t) � Fi(t). These de�nitions are illustrated for the schedule shownin Figure 3. The following lemma shows that every schedule satis�es theso-called balance property.Lemma 1 Let H1 be the maximum height of any simple path of bG. For anytwo generic tasks Ti and Tj and for any time t � 0, jD�j (t)�D�i (t)j � H1.Proof. | Let Ti and Tj be two generic tasks. Since bG is strongly con-nected, there is a simple path � in bG from Ti to Tj . Let h(�) be the heightof �. For every k > h(�), any start in [0; t[of a task T kj is preceded by thestart in [0; t[of the task T k�h(�)i , so we have D�j (t) � h(�) + D�i (t). Wethus conclude that jD�j (t)�D�i (t)j � H1Let uk = (Ti; Tj; h) be an arc of bG. The pre-marking M�k (t) (respec-tively post-marking M+k (t)) of uk at time t is de�ned as h + Fi(t) �D�j (t)(respectively h+ Fi(t)�D+j (t)). 5

Lemma 2 For any time t � 0 and any arc uk, we have M+k (t) � 0.Proof. | Let uk = (Ti; Tj; h). Let N1(j) (respectively N2(j)) be thenumber of tasks T kj with k > h (respectively k � h) started in [0; t]. Sincefor any k > h, a start in [0; t] of a task T kj with k > h is preceded by thecompletion in [0; t] of the task T k�hi , we have Fi(t) � N1(j). It is straightfor-ward from the de�nitions that: N1(j) +N2(j) = D+j (t) and N2(j) � h. Wethus conclude that D+j (t) � h+ Fi(t) or equivalently that M+k (t) � 0.Even if S = (s; �) is such that the resource constraint is satis�ed and thepost-marking of every arc remains positive, then S may not be a schedule.Consider for example a single generic task T1 with p1 = 1, a single genericprecedence constraint (T1; T1; 1) and only one machine. The assignments(1; 2) = 0,s(1; 1) = 1,and s(1; k) = k � 1 for k � 3 is such that for anyt � 0, M+1 (t) � 0 but is not a schedule.Lemma 3 Let � be an arbitrary simple circuit of bG. At any time t � 0, wehave Puk2�M�k (t) +PTi2�Ai(t) = h(�).Proof. | Let uk = (Ti; Tj; h) be an arc of �. Since Ai(t) = D�i (t)�Fi(t),we haveM�k (t) = h+Fi(t)�D�j (t)=h+(D�i (t)�D�j (t))�Ai(t). Summingover the arcs of �, we get: Puk2�M�k (t) +PTi2�Ai(t) = h(�).3.2 Regular schedulesS = (s; �) is said to be regular if for every generic task Ti, the time sequences(i; k) satis�es: 8k � 1; s(i; k + 1) � s(i; k). The next lemma shows thatif S = (s; �) is regular and meets the resource constraint, then the non-negativity of the post-marking ensures that S is a schedule.Lemma 4 If S = (s; �) is a time and processor assignment such that a) Sis regular, b) for any time t � 0 and any arc uk 2 P : M+k (t) � 0 and c) theresource constraint is sati�ed, then S is a schedule.Proof. | Consider an arc uk = (Ti; Tj; h). From b), we know thatfor any t � 0, M+k (t) = h + Fi(t) � D+j (t) � 0. Let us assume that fork > h, s(j; k) = t. Since S is regular, we have D+j (t) � k and we get that6

T1

T
2

T3

T4

1

1 1

21 0

T1 T2

T3

T4

1

0 1

00 0

T2

T3

T4

2

0 1

11 0

T4

T1 T2

T3

2

0 1

11 1

the post-marking M
+

the final marking M
~

the pre-marking M
-

0 3
6

7 12
15

T1,1

T1,2

T3,3

T2,1 T2,2 T2,3 T2,4

T3,1

T3,2

T3,4T4,1

T4,2

2-periodic pattern

T4,4

T2,5 T2,6

T1,4 T3,6

24

T3,5T1,3

T1,5

T4,3 T4,5

T2

Instantaneous values at time 6

i

D

D

F

1 2 3 4

1 2 2 1

2 3 2 1

1 2 1 1

+

-

4 9

T1

6 6 6

i

i

i

Figure 3: De�nitions associated with a schedule7

Fi(t) � k�h. Again from the regularity of S we get that s(i; k+h)+pi � t.We thus conclude that the generic precedence uk is satis�ed by S. So S isa schedule since it also meets the resource constraint (assumption c) of thelemma).It is now easy to derive from Lemmas 2 and 4 that the regular schedulesmake a dominant subset.Theorem 1 For any instance of GCSP , there is an optimal schedule whichis regular.Proof. | Let S = (s; �) be a schedule of an instance I . The task subsetfTni j n � 0g may be totally ordered by �S with respect to S = (s; �) whereT pi �S T qi if s(i; p) < s(i; q) or ((s(i; p) = s(i; q)) and (�(i; p) < �(i; q))).For each generic task Ti, let us denote by T iki the instance of Ti whose rankis k with respect to �S . Consider now the time and processor assignmentS0 = (s0; �0) we get by replacing in the processor-time diagram of S each taskT jkj by the task T kj , i.e: for each task T ki : s0(i; k) = s(i; ik); �0(i; k) = �(i; ik).Clearly S0 is regular and satis�es the processor constraint. Moreover fromthe de�nition of S0, the marking functions M+ and M 0+ associated respec-tively with S and S 0 are identical. Since S is a schedule, we know fromLemma 2 that for any uk 2 P and for any t � 0, M+k (t) � 0. We thus havethat for any uk 2 P and for any t � 0, M 0+k (t) � 0. Finally we concludefrom Lemma 4 that S0 is a regular schedule of I such that !(S) = !(S 0).At any time t � 0, we denote by E(t) the subset of the tasks whoseexecution has started in [0; t[and by G(t) the subgraph of G induced by thetasks of E(t). The restriction of S to the tasks of E(t) is denoted by S(t).S(t) is clearly a schedule of G(t). The �nal marking ~M(t) of S(t) is suchthat for any arc uk = (Ti; Tj; h) of Ĝ: ~Mk(t) = M�k (t) + Ai(t). Figure 3shows the �nal marking at time 6 for the corresponding schedule. The taskT ki is said to be ready at time t in S if T ki 62 E(t) and if each task in IN(T ki)is completed by time t in S. The number of instances of Tj that are readyat time t in S is denoted by Rj(t). The following lemma characterizes theready tasks.Lemma 5 If minfM�k (t) j u+k = Tjg = r and D�j (t) = q, then the instancesof Tj ready at time t in S are the tasks Tjq+1; � � � ; Tjq+r.8

Proof. | Let uk = (Ti; Tj; h). If r + q < h, then there is no instanceof Ti in IN(T r+qj). Otherwise, from the de�nitions of r and q, we haveM�k (t) = h + Fi(t) � q � r, from which we get that Fi(t) � r + q � h.In either case the task T r+q�hi is completed by time t in S. So T r+qj isready at time t in S and the same is true for the tasks Tj1+q; � � � ; Tjr�1+q .We thus have Rj(t) � r. Moreover from the de�nition of r, we knowthere is uk0 = (Ti0; Tj; h0) such that M�k0 = r, from which we get thatFi0(t) = r+ q�h0. Thus T r+q�h0+1i0 is not completed by time t in S. So thetask T r+q+1j is not ready at time t in S and the same is true for the tasksT r+q+kj with k > 1. We thus have Rj(t) = r.The above characterization of the ready tasks leads us to derive a lowerbound on the number RA(t) of the ready or active tasks at time t in S.This will be the key property for the performance analysis of the regular listschedules.Theorem 2 Let H� be the minimal height of a simple circuit of Ĝ. Forany schedule S and any time t � 0, we have RA(t) � H�.Proof. | Let t � 0. With each generic task Tj , we associate an arc uk(j)such that u+k(j) = Tj and ~Mk(j)(t) = minf ~Mk(t) j u+k = Tjg. The subgraphof Ĝ induced by the arcs uk(j); Tj 2 T has at least one simple circuit �. FromLemma 5 and since Aj(t) = D�j (t)� Fj(t), we haveRj(t) +Aj(t) =M�k(j)(t) +Aj(t) = hk(j) + Fu�k(j)(t)� Fj(t)Let us now consider the number of ready or active instances of the generictasks of �. From the de�nition of the arcs uk(i), we have:XTj2�(Rj(t) +Aj(t)) = X(Ti;Tj ;h)2�(h+ Fi(t)� Fj(t)) = h(�)We thus conclude thatRA(t) = XTj2T(Rj(t) + Aj(t)) � XTj2�(Rj(t) +Aj(t)) � H�9

We now show that H� is a best lower bound for RA(t) since there is aschedule S and a time t such that RA(t) = H�.Without loss of generality, let us assume that C = fTN�c+1; � � � ; TNg arethe generic tasks of a simple circuit of Ĝ whose height is H�. A task subset� � T is said to be �C-initial (where �C = fT1; � � � ; TN�cg) if:1. T qj 2 �) Tj 2 �C;2. (T qj 2 � and T pi 2 IN(T qj))) T pi 2 � .A subset � � T is regular if � = [Ni=1fTi1; � � � ; Tikig where by conventionfTi1; � � � ; Tikig = ; if ki = 0. A regular �C-initial subset may thus be denotedby �(k1; � � � ; ki; � � � ; kN�c). A regular �C-initial subset � is locally maximalif for any i 2 f1; � � � ; N � cg, �(k1; � � � ; ki + 1; � � � ; kN�c) is not a �C-initialsubset. The next lemma shows that there is a locally maximal �C-initialsubset.Lemma 6 If C = (TN�c; TN�c+1; � � � ; TN ; TN�c) is a simple circuit of thereduced precedence graph, there is a locally maximal �C-initial subset.Proof. | Since Ĝ is strongly connected, for every Tj ; j 2 f1; � � � ; N� cg,there is a path from TN to Tj in Ĝ. So for every Tj ; j 2 f1; � � � ; N � cg,there is a positive integer hj such that Thjj does not belong to any �C-initialsubset. Since the empty set is a regular �C-initial subset, there is a locallymaximum �C-initial subset.Theorem 3 There is a schedule and a time t such that RA(t) = H�.Proof. | Let K̂ be a regular �C-initial subset and let t = PT qj 2K̂ pj .Consider a regular schedule S, which �rst executes on the same processorthe tasks of K̂. Since K̂ is locally maximal, any task T qj with Tj 2 �C isneither ready for S at time t nor active at time t in S. So the only tasksthat might be ready or active at time t in S are the tasks T qj with Tj 2 C.Let uk(j) be the arc in C whose output node is Tj. From Lemma 3, weknow that PTj2C(M�k(j)(t) + Aj(t)) = H�. Since from Lemma 5, we haveRj(t) � M�k(j)(t) for any Tj 2 C, we get that RA(t) � H� and from Theo-rem 2 that RA(t) = H�. 10

Let us illustrate this result on the instance of Figure 2. Here we haveH� = 2 and C = (T1; T3; T4; T1) is a circuit with height 2. fT 12 ; T 22g is alocally maximal �C-initial subset . Once these two tasks are executed, theonly ready tasks are T 11 and T 13 .4 The performance of regular list schedules4.1 List schedules and regular list schedulesA schedule S is a list schedule if for any idling interval [t; t + �[(� > 0)of a processor , any task scheduled at time u > t has at least one of itspredecessors being processed at time t in S.A list algorithm is such that at any time when at least a new task may beperformed (decision time), as many ready tasks as possible are assigned tothe free processors.A list algorithm is said to be regular if , at each decision time �, the readyinstances of a generic task are assigned to free processors according to in-creasing iteration numbers. More precisely, if T pi is assigned a free processorat decision time �, then so is every task T qi with q < p that is ready at time�.The following property shows that regular list algorithms generate regularlist schedules.Property 1 The schedule provided by a regular list algorithm is a regularlist schedule. Conversely, a regular list schedule is the schedule provided bya regular list algorithm.Proof. | Let S = A(I) be the schedule provided by the regular list algo-rithm A on the instance I of GCSP and let �n; n � 0 be the sequence of thedecision times of S. We show by induction on n that the partial scheduleS+(�n) associated with the tasks started in [0; �n] is regular. This holds forn = 0 since a) A is regular and b) if T qj is ready at time �0 = 0, then sois every task T pj with p � q. Assume now that S+(�n�1) is regular and letlast(i) be the instance of Ti in S+(�n�1) with the highest iteration index.Again since S+(�n�1) is regular, then if T pi is ready at time �n in S, thenso is every instance T ri with last(i) < r � p. Now since A is regular, we getthat S+(�n) is a regular list schedule.Conversely, if S is a regular list schedule of the instance I of GCSP , let usdenote by L(S) the (in�nite) list of the tasks ordered by increasing starting11

times using increasing processor numbers for tie-breaking. Since S is reg-ular, it is clear that the list algorithm algorithm associated with L(S) is aregular list algorithm that provides the the schedule S.The periodic schedule shown on Figure 3 is a list schedule of the instanceof the GCSP instance shown in Figure 2.4.2 The performance ratio of regular list schedulesLet I = (G; h; p;m) be an arbitrary instance of GCSP . We show in thissection that the average cycle time of every regular list schedule S of I is atmost (2� K�m)�(I) where �(I) is the absolute minimum average cycle timeof I and K� = minfH�; mg. We �rst recall the following characterization of�(I) that has has been proved in [9] where� Gn is the subgraph of G induced by the n �rst instances of each generictask, i.e: by fT pi j i 2 f1; � � � ; Ng; p 2 f1; � � � ; ngg� On is an optimal schedule of Gn.Lemma 7 Let M(On) be the makespan of an optimal schedule of Gn. Theabsolute minimum average cycle time of I is lim supn!1 M(On)nTheorem 4 Let I = (G; h; p;m) be an arbitrary instance of GCSP . Everyregular list schedule S of I satis�es !(S) � (2� K�m)�(I)Proof. | Let A be a regular list algorithm and let S = A(I) be the as-sociated regular list schedule. We consider the time window W = [0; Cn(S)]of the Gantt time diagram of S. W may be partitionned into total activityperiods where all the processors are busy and partial activity periods whereat least one processor is idle (see Figure 4).Let [a; b] be one partial activity period. We denote by d0; � � � ; dr thedecision times of S in [a; b]. Note that we have d0 = a, d0< � � �<dr anddr = b. Since A is a list algorithm, for every decision time di, the numbermi of busy processors in [di; di+1] is minfm; ai + rig where ai (respectivelyri) is the number of ready (respectively active) tasks at time di in S. FromTheorem 2, we have ai + ri � H�. Since [di; di+1] belongs to a partialactivity period and A is a list algorithm, we get ai + ri < m. We thus havemi = ai + ri, from which we conclude that mi � minfm;H�g = K�.Starting with a task Tni of Gn that completes in S at time Cn(S) and12

Cn(S)0

busy period idle period task of µ(n)Figure 4: Structure of the time window Wfollowing the lines of the well-known Graham's proof in [11], we know thatthere is a path �n of tasks in Gn whose last task is Tni and whose successiveexecution time intervals in S totally overlaps the partial activity periodsof W . So, if Ln is the sum of the durations of the tasks on �n, we haveCn(S) � Ln from which we get:!(S) � lim supn!1 LnnLet us now denote by Rn(S) the sum of the durations of the tasks T kjstarted in the time interval [0; Cn(S)[and such that k > n. Let Q� be themaximum height of a simple circuit of Ĝ. We know from Lemma 3 that atmost Q� instances of the generic task Ti complete at time Cn(S) and fromthe regularity of S, we derive that D�i (Cn(S)) � n + Q�. From Lemma 1,we know that for every generic task Tj , (j 6= i), we have k � n+H1 + Q�.We thus conclude that: Rn(S) � (H1 + Q�) XTi2T piAs usual, we �nally consider the time window W of the Gantt-diagramof S. Since the cumulative sum of the idle processor periods is at most(m � K�)Ln and the cumulative sum of the busy processor periods is atmost nPTi2T pi +Rn(S), we get that:mCn(S) � n XTi2T pi +Rn(S) + (m�K�)Ln13

from which we get:Cn(S)n � PTi2T pim + 1mRn(S)n + (m�K�)m LnnNow since Ln �M(On) and PTi2T pim � �(I), we derive from Lemma 7 that:!(S) = lim supn!1 Cn(S)n � (2� K�m)�(I)5 ConclusionIn this paper, we have studied the performance of list-scheduling a cyclicset of non-preemptive, interdependent and reentrant generic tasks. Regu-lar schedules, where the instances of each generic task must be scheduledin the order of increasing iteration numbers, have been shown to make adominating set of schedules. Then, from the property that in any regularschedule, the number of active or ready tasks is at least minfm;H�g (whereH� is the the minimum height of a simple circuit in the reduced precedencegraph) the average cycle time of any regular list schedule has been shown tobe at most (2� minfm;H�gm) times the minimum absolute average cycle time.This latter result, which extends the ratio 2� 1m previously shown to applyto the special case of non-reentrant tasks may be considered as the analogfor GCSP of the well-known Graham's bound. It also brings a quantitativeinsight to the rather intuitive idea that a list scheduling algorithm shouldbehave better on a cyclic set of tasks than on a �nite number of its iterations.Another interesting aspect is that if H� � m, any regular list schedule isoptimal. So 2� minfm;H�gm is a best bound and H� is a good measure of theparallellism of the in�nite task graph.AcknowledgementsI thank the referees for their helpful remarks and comments.14

References[1] J.K. Lenstra and D.B. Shmoys (1995). Computing near optimal sched-ules, Scheduling theory and its applications, chap. 1, 193-224, Eds P.Chr�etienne, E.G. Co�man, Jr, J.K. Lenstra and Z. Liu, Wiley.[2] E.G. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan and D.B. Shmoys(1994). Sequencing and Scheduling: algorithms and complexity, ReportBS-R8909, Center forMathematics and Computer Science, Amsterdam.[3] C. Hanen and A.Munier (1995). A study of the cyclic scheduling prob-lem on parallel processors, Disc. Appl. Math., 57, 167-192.[4] C. Hanen and A. Munier (1995). Cyclic scheduling on parallel proces-sors, Scheduling theory and its applications, chap. 9, 193-224, Eds: P.Chr�etienne, E.G. Co�man, Jr, J.K. Lenstra and Z. Liu, Wiley.[5] F. Gasperoni and U. Schwiegelshohn (1994). Generating close to opti-mal loop schedules on parallel processors, Par. Proc. Let., 4(4), 391-403.[6] A. Munier (1991). Contribution �a l'�etude des ordonnancements cy-cliques, PhD thesis, P. and M. Curie University.[7] P. Chr�etienne (1985). Transient and limiting behavior of timed eventgraphs, RAIRO-TSI, 4, 127-142.[8] P. Chr�etienne (1991). The basic cyclic scheduling problem with dead-lines, Disc. Appl. Math., 30, 109-123.[9] P. Chr�etienne (1997). List schedules for cyclic scheduling, to appear inDisc. Appl. Math..[10] G. Cohen, D. Dubois, J.P. Quadrat and M. Viot (1985). A linear systemtheoretic view of discrete event process and its use for performanceevaluation in manufacturing, IEEE Trans. Aut. Cont., 30, 3.[11] R.L. Graham (1969). Bounds on multiprocessing timing anomalies,SIAM J. Appl. Math., 17, 416-429.[12] E.G. Co�man,Jr and R.L. Graham (1972). Optimal scheduling for twoprocessors systems, Act. Inf., 13, 200-213.[13] T. Watanabe and M.Yamauchi (1993). New priority lists for schedulingin timed Petri nets. ICATPN93, LNCS 691, Chicago.15

