N
N

N

HAL

open science

On the Graham’s bound for cyclic scheduling

Philippe Chrétienne

» To cite this version:

Philippe Chrétienne. On the Graham’s bound for cyclic scheduling. [Research Report] lip6.1999.013,

LIP6. 1999. hal-02548226

HAL Id: hal-02548226
https://hal.science/hal-02548226
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02548226
https://hal.archives-ouvertes.fr

On Graham’s Bound for Cyclic Scheduling

Philippe Chrétienne
Université Pierre et Marie Curie

Laboratoire LIP6

April 10, 1999

Abstract

This paper adresses the performance of list scheduling a cyclic set of
N non-preemptive dependent generic tasks on m identical processors.
The reduced precedence graph is assumed to be strongly connected
but the number of simultaneously active instances of a generic task
is not restricted to be at most one. Some properties on arbitrary
schedules are first given. Then we restrict to regular schedules for
which it 1s shown that the number of ready or active tasks at any
instant is at least the minimum height H* of a directed circuit of the
reduced precedence graph. The average cycle time of any regular list

_ min{H* m})

schedule is then shown to be at most (2 times the absolute

minimum average cycle time. This result, which is similar well-known
(2 — L) Graham’s bound applying for non cyclic scheduling, shows

m
to what extent regular list schedules take the parallelism of the cyclic

task system into account.

1 Introduction

Cyclic scheduling addresses the problem of scheduling a cyclic set of inter-
dependent tasks that may for example model the body of a program loop
or the tasks involved in the mass production of an equipment.

Cyclic scheduling is not less difficult than non-cyclic scheduling since any
non-cyclic scheduling problem polynomially reduces to a cyclic problem
where successive iterations do not overlap. Most of the research effort in
cyclic scheduling has concerned the basic cyclic scheduling problem [7], [8],
[10], dominant subsets of periodic schedules for the cyclic scheduling prob-
lem with m identical processors [3], complexity and efficient algorithms for

special cases [4],[6]. Unlike for non-cyclic scheduling where a lot of research
has been devoted to approximation [1], [2], searching for the performance ra-
tio of approximation algorithms has been relatively rare for cyclic scheduling
problems. In [5], non-cyclic list scheduling and the famous Graham’s bound
have been combined to derive a strictly periodic schedule whose average cy-
cle time is at most 2 — (1/m) Ayt + (m — 1/m) (praz — 1) where Ay is the
maximum time-to-height ratio of a circuit in the reduced precedence graph.
In [9], list schedules have been defined for cyclic scheduling problems with
non-reentrant generic tasks and have been shown to provide the performance
ratio (2 — %) In [13], new priority lists have been defined and tested for
more general cyclic-task systems modelled by timed Petri nets.

This paper concerns the performance of list schedules for the general cyclic
scheduling problem on m identical machines (GC'SP in abbreviated form).
In Section 2, the general cyclic scheduling problem on m identical processors
is specified. In Section 3, a dominance property in the set of schedules as
well as some properties of arbitrary schedules are given; in particular the
number of ready or active tasks at any instant is shown to be at least the
minimum height H* of a directed circuit of the reduced precedence graph.
In Section 4, the performance ratio of an arbitrary regular list schedule is
shown to be (2— W) This result, which may be seen as the analog of
the Graham’s bound for non-cyclic list scheduling, shows that min{ H*, m})
is a good measure of the parallelism of the cyclic task system. The last
section is devoted to some conclusions.

2 The cyclic scheduling problem GCSP

A scheduling problem is said to be cyclic if its infinite task graph has a
periodic structure. In the case of GC'SP, this structure is as follows:

The tasks

The task set T is partitioned into an infinite number of iterations where
each iteration is an instance of a finite set T' = {7}, Ty, - - -, Tn} of so-called
generic tasks. Each iteration is indexed by a natural number » > 1 and the
tasks of the iteration n are denoted by 77", T; € T'. The task T is called the
instance n of T;. Tasks are not preemptive and all the instances 77", n > 1
of the same generic task 7} have the same positive integer duration p;. The
maximum duration of a generic task is denoted by p,qz-

The precedence constraints

The precedence constraints are defined from a finite set U = {uy,---,up}
of so-called generic uniform precedence constraints. Each wug is a triple
(T, Tj, h) where T; = ui and T; = uj are two generic tasks and where h is
a natural number called the height of up. The maximum height of a generic
precedence contraint is denoted by hyep. If up = (17,1, h) is a generic
precedence constraint then for each iteration n > 1, the task 77 must be
completed before the task T}H'h starts its execution.

The precedence graph G is an infinite directed acyclic graph with a periodic
structure (see Figure 1). The set of the immediate predecessors (resp. suc-
cessors) in G of the task 77 is denoted by IN(TF) (resp. OUT(TY)).

The directed graph ¢ = (T,U) whose nodes are the generic tasks and whose
arcs correspond to the generic precedence constraints is called the reduced
precedence graph (see Figure 2).

The reduced precedence graph of an instance of GC'S P is assumed to be con-
sistent (i.e: every simple circuit has a strictly positive height) and strongly
connected. Consistency is needed for the set of schedules to be non empty
while strong connectivity provides essential stability properties to schedules.
Let H* be the minimum height of a simple circuit of G. Since the height
of an arc is a non-negative integer, then any circuit of G has a non-negative
height and H* may be computed in polynomial time using any “all short-
est paths” algorithm that defines the cost of an arc to be its height. As a
consequence, the consistency property may be decided in polynomial time.

The resource constraints

m identical processors {Py,---, P,,} are available to execute the tasks. As
usual, the execution of each task T, T; € T,n > 1 requires one processor
and, at any instant, one processor may execute at most one task.

Schedule, average cycle time and optimization

An instance I = (G, h,p,m) of GCSP is thus specified by a strongly-
connected graph G= (T, U), non-negative integral arc heights h(u),u € U,
positive integral processing times p;, T; € T and the number m of processors.
A schedule S = (s, w) of I assigns each task Tf,Tj € T,k > 1 a starting
time s(¢, k) and a processor 7 (7, k) such that all the resource and precedence
constraints are satisfied. The completion time C,(.S) of iteration n is equal
to max{s(j,n)+p; | T; € T} and the average cycle time w(S) of S is defined

T1

T2

T4

T3

itHl

A

it#2
7

1\

A

—/

it#3

A

—/

it#4

)

2

A

—/

itH6

D)

—/

Figure 1: The precedence graph G'.

Figure 2: The reduced precedence graph G.

T2

T4

4 generic tasks T1,T2,T3,T4
p1=3, p2=3, p3=4, p4=2
an arcislabelled by its height

(L,

by limsup,,_, ., (C,(S)/n). The absolute minimum average cycle time a(I)
is the greatest lower bound of the values w(S) over the set of schedules of
I. The scheduling problem is to determine a schedule whose average cycle
time is as small as possible.

Let K be a positive integer and let r be a positive rational number. A
schedule S is said to be K-periodic with period r if there exists a positive
integer Ny such that for any generic task 73, the sequence {s(¢,n) | n > 0}
satisfies: Vn > Ng: s(i,n+ K) = s(i,n) + r. Note that in this case, we
have w(9) = limy, o C(5)/n = r/K. K is called the periodicity factor of
S whereas Ny is the length of the transient phase of S.

3 Schedule properties

3.1 Arbitrary schedules

We introduce in this section some general definitions and properties that
refer to an arbitrary schedule S = (s, 7) of an instance I of GC'SP.

The number of instances of T} started in the time interval [0, {] (respectively
[0,¢]) is denoted by DI (t) (respectively D; (t)). The number of instances
of T; completed in the time interval [0,¢] is denoted by F;(t). The task
TF is said to be active at time ¢ in S if s(i,k) < t < s(i,k) + p;. The
number A;(t) of instances of T3, which are active at time ¢ in S is thus equal
to D7 (t) — Fi(t). These definitions are illustrated for the schedule shown
in Figure 3. The following lemma shows that every schedule satisfies the
so-called balance property.

Lemma 1 Let Hy be the mazimum height of any simple path of@. For any
two generic tasks T; and T; and for any time t > 0, |D]_ (t) = D7 (t)| < Hy.

Proof. — Let T; and T} be two generic tasks. Since G is strongly con-
nected, there is a simple path g in G from 7; to T;. Let h(p) be the height
of . For every k > h(u), any start in [0,¢] of a task Tf is preceded by the
start in [0,¢] of the task Tf_h(“)7 so we have D (t) < h(p) + D7 (t). We
thus conclude that [D; (1) — Dy (t)| < Hy n

Let up = (T3, T;,h) be an arc of G. The pre-marking M, (t) (respec-
tively post-marking Mt (1)) of ug at time ¢ is defined as h + F(t) — D7 (t)
(respectively h + Fi(t) — D}" (t)).

Lemma 2 For any time t > 0 and any arc uy,, we have M (t) > 0.

Proof. — Let uy = (1;,T;,h). Let Ny(j) (respectively Ny(j)) be the
number of tasks T]k with & > h (respectively k < h) started in [0,¢]. Since
for any k& > h, a start in [0,¢] of a task T]k with k& > h is preceded by the
completion in [0, ¢] of the task TF~" we have Fi(t) > Ny(j). It is straightfor-
ward from the definitions that: Nl()+ Nao(j) = D;"() and Nz(j) < h. We
thus conclude that D;"() < h+ Fi(t) or equivalently that M (t) > 0. n

Even if S = (s,7) is such that the resource constraint is satisfied and the
post-marking of every arc remains positive, then .S may not be a schedule.
Consider for example a single generic task 7y with p; = 1, a single generic
precedence constraint (77,71,1) and only one machine. The assignment
s(1,2) = 0,s(1,1) = l,and s(1,k) = k — 1 for k > 3 is such that for any
t >0, M (t) > 0 but is not a schedule.

Lemma 3 Let p be an arbitmry simple circuit of G. At any timet > 0, we

have ZukEp ()+ ZT €p Ai(t) = h(p).

Proof. — Let u, = (13,1}, h) be an arc of p. Slnce Ai(t) = D7 (t)—Fi (1),
we have M,”(t) = h+ Fi(t) — D (t)=h+(D; (t) = D7 (t)) — A;(t). Summing

over the arcs of p, we get: 3°, o M () +3 7, A () = h(p). n

3.2 Regular schedules

S = (s, 7) is said to be regular if for every generic task T3, the time sequence
s(i, k) satisfies: Vk > 1,s(¢,k+ 1) > s(i,k). The next lemma shows that
if S = (s,7) is regular and meets the resource constraint, then the non-
negativity of the post-marking ensures that S is a schedule.

Lemma 4 If S = (s,7) is a time and processor assignment such that a) S
is regular, b) for any time t > 0 and any arc uy, € P: M7 (t) > 0 and c) the
resource constraint is satified, then S is a schedule.

Proof. — Consider an arc uy = (1;,7;,h). From b), we know that
for any t > 0, M (t) = h+ E(t) - D;’ (t) > 0. Let us assume that for
k > h, s(j,k) =t. Since S is regular, we have D}" (t) > k and we get that

T1 T2

1
. i |12 |3]|4
R Dj |1]2]2 |1
Di [2 |3 |2 |1
1\ 0/? AN EREEE
T4 Instantaneous values at time 6
4 Y ™\
T11 T32 |T42 T33 T14 | T15 T3,6

T2,1 T2,2 T23 T2,4 T4,3 T2,5 T2,6 T4,5

T3,1 T4,1| T1,2 T13 T3,4 T4,4 T35
o 34 T3 2 A J
15 24

2-periodic pattern

1 2 T2 T1 1 T2 T1 2 T2
0 1
T3
1 1 0 0 N\ 1/
T4 T4 T4

) - . + . L=
the pre-marking Mg the post-marking Mg the final marking Mg

T

Figure 3: Definitions associated with a schedule

F;(t) > k—h. Again from the regularity of S we get that s(z, k+h)+p; < t.
We thus conclude that the generic precedence uy is satisfied by S. So S is
a schedule since it also meets the resource constraint (assumption ¢) of the
lemma). n

It is now easy to derive from Lemmas 2 and 4 that the regular schedules
make a dominant subset.

Theorem 1 For any instance of GCS P, there is an optimal schedule which
is reqular.

Proof. — Let S = (s, 7) be a schedule of an instance I. The task subset
{T7" | n > 0} may be totally ordered by <g with respect to S = (s, 7) where
TP <s T if s(i,p) < s(i,q) or ((s(i,p) = s(i,q)) and (7 (i, p) < 7(3,q))).
For each generic task T}, let us denote by 77* the instance of T; whose rank
is k with respect to <g. Consider now the time and processor assignment
S" = (s', ') we get by replacing in the processor-time diagram of .S each task
T?* by the task TF,i.e: foreach task T}: (i, k) = s(i, ix), 7'(i, k) = 7 (i, 4r).
Clearly S’ is regular and satisfies the processor constraint. Moreover from
the definition of S’, the marking functions M and M’ associated respec-
tively with S and S’ are identical. Since S is a schedule, we know from
Lemma 2 that for any ux € P and for any t > 0, M,;" (t) > 0. We thus have
that for any ug € P and for any ¢ > 0, M’:(t) > 0. Finally we conclude
from Lemma 4 that S”is a regular schedule of I such that w(S) = w(9’). n

At any time ¢t > 0, we denote by F/(t) the subset of the tasks whose
execution has started in [0,¢[and by G/(¢) the subgraph of GG induced by the
tasks of E(t). The restriction of S to the tasks of E(t) is denoted by S(t).
S(t) is clearly a schedule of G(t). The final marking M(t) of S(t) is such
that for any arc uy = (T}, T, h) of Gt My(t) = M (t) + A;(t). Figure 3
shows the final marking at time 6 for the corresponding schedule. The task
Tk is said to be ready at time t in S if TF ¢ E(t) and if each task in IN(TF)

K3
is completed by time ¢ in S. The number of instances of T that are ready
at time ¢ in S is denoted by R;(t). The following lemma characterizes the

ready tasks.

Lemma 5 If min{M, (t) | uf =T;} =r and D7 (t) = g, then the instances
of Tj ready at time t in S are the tasks T;4T' -+ T;4%",

Proof. — Let uy = (1;,T;,h). If r+ ¢ < h, then there is no instance
of T; in IN(T]H'q). Otherwise, from the definitions of r and ¢, we have
M_(t) = h+ Fi(t) — q > r, from which we get that F;(t) > r + ¢ — h.
In either case the task TZ"’q_h is completed by time ¢ in S. So T;‘"q is
ready at time ¢ in S and the same is true for the tasks le"'q, - -,Tf_l"'q.
We thus have R;(t) > r. Moreover from the definition of r, we know
there is ug, = (T3, T}, ho) such that M = r, from which we get that
F,,(t) = r+q—hg. Thus Tg"’q_ho-"l is not completed by time ¢ in S. So the
task T;"’q-"1 is not ready at time ¢ in S and the same is true for the tasks
T;+q+k with k& > 1. We thus have R;(t) = r. n

The above characterization of the ready tasks leads us to derive a lower
bound on the number RA(t) of the ready or active tasks at time ¢ in S.
This will be the key property for the performance analysis of the regular list
schedules.

Theorem 2 Let H* be the minimal height of a simple circuit of G. For
any schedule S and any time t > 0, we have RA(t) > H*.

Proof. — Let t > 0. With each generic task 7}, we associate an arc uy(;)
such that uz(j) =1T; and Mk(j)(t) = min{My(t) | uf = T;}. The subgraph
of G induced by the arcs uy(;), T; € T has at least one simple circuit p. From
Lemma 5 and since A;(t) = D} (t) — Fj(t), we have

Rj(1) + Aj (1) = My (1) + Aj () = hygy + F - (1) = Fi(1)

k(3)

Let us now consider the number of ready or active instances of the generic
tasks of p. From the definition of the arcs wuy;), we have:

YEM+AW) = Y (bt F(t) - Fit) = hip)

Tjep (Ti7T]7h)ep

We thus conclude that

RA() = 30 (R0 + A1) = Y (Ryt) + A; (1) > H*
T,eT T;€p

We now show that H* is a best lower bound for RA(t) since there is a
schedule S and a time ¢ such that RA(t) = H~.
Without loss of generality, let us assume that C' = {Tn_cq1, -+, TN} are

the generic tasks of a simple circuit of G whose height is ™. A task subset
7 C T is said to be C-initial (where C' = {T, -+, Ty_.}) if:

LT er=T;eC;
q P q P
2. (T erand T} € IN(T})) = T] € 7.

A subset T C T is regularif 7 = U! 1{Tzl,- ,T:%} where by convention
{Tt - TRy =0ifk; =0. A regular C-initial subset may thus be denoted
by T(kl, ook kn_e). A regular C-initial subset 7 is locally mazimal
if for any i € {1,---,N — ¢}, 7(ky,--+,k; +1,--+, ky_.) is not a C-initial
subset. The next lemma shows that there is a locally maximal C-initial
subset.

Lemma 6 [fC = (Tn_¢,TN-ct1, -, TN, TN_.) is a simple circuit of the
reduced precedence graph, there is a locally maximal C'-initial subset.

Proof. — Since G is strongly ConAnected7 for every 1,5 € {1,---, N — ¢},
there is a path from T to 1} in . So for every 1,5 € {1,---,N — ¢},
there is a positive integer i; such that Tjhj does not belong to any C-initial
subset. Since the empty set is a regular C-initial subset, there is a locally
maximum C-initial subset. "

Theorem 3 There is a schedule and a time t such that RA(t) = H*.

Proof. — Let K be a regular C-initial subset and let ¢ = ZquIK'pJ

Consider a regular schedule S, which first executes on the same processor
the tasks of A. Since K is locally maximal, any task Tq with 7; € C'is
neither ready for S at time ¢ nor active at time ¢ in S. So the only tasks
that might be ready or active at time ¢ in S are the tasks T]g with 7; € C.
Let uy;) be the arc in €' whose output node is T;. From Lemma 3, we
know that ZTJeO(Mk_(]')(t) + A;(t)) = H*. Since from Lemma 5, we have
R;(t) < Mk_(]‘)(t) for any T € C, we get that RA(t) < H* and from Theo-
rem 2 that RA(t) = H*. n

10

Let us illustrate this result on the instance of Figure 2. Here we have
H* = 2 and C = (11,13, Ty, Ty) is a circuit with height 2. {T3,7T%} is a
locally maximal C-initial subset . Once these two tasks are executed, the
only ready tasks are T} and T3.

4 The performance of regular list schedules

4.1 List schedules and regular list schedules

A schedule S is a list schedule if for any idling interval [¢t,t + ¢[(¢ > 0)
of a processor , any task scheduled at time u > ¢ has at least one of its
predecessors being processed at time ¢ in 5.

A list algorithm is such that at any time when at least a new task may be
performed (decision time), as many ready tasks as possible are assigned to
the free processors.

A list algorithm is said to be regular if | at each decision time 8, the ready
instances of a generic task are assigned to free processors according to in-
creasing iteration numbers. More precisely, if 77 is assigned a free processor
at decision time 6, then so is every task 777 with ¢ < p that is ready at time
6.

The following property shows that regular list algorithms generate regular
list schedules.

Property 1 The schedule provided by a regular list algorithm is a regular
list schedule. Conversely, a reqular list schedule is the schedule provided by
a regular list algorithm.

Proof. — Let S = A([) be the schedule provided by the regular list algo-
rithm A on the instance I of GC'SP and let 8,,,n > 0 be the sequence of the
decision times of .S. We show by induction on n that the partial schedule
ST(6,,) associated with the tasks started in [0, 8,] is regular. This holds for
n = 0 since a) A is regular and b) if T]g is ready at time 6y = 0, then so
is every task T]p with p < ¢. Assume now that S*(6,_1) is regular and let
last(i) be the instance of T; in S*(6,_1) with the highest iteration index.
Again since St(8,_1) is regular, then if T is ready at time 6, in S, then
so is every instance 17 with last(i) < r < p. Now since A is regular, we get
that S*(6,,) is a regular list schedule.

Conversely, if S is a regular list schedule of the instance I of GC'SP, let us

denote by L(S) the (infinite) list of the tasks ordered by increasing starting

11

times using increasing processor numbers for tie-breaking. Since S is reg-
ular, it is clear that the list algorithm algorithm associated with L(5) is a
regular list algorithm that provides the the schedule S. "

The periodic schedule shown on Figure 3 is a list schedule of the instance
of the GCSP instance shown in Figure 2.

4.2 The performance ratio of regular list schedules

Let I = (G, h,p,m) be an arbitrary instance of GC'SP. We show in this
section that the average cycle time of every regular list schedule S of I is at
most (2 — B5)a(T) where a(T) is the absolute minimum average cycle time
of I and K* = min{H*, m}. We first recall the following characterization of
a(I) that has has been proved in [9] where

e (7, is the subgraph of G induced by the n first instances of each generic
task, i.e: by {77 |ie {1,---,N},pe {l,---,n}}

e (O, is an optimal schedule of GG,,.

Lemma 7 Let M(O,,) be the makespan of an optimal schedule of G,,. The
M(Oy)

absolute minimum average cycle time of I is limsup,,_, ., —

Theorem 4 Let [= (G, h,p,m) be an arbitrary instance of GCSP. FEvery
reqular list schedule S of I satisfies w(S) < (2 — L2)a(I)

Proof. — Let A be a regular list algorithm and let S = A(J) be the as-
sociated regular list schedule. We consider the time window W = [0, C),(.59)]
of the Gantt time diagram of S. W may be partitionned into total activity
periods where all the processors are busy and partial activity periods where
at least one processor is idle (see Figure 4).

Let [a,b] be one partial activity period. We denote by dy,---,d, the
decision times of S in [a,b]. Note that we have dy = a, do<---<d, and
d. = b. Since A is a list algorithm, for every decision time d;, the number
m; of busy processors in [d;, d;+1] is min{m, a; + r;} where a; (respectively
r;) is the number of ready (respectively active) tasks at time d; in S. From
Theorem 2, we have a; + r; > H*. Since [d;,d;11] belongs to a partial
activity period and A is a list algorithm, we get a; + r; < m. We thus have
m; = a; + r;, from which we conclude that m; > min{m, H*} = K*.
Starting with a task 77 of G, that completes in S at time C,(S5) and

12

Cn(S)

|:| busy period :l idle period - task of p(n)

Figure 4: Structure of the time window W

following the lines of the well-known Graham’s proof in [11], we know that
there is a path g, of tasks in G,, whose last task is 7" and whose successive
execution time intervals in S totally overlaps the partial activity periods
of W. So, if L, is the sum of the durations of the tasks on u,, we have
Cn(S) > L, from which we get:

w(S) > lim sup Ln
n—oo T
Let us now denote by R,(S) the sum of the durations of the tasks T]k
started in the time interval [0, C,(5)[and such that k& > n. Let @* be the
maximum height of a simple circuit of &. We know from Lemma 3 that at
most Q* instances of the generic task 7; complete at time C,(5) and from
the regularity of S, we derive that D; (C,(5)) < n+ @Q*. From Lemma 1,
we know that for every generic task 1}, (j # ¢), we have k < n+ H; + Q~.
We thus conclude that:

R, (S) < (Hi+Q%) Y pi
T, eT

As usual, we finally consider the time window W of the Gantt-diagram
of S. Since the cumulative sum of the idle processor periods is at most
(m — K*)L,, and the cumulative sum of the busy processor periods is at
most n Y 1.1 i + R, (S), we get that:

mCp(S) <n Y pi+ Ro(S)+ (m— K*)L,
T, eT

13

from which we get:

ColS) _ Twerpi | 1 RulS) | (m— K L,

< + — + —
n m m o n m n
Now since L,, < M(O,,) and w < a(I), we derive from Lemma 7 that:
w(S) = limsup CnlS) <(2- A Ja(I)

n—00 n m

5 Conclusion

In this paper, we have studied the performance of list-scheduling a cyclic
set of non-preemptive, interdependent and reentrant generic tasks. Regu-
lar schedules, where the instances of each generic task must be scheduled
in the order of increasing iteration numbers, have been shown to make a
dominating set of schedules. Then, from the property that in any regular
schedule, the number of active or ready tasks is at least min{m, H*} (where
H~ is the the minimum height of a simple circuit in the reduced precedence
graph) the average cycle time of any regular list schedule has been shown to
be at most (2 — %) times the minimum absolute average cycle time.
This latter result, which extends the ratio 2 — % previously shown to apply
to the special case of non-reentrant tasks may be considered as the analog
for GCSP of the well-known Graham’s bound. It also brings a quantitative
insight to the rather intuitive idea that a list scheduling algorithm should
behave better on a cyclic set of tasks than on a finite number of its iterations.
Another interesting aspect is that if H* > m, any regular list schedule is
optimal. So 2 — % is a best bound and H* is a good measure of the
parallellism of the infinite task graph.

Acknowledgements

I thank the referees for their helpful remarks and comments.

14

References

[1]

[2]

[6]

[7]

[8]

[9]

[10]

J.K. Lenstra and D.B. Shmoys (1995). Computing near optimal sched-
ules, Scheduling theory and its applications, chap. 1, 193-224, Eds P.
Chrétienne, E.G. Coffman, Jr, J.K. Lenstra and 7. Liu, Wiley.

E.G. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan and D.B. Shmoys
(1994). Sequencing and Scheduling: algorithms and complexity, Report
BS-R8909, Center for Mathematics and Computer Science, Amsterdam.

C. Hanen and A.Munier (1995). A study of the cyclic scheduling prob-
lem on parallel processors, Disc. Appl. Math., 57, 167-192.

C. Hanen and A. Munier (1995). Cyclic scheduling on parallel proces-
sors, Scheduling theory and its applications, chap. 9, 193-224, Eds: P.
Chrétienne, E.G. Coffman, Jr, J.K. Lenstra and 7. Liu, Wiley.

F. Gasperoni and U. Schwiegelshohn (1994). Generating close to opti-
mal loop schedules on parallel processors, Par. Proc. Let., 4(4), 391-403.

A. Munier (1991). Contribution a I’étude des ordonnancements cy-
cliques, PhD thesis, P. and M. Curie University.

P. Chrétienne (1985). Transient and limiting behavior of timed event

graphs, RAIRO-TSI, 4, 127-142.

P. Chrétienne (1991). The basic cyclic scheduling problem with dead-
lines, Disc. Appl. Math., 30, 109-123.

P. Chrétienne (1997). List schedules for cyclic scheduling, to appear in
Disc. Appl. Math..

G. Cohen, D. Dubois, J.P. Quadrat and M. Viot (1985). A linear system
theoretic view of discrete event process and its use for performance
evaluation in manufacturing, IFEF Trans. Aut. Cont., 30, 3.

R.L. Graham (1969). Bounds on multiprocessing timing anomalies,
STAM J. Appl. Math., 17, 416-429.

E.G. Coffman,Jr and R.L. Graham (1972). Optimal scheduling for two
processors systems, Act. Inf., 13, 200-213.

T. Watanabe and M.Yamauchi (1993). New priority lists for scheduling
in timed Petri nets. [CATPN93, LNCS 691, Chicago.

15

