
HAL Id: hal-02548019
https://hal.science/hal-02548019

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Ontology for Describing Interactive Behaviors
and Supporting Automated Testing on User Interfaces

Thiago Rocha Silva, Jean-Luc Hak, Marco Winckler

To cite this version:
Thiago Rocha Silva, Jean-Luc Hak, Marco Winckler. A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces. Best Life, 2017, 11 (04), pp.513-539.
�10.1142/S1793351X17400219�. �hal-02548019�

https://hal.science/hal-02548019
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/22288

To cite this version: Rocha Silva, Thiago and Hak, Jean-Luc
and Winckler, Marco Antonio A Formal Ontology for
Describing Interactive Behaviors and Supporting Automated
Testing on User Interfaces. (2017) International Journal of
Semantic Computing, 11 (04). 513-539. ISSN 1793-351X

Official URL: https://doi.org/10.1142/S1793351X17400219

Open Archive Toulouse Archive Ouverte

https://doi.org/10.1142/S1793351X17400219
http://oatao.univ-toulouse.fr/22288
mailto:tech-oatao@listes-diff.inp-toulouse.fr

A Formai Ontology for Describing Interactive

Behaviors and Supporting Automated

Testing on User Interfaces

Thiago Rocha Silva* and Jean Luc Hakt

ICS-IRIT, Université Paul Sabatier
Toulouse, France

*rocha@irit.fr
tjean-luc.hak@irit.fr

Marco Winckler

SPARKS Team, !SS Université Nice Sophia A ntipolis, France
winckler@irit.fr

Nowadays many software development frameworks implement Behavior-Driven Development
(BDD) as a mean of automating the test of interactive systems under construction. Automated
testing helps to simulate user's actions on the User Interface and therefore check if the system
behaves properly and in accordance to scenarios that describe functional requirements. How
ever, tools supporting BDD run tests on implemented Usa- Interfaces and are a suitable
alternative for assessing functional requirements in later phases of the development process.
Howeva-, even when BDD tests can be written in early phases of the development process they
can harclly be used with specifications of User Interfaœs such as prototypes. To address this
problem, this paper proposes to raise the aœtraction level of both system interactive behaviors
and User Interfaces by means of a formai ontology that is aimed at supporting test automation
using BDD. The paper presents an ontology and an ontology-based approach for automating
the test of functional requirements of interactive systems. We demoœtrate the feasibility of this
ontohgy-based approach to assess functional requirements in prototypes and full.fledge applications
through an illustrative case stucly of e-oommerœ applications for buying ftight tickets.

Keywords: Behavior-Driven Development (BDD); automated requirements asseŒment; ontolog
ical modeling; user inta-faces; prototyping; testing of interactive systems.

1. Introduction

Assessing interactive systems is an activity that requires a considerable amount of
efforts from development teams because it implies to assess systems features with
respect to the many possible data and system outputs that might occur when a user
is interacting with the system. Conducting this activity manually is a very time
consuming and error prone task due to the diversity of user scenarios and the many
ways of testing data. Moreover, the system behavior should pass acceptance testing,

001

which is aimed to determine if the user's point of view about a feature is in accor
dance with the requirements previously speci¯ed. Thus, the automation of tests for
assessing the system behaviors becomes a convenient choice, requiring the use of
frameworks to simulate the user's actions when interacting with the system.

In recent years, there is an increasing interest both from academic and industrial
communities in Behavior Driven Development (BDD) [1–3] for supporting auto
mated acceptance testing of functional requirements. One of the strengths of BDD is
to support the speci¯cation of requirements in a comprehensive natural language
format speci¯cation, the so called User Stories [4] that encompass testing Scenarios.
With the help of external frameworks, it is possible to automate the test of Scenarios
directly on the User Interface (UI). The execution of such executable requirements
works as a `̀ live documentation" informing developers about the status of the system
with respect to clients' requests set in the acceptance tests.

During the last seven years, we have been involved in the development of web
applications where we have observed certain patterns of low level behaviors that are
recurrent when writing BDD Scenarios for testing functional requirements with the
User Interfaces (UI). Besides that, we could also observe that User Stories speci¯ed in
natural language often contain semantic inconsistencies. For example, it is not rare
to ¯nd Scenarios that specify an action such as a selection to be made in semantically
inconsistent widgets such as a Text Field. These observations motivated us to in
vestigate the use of a formal ontology for describing pre de¯ned behaviors that could
be used to specify Scenarios. On one hand, the ontology should act as a taxonomy for
terms removing ambiguities in the description. On the other hand, the ontology
would operate as a common language that could be used to write tests that can be
run on many artefacts used along the development process of interactive systems.

In this paper, we introduce our ontological model for describing interactive
behaviors on UIs. The ontology aims to support testing automation of interactive
systems speci¯ed using a scenario based approach, covering UI concepts in both
presentation and dialog aspects. For the presentation layer, we have modeled the
semantics of several web and mobile UI elements. For the dialog layer, we have
modeled the semantics of User Stories as a State Machine. Such models have allowed
us to provide a semantically consistent catalog of interactive behaviors that can be
used for automating the test of UIs in di®erent levels of abstraction.

Results of our ontology validation are also presented by demonstration of its
correctness through a consistency checking. In addition, we describe an exploratory
case study that has been conducted for the °ight tickets e commerce domain. In this
study, we have used our ontology based tools to support the assessment of evolu
tionary prototypes and ¯nal UIs. In the following sections, we discuss the founda
tions for this work, how we have built the ontological model to support the
automated assessment of interactive systems, followed by its validation. We con
clude with a discussion and future works.

002

2. Foundations

2.1. Computational ontologies and related works

Computational ontologies [5] come to play as a means to formalize the vocabulary

and the concepts used in User Stories, Scenarios and user's behaviors. Without a

common agreement on the concepts and terms used it would be di±cult to support

the assessment of user requirements. Some approaches have tried to de¯ne languages

or at least a common vocabulary for specifying UIs for interactive systems. Useful

abstractions for describing interactive systems include the components that compose

the presentation of a User Interface and the dialog parts that describe the system

behavior.

The Camaleon Framework [6] treats the presentation and the dialog in three levels

of abstractions: Abstract, Concrete and Final User Interfaces. The idea is that as

abstract user interface component (such as a Container) could be re¯ned to a more

concrete representation (such as a Window) that will ultimately feature a ¯nal im

plementation in a target platform (e.g. MacOS or Windows). User Interface (UI)

speci¯cations includemore or less details according to the level of abstraction as shown

in Fig. 1. The UsiXML (USer Interface eXtensible Markup Language) [7] implements

the principles of the Cameleon framework in a XML compliant markup language

featuring many dialects for treating Character User Interfaces (CUIs), Graphical User

Interfaces (GUIs), Auditory User Interfaces, andMultimodal User Interfaces. UsiXML

is a declarative language that captures the essence of User Interface components. At

the highest level of abstraction, UsiXML describes concepts of widgets, controls,

containers, modalities and interaction techniques. UsiXML contain a few basic ele

ments for describing the dialog part such as the concept of events, conditions and

actions. For that, some authors have proposed to use a notation based on statecharts

called SWC (StateWebCharts) [9] to specify the UsiXML dialog. The same authors [8]

have demonstrated that when using SWC, it is possible to describe the system behavior

at di®erent levels of abstraction using UsiXML.

As far as a common vocabulary is concerned, the W3C published a glossary

of recurrent terms for presentation components called MBUI (Model based User

Fig. 1. The Cameleon reference framework (from [7]).

003

Title (one line describing the story)
Narrative:
As a [role]
I want [feature]
So that [benefit]
Acceptance Criteria: (presented as Scenarios)
Scenario 1: Title
Given [context]
And [some more context]...

When [event]
Then [outcome]
And [another outcome]...

Scenario 2: ...

A User Story contains a Title, a Narrative and a set of Scenarios representing the

Acceptance Criteria. The Title provides a general description of the story, referring

to a feature that this story represents. The Narrative describes the role (played by

a user), the feature itself, and the bene¯ts it will bring to the business and/or to the

role. The Acceptance Criteria are de¯ned through a set of Scenarios de¯ned with a

Title and three main clauses: `̀ Given" provides the context, `̀ When" describe events

that trigger the Scenario and `̀ Then" shows the expected outcomes (that should be

checked). Each clause can include an `̀ And" statement. Each statement in this

representation is called Step.

In Behavior Driven Development (BDD) [1], the user's point of view about the

system is captured by User Stories. The BDD approach assumes that clients and

teams can communicate using this semi structured natural language description, in a

non ambiguous way. Following this assumption, we have de¯ned a conceptual model

to represent users' functional requirements. A functional requirement de¯nes state

ments of services that the system should provide, how the system should react to

particular inputs, and how the system should behave in particular situations.

Requirements should be expressed in a way they can be reused to assess the system's

behavior.

Figure 2 presents the conceptual model of our approach. Requirements are

expressed as a set of User Stories (US) encompassing a Narrative and Acceptance

Interface) [10]. For the dialog component, SWC [9] and SXCML (State Chart XML:
State Machine Notation for Control Abstraction) [11] o®er a language based on the
State Machine concepts.

2.2. User Stories

User Stories in Software Engineering was ¯rst proposed by Cohn [4] as a mean to
formalize artifacts for describing system' features and their corresponding acceptance
criteria. User Stories are formatted to ful¯ll two main goals: (i) assure testability and
non ambiguous descriptions and (ii) provide reuse of business scenarios. User Stories
express concrete examples of what should be tested to consider these features as
`̀ done". Below we present a template proposed by North [12] and Cohn [4]:

004

Criteria. Acceptance Criteria are presented as Scenarios composed by at least three

main Steps (`̀ Given", `̀ When" and `̀ Then") that represent the expected system'

Behaviors. Behaviors handle actions on Interaction Elements in the User Interface

(UI) and include data using in the test. These concepts and rules are de¯ned as

classes and axioms in the proposed ontology presented hereafter.

3. Ontology Modeling

Our ontology for describing interactive systems is based on concepts borrowed from

di®erent languages found in the literature. From Camaleon [6] and UsiXML [7] we

borrow concepts of abstract and concrete UIs. Presentation and de¯nition of

graphical components come from W3C MBUI [10]. From W3C Web Ontology

Language we get concepts for graphical components (behavior and presentation

aspects) commonly used to build web and mobile applications, and also the textual

representations used to describe how users interact with those graphical components.

SWC [8] inspire concepts used in the dialog.

The ontology has been modeled in Prot�eg�e 5.0. Figure 3 presents the classes of the

ontology and their properties divided in 4 wide groups: Platform Concepts, UI

Concepts, State Machine Concepts and Scenario based Concepts. The ¯rst group

de¯nes the web and mobile platforms covered by the ontology. The second one

encompasses concepts allowing modeling the UI. The classes Dialog, Presentation

and Platform model the concept of a Prototype. A Prototype is built for at least

one Platform and is speci¯ed by no more than one Dialog and one Presentation.

The third group speci¯es the State Machine concepts. A Dialog is described as a

Fig. 2. Conceptual model of user requirements.

005

State Machine while a Presentation is composed by Interaction Elements. Likewise,

in the fourth group, the classes Narrative, Scenario, Step and Task model the concept

of a User Story. A User Story is described by exactly one Narrative and some Sce

narios. A Scenario is an occurrence of only one Task and is a set of Steps. A Step shall

represent some Event, Condition and/or Action that are Transition elements from

the State Machine, performing the Dialog component of a Prototype.

Concepts have been modeled as Classes. Relationships between concepts have

been modeled as Object Properties (subtype `̀ relations"). Classes that handle data

have such descriptions modeled as Data Properties. As core elements in the ontology,

UI Elements and the interactive behaviors are respectively as Classes and Object

Properties (subtype `̀ behaviors").

In the following subsections, we detail the basic concepts of Object (Sec. 3.1) and

Data Properties (Sec. 3.2), as well as the four main group of concepts described

above: Platform (Sec. 3.3), UI (Sec. 3.4), State Machine (Sec. 3.5), and ¯nally

Scenario based concepts (Sec. 3.6). The current version of the ontology bears an

amount of 422 axioms (being 277 logical axioms), 56 classes, 33 object properties,

17 data properties and 3 individuals. A visual representation of all the concepts

Fig. 3. Main classes and their properties in the ontology.

006

can be found at https://goo.gl/IZqSJ0 and its complete speci¯cation in OWL can be

found at https://goo.gl/1pUMqp.

3.1. Object Properties

Relationships between individuals in classes are represented as Object Properties.

We have classi¯ed those properties in `̀ Relations" and `̀ Behaviors". `̀ Relations"

groups conceptual relationships between objects from internal classes, i.e. objects

that do not directly address interactive behaviors. `̀ Behaviors" on the other hand

groups conceptual relationships between interactive behaviors and UI Elements on

the UI. The `̀ Relations" group is detailed hereafter and the `̀ Behaviors" groups will

be detailed in the Sec. 3.6.

3.1.1. Relations

The sub property `̀ relations" de¯nes the semantic correspondence between internal

classes. Table 1 presents the whole set of relationships between objects of internal

classes de¯ned in the ontology. The class that drives the property is called Domain

Class and the class a®ected by the property is called Range Class. The Restriction

Type adds constraints to the modeled property. Figure 4 illustrates the relations

between elements in the State Machine. As a sub property of Relations, objects from

the Dialog class are composed by some States and Transitions. This relationship is

described by the property isComposedBy (left side of Fig. 4). Accordingly, objects

from the Transition class are triggered by a sequence of some Conditions, Events and

Actions. This relationship is described by the property isTriggeredBy (right side

of Fig. 4).

Table 1. `̀ Relations" as object properties in the ontology.

Domain class Object property Restriction type Range class

State concerns only Presentation

Step isAnOccurrenceOf only Task

Scenario isASetOf only Step

Prototype isBuiltFor min 1 Platform
Dialog isComposedBy some State

isComposedBy some Transition

User Story isDescribedBy exactly 1 Narrative

isDescribedBy some Scenario
Presentation isRepresentedBy min 1 Interaction Element

Prototype isSpeci¯edBy max 1 Dialog

isSpeci¯edBy max 1 Presentation

Transition isTriggeredBy some Event
isTriggeredBy some Condition

isTriggeredBy some Action

Transition performs only Scenario
Step shoudRepresent some Event

shoudRepresent some Condition

shoudRepresent some Action

007

Descri t1on ,sCom osedB

Equiv.1ltnt To

SubProptrty Of

•relations

Oom.ains (1nttistct1on) 0
Oialog

R.1ngu(1n1t1nc11on)

isComposedBv some State
isComposedBv some"'T,-ra_n_s .. ,t,...,o-n-,/1

Oncr1 t1on. 1sln ffedBv

f.ubP,cptrty Of'

a relations

lnvtrst Of

Dom.ll,ns (1n1,,ne11on

• Transition

eisTriggeredBv some Event
eisTriooeredBv some Condition
eisTriggeredBy some Act.ion

Fig. 4. Object properties isCompœedBy (!eft) and isTriggeredBy (right).

3.2. Data Properties

Data Properties are used to describe semantically data domains used by each class

that handles data. The root tree shown in Fig. 5(a) gives an overview of the prop

erties created, while Fig. 5(b) expands the Data Property "message", showing that
this kind of data is used by the UI Elements "Message Box", "Notification", "Tool

Tip" and "Modal Window". "Message" has also been defined to range the primitive
data String. Table 2 shows the whole set of Data Properties created, their respective

Domain Classes as well as their Datatypes. As some UI Elements can handle another

UI Elements o r even different Datatypes, we have defined the generic type "element"

for modeling this property. For example, Menus present options for users, but these

options can be of any type, i.e. images, text, or even another UI Element such as a

Data ro e h,crarch owl te o�i-aPro e

T···♦H§ldrmjfti@HIW
►, ··•actions
. ··•agreement
� adato_ond_time_input
: •images
f-.. ·•level

► .. ·•locations
, messa e
;. .. ·•number input
► .. •aoptions-

apoges
.. •svmbol
.. atext_input
.. atitle
··atrack_bar
.. •value
··•words

(a)

Show:� thîs� d1sjointi

F"ound 6 uses of message
T···an1e.ssage.

•message Domain Message_Box
amessëlge Domain Notificëltîon
•DatnPropprty: messaoe.
a message Domain Tool_Tip
•mess.age Range: xsd:strîng
•messaoe Domain ModaLWindow

(b)

Fig. 5. (a) Lefr. Data properties; (b) Right: Data property "mes.5age".

008

Menu Item. The other Datatypes come from the standard XSD speci¯cation. Finally,

notice that the only Data Property that does not use a Datatype is the property

`̀ Level", which refers to the level of a Prototype.

3.3. Platform concepts

Concepts of the platform are modeled in the ontology to determine which kind of UI

is supported by the model. So far, the ontology supports only interactive behaviors

for web and mobile UIs. As a consequence of such choice, only UI Elements that are

supported by web and mobile environments have been described in the superclass

Interaction Elements. The set of UI Elements that suits each platform is presented as

Object Properties in Sec. 3.4. Finally, the classes Web and Mobile have been modeled

as specializations of the class Platform, which allows us to eventually cover other

platforms in the future.

3.4. UI elements concepts

UI Elements in the ontology represent an abstraction of GUI components in web and

mobile platforms. Figure 6 illustrates a hierarchy of UI Elements.

As we shall see in Fig. 6, the four main superclasses are Container, Information

Component, Input Control and Navigational Component. The ¯rst one contains ele

ments that group other elements in a User Interface, such as Windows and Field Sets.

Table 2. Data properties in the ontology.

Data property Domain classes Datatype

Actions Menu Item, Link, Message Box, Button, Modal Window element

State xsd:boolean
Agreement Noti¯cation xsd:string

Data and Time Input Calendar xsd:dataTime

Images Image Carousel xsd:hexBinary

Level Prototype
Locations Breadcrumb xsd:string

State xsd:boolean

Message Message Box, Noti¯cation, Text, Tool Tip, Modal
Window

xsd:string

Number Input Numeric Stepper xsd:double

Options Tabs Bar, Checkbox, Dropdown List, Toggle, List Box,

Radio Button, Accordion, Menu, Progress Bar,
Dropdown Button

element

State xsd:boolean

Pages Pagination xsd:integer

Symbol Icon xsd:hexBinary
Text Input Search Field, Text Field, Autocomplete xsd:string

Title Button, Field Set, Link, Label, Menu Item xsd:string

Value Slider xsd:double
xsd:string

Words Tag xsd:string

009

The second one contains elements in charge of displaying information to the users

such as Labels and Message Boxes. The third one represents elements that accept

users inputs such as Buttons and Text Fields. Finally, the last one contains elements

useful to navigate through the system such as Links and Menus. Some elements

like Dialog Windows, for example, are inherited by more than one superclass, once

they keep semantic characteristics of Containers and Information Components

as well.

The complete list of UI Elements modeled in the ontology is presented in Table 3,

specifying for each one the correspondent superclass, a brief description and

both Data and Object Properties associated. In Data Properties (DP) is identi¯ed

the type of data handled by the UI Element as well as the Object Properties (OP)

describing, for Interaction Elements, whether they are supported by web and/or mobile

platforms.

Fig. 6. Graph describing the hierarchy of user interface (UI) elements.

010

T
ab

le
3.

U
I
el
em

en
ts

in
th
e
on

to
lo
gy

.

In
t.
el
em

en
t

D
es
cr
ip
ti
on

P
ro
p
er
ti
es

C
o
n
ta
in
e
r

A
cc
or
d
io
n

A
n
A
cc
or
d
io
n
is
a
v
er
ti
ca
ll
y
st
ac
k
ed

li
st
of

it
em

s
th
at

u
ti
li
ze
s
sh
ow

/h
id
e
fu
n
ct
io
n
al
it
y
.W

h
en

a
la
b
el
is
cl
ic
k
ed
,
it
ex
p
an

d
s
th
e
se
ct
io
n
sh
ow

in
g
th
e
co
n
te
n
t
w
it
h
in
.
T
h
er
e
ca
n
h
av

e
on

e

or
m
or
e
it
em

s
sh
ow

in
g
at

a
ti
m
e
an

d
m
ay

h
av

e
d
ef
au

lt
st
at
es

th
at

re
v
ea
l
on

e
or

m
or
e

se
ct
io
n
s
w
it
h
ou

t
th
e
u
se
r
cl
ic
k
in
g.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e

F
ie
ld

S
et

A
F
ie
ld

S
et

el
em

en
t
re
p
re
se
n
ts

a
se
t
of

fo
rm

co
n
tr
ol
s
op

ti
on

al
ly

gr
ou

p
ed

u
n
d
er

a
co
m
m
on

n
am

e.

D
P
:
ti
tl
e

O
P
:
W

eb
,
M
o
b
il
e

T
ab

s
B
ar

A
T
ab

B
ar

is
a
co
n
ta
in
er

w
id
ge
t
th
at

h
as

ty
p
ic
al
ly

m
u
lt
ip
le
T
ab

B
ar

B
u
tt
on

s,
w
h
ic
h
co
n
tr
ol
s

v
is
ib
il
it
y
of

v
ie
w
s.
It

ca
n
b
e
u
se
d
as

a
ta
b
co
n
ta
in
er
.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e

W
in
d
o
w

A
W

in
d
ow

is
an

ar
ea

on
th
e
sc
re
en

th
at

d
is
p
la
y
s
in
fo
rm

at
io
n
,
w
it
h
it
s
co
n
te
n
ts

b
ei
n
g

d
is
p
la
y
ed

in
d
ep
en
d
en
tl
y
fr
om

th
e
re
st

of
th
e
sc
re
en
.

���

W
in
d
o
w

B
ro
w
se
r

W
in
d
o
w

T
h
e
to
p
of

a
ty
p
ic
al

W
eb

b
ro
w
se
r
w
in
d
ow

co
n
ta
in
s
a
ti
tl
e
b
ar

th
at

d
is
p
la
y
s
th
e
ti
tl
e
of

th
e

cu
rr
en
t
p
ag
e.
B
el
ow

th
e
ti
tl
e
is
a
to
ol
b
ar

w
it
h
b
ac
k
an

d
fo
rw

ar
d
b
u
tt
on

s,
an

ad
d
re
ss
¯
el
d
,

b
oo

k
m
ar
k
s,
an

d
ot
h
er

n
av

ig
at
io
n
b
u
tt
on

s.
B
el
ow

th
e
to
ol
b
ar

is
th
e
co
n
te
n
t
of

th
e
cu
rr
en
t

W
eb

p
ag
e.

T
h
e
b
ot
to
m

of
th
e
w
in
d
ow

m
ay

co
n
ta
in

a
st
at
u
s
b
ar

th
at

d
is
p
la
y
s
th
e
p
ag
e

lo
ad

in
g
st
at
u
s.

O
P
:
W

eb

W
in
d
o
w

D
ia
lo
g

A
W

in
d
ow

or
D
ia
lo
g
B
ox

is
a
sm

al
l
w
in
d
ow

th
at

co
m
m
u
n
ic
at
es

in
fo
rm

at
io
n
to

th
e
u
se
r
an

d
p
ro
m
p
ts

th
em

fo
r
a
re
sp
on

se
.

O
P
:
W

eb

W
in
d
o
w

D
ia
lo
g

M
od

al W
in
d
o
w

A
M
od

al
W

in
d
ow

re
q
u
ir
es

u
se
rs

to
in
te
ra
ct

w
it
h
it
in

so
m
e
w
ay

b
ef
or
e
th
ey

ca
n
re
tu
rn

to
th
e

sy
st
em

.

D
P
:
ac
ti
o
n
s,

m
es
sa
ge

O
P
:
W

eb

In
fo
rm

a
ti
o
n

C
o
m
p
o
n
e
n
t

L
ab

el
A

L
ab

el
d
is
p
la
y
s
co
n
te
n
t
cl
as
si
¯
ca
ti
on

.
D
P
:
ti
tl
e

O
P
:
W

eb
,
M
o
b
il
e

M
es
sa
ge

B
ox

A
M
es
sa
ge

B
ox

is
a
sm

al
l
w
in
d
ow

th
at

p
ro
v
id
es

in
fo
rm

at
io
n
to

u
se
rs

an
d
re
q
u
ir
es

th
em

to

ta
k
e
an

ac
ti
on

b
ef
or
e
th
ey

ca
n
m
ov

e
fo
rw

ar
d
.

D
P
:
ac
ti
o
n
s,

m
es
sa
ge

O
P
:
W

eb
,
M
o
b
il
e

N
ot
i¯
ca
ti
o
n

A
N
ot
i¯
ca
ti
on

is
an

u
p
d
at
e
m
es
sa
ge

th
at

an
n
ou

n
ce
s
so
m
et
h
in
g
n
ew

fo
r
th
e
u
se
r
to

se
e.

N
ot
i¯
ca
ti
on

s
ar
e
ty
p
ic
al
ly

u
se
d
to

in
d
ic
at
e
it
em

s
su
ch

as
,
th
e
su
cc
es
sf
u
l
co
m
p
le
ti
on

of
a

ta
sk
,
or

an
er
ro
r
or

w
ar
n
in
g
m
es
sa
ge
.

D
P
:
ag

re
em

en
t,

m
es
sa
ge

O
P
:
W

eb
,
M
o
b
il
e

011

T
ab

le
3.

(C
o
n
ti
n
u
ed

)

In
t.
el
em

en
t

D
es
cr
ip
ti
on

P
ro
p
er
ti
es

P
ro
gr
es
s

B
ar

A
P
ro
gr
es
s
B
ar

in
d
ic
at
es

w
h
er
e
a
u
se
r
is
as

th
ey

ad
v
an

ce
th
ro
u
gh

a
se
ri
es

of
st
ep
s
in

a

p
ro
ce
ss
.
T
y
p
ic
al
ly
,
p
ro
gr
es
s
b
ar
s
ar
e
n
ot

cl
ic
k
ab

le
.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e

T
ex
t

In
fo
rm

at
iv
e
co
n
te
n
t
in

a
p
ag
e.

D
P
:
m
es
sa
g
e

O
P
:
W

eb
,
M
o
b
il
e

T
oo

l
T
ip

A
T
oo

lt
ip

al
lo
w
s
a
u
se
r
to

se
e
h
in
ts

w
h
en

th
ey

h
ov

er
ov

er
an

it
em

in
d
ic
at
in
g
th
e
n
am

e
or

p
u
rp
os
e
of

th
e
it
em

.

D
P
:
m
es
sa
g
e

O
P
:
W

eb
,
M
o
b
il
e

W
in
d
o
w

D
ia
lo
g

���
���

In
p
u
t

C
o
n
tr
o
l

A
u
to
co
m
p
le
te

T
h
e
A
u
to
co
m
p
le
te

w
id
ge
ts

p
ro
v
id
es

su
gg

es
ti
on

s
w
h
il
e
y
ou

ty
p
e
in
to

th
e
¯
el
d
.

D
P
:
te
x
t
in
p
u
t

O
P
:
W

eb

B
u
tt
on

A
B
u
tt
on

in
d
ic
at
es

an
ac
ti
on

u
p
on

to
u
ch

an
d
is
ty
p
ic
al
ly

la
b
el
ed

u
si
n
g
te
x
t,
an

ic
on

,
or

b
ot
h
.

D
P
:
ac
ti
o
n
s,
ti
tl
e

O
P
:
W

eb
,
M
o
b
il
e

C
al
en
d
ar

A
C
al
en
d
ar

(d
at
e
p
ic
k
er
)
al
lo
w
s
u
se
rs

to
se
le
ct

a
d
at
e
an

d
/o
r
ti
m
e.
B
y
u
si
n
g
th
e
p
ic
k
er
,
th
e

in
fo
rm

at
io
n
is
co
n
si
st
en
tl
y
fo
rm

at
te
d
an

d
in
p
u
t
in
to

th
e
sy
st
em

.
D
P
:
d
a
ta

a
n
d

ti
m
e
in
p
u
t

O
P
:
W

eb
,
M
o
b
il
e

C
h
ec
k
b
ox

C
h
ec
k
b
ox

es
al
lo
w

th
e
u
se
r
to

se
le
ct

on
e
or

m
or
e
op

ti
on

s
fr
om

a
se
t.
It

is
u
su
al
ly

b
es
t
to

p
re
se
n
t
ch
ec
k
b
ox

es
in

a
v
er
ti
ca
l
li
st
.
M
or
e
th
an

on
e
co
lu
m
n
is
ac
ce
p
ta
b
le

as
w
el
l
if
th
e

li
st

is
lo
n
g
en
ou

gh
th
at

it
m
ig
h
t
re
q
u
ir
e
sc
ro
ll
in
g
or

if
co
m
p
ar
is
on

of
te
rm

s
m
ig
h
t
b
e

n
ec
es
sa
ry
.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e,

al
lo
w
sM

u
lt
ip
le

D
ro
p
d
ow

n
B
u
tt
on

T
h
e
D
ro
p
d
ow

n
B
u
tt
on

co
n
si
st
s
of

a
b
u
tt
on

th
at

w
h
en

cl
ic
k
ed

d
is
p
la
y
s
a
d
ro
p
-d
ow

n
li
st

of
m
u
tu
al
ly

ex
cl
u
si
v
e
it
em

s.
D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e,

al
lo
w
sU

n
iq
u
e

D
ro
p
d
ow

n

L
is
t

D
ro
p
d
ow

n
L
is
ts

al
lo
w

u
se
rs

to
se
le
ct

on
e
it
em

at
a
ti
m
e,
si
m
il
ar
ly

to
ra
d
io

b
u
tt
on

s,
b
u
t
ar
e

m
or
e
co
m
p
ac
t
al
lo
w
in
g
y
ou

to
sa
v
e
sp
ac
e.

C
on

si
d
er

ad
d
in
g
te
x
t
to

th
e
¯
el
d
,
su
ch

as
`S
el
ec
t
on

e'
to

h
el
p
th
e
u
se
r
re
co
gn

iz
e
th
e
n
ec
es
sa
ry

ac
ti
on

.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e,

al
lo
w
sU

n
iq
u
e

L
is
t
B
ox

L
is
t
B
ox

es
,
li
k
e
C
h
ec
k
b
ox

es
,
al
lo
w

u
se
rs

to
se
le
ct

a
m
u
lt
ip
le

it
em

s
at

a
ti
m
e,

b
u
t
ar
e
m
or
e

co
m
p
ac
t
an

d
ca
n
su
p
p
or
t
a
lo
n
ge
r
li
st

of
op

ti
on

s
if
n
ee
d
ed
.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e,

al
lo
w
sM

u
lt
ip
le

012

T
ab

le
3.

(C
o
n
ti
n
u
ed

)

In
t.
el
em

en
t

D
es
cr
ip
ti
on

P
ro
p
er
ti
es

N
u
m
er
ic

S
te
p
p
er

A
N
u
m
er
ic

S
te
p
p
er

se
rv
es

th
e
sa
m
e
fu
n
ct
io
n
as

a
N
u
m
er
ic

In
p
u
t
O
b
je
ct
.
It

is
a
m
et
h
od

of

en
te
ri
n
g
n
u
m
er
ic
d
at
a
in

w
h
ic
h
th
e
n
u
m
b
er
s
ca
n
b
e
ty
p
ed

d
ir
ec
tl
y
in
to

th
e
in
p
u
t
ob

je
ct
.

H
ow

ev
er
,
n
u
m
er
ic
v
al
u
es

ca
n
al
so

b
e
ad

ju
st
ed

b
y
u
si
n
g
u
p
an

d
d
ow

n
ar
ro
w
s
n
ex
t
to

th
e

n
u
m
er
ic
in
p
u
t.
C
li
ck
in
g
th
e
u
p
an

d
d
ow

n
ar
ro
w
s
n
or
m
al
ly

ca
u
se
s
th
e
v
al
u
e
to

in
cr
em

en
t

b
y
on

e.

D
P
:
n
u
m
b
er

in
p
u
t

O
P
:
W

eb
,
M
o
b
il
e

R
ad

io B
u
tt
on

R
ad

io
B
u
tt
on

s
ar
e
u
se
d
to

al
lo
w

u
se
rs

to
se
le
ct

on
e
it
em

at
a
ti
m
e.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e,

al
lo
w
sU

n
iq
u
e

T
ex
t
F
ie
ld

T
ex
t
F
ie
ld
s
al
lo
w
u
se
rs

to
en
te
r
te
x
t.
It
ca
n
al
lo
w
ei
th
er

a
si
n
gl
e
li
n
e
or

m
u
lt
ip
le
li
n
es

of
te
x
t.

D
P
:
te
x
t
in
p
u
t

O
P
:
W

eb
,
M
o
b
il
e

T
og

gl
e

A
T
og

gl
e
b
u
tt
on

al
lo
w
s
th
e
u
se
r
to

ch
an

ge
a
se
tt
in
g
b
et
w
ee
n
tw

o
st
at
es
.
T
h
ey

ar
e
m
os
t

e®
ec
ti
v
e
w
h
en

th
e
on

/o
®
st
at
es

ar
e
v
is
u
al
ly

d
is
ti
n
ct
.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e,

al
lo
w
sU

n
iq
u
e

G
ri
d

A
G
ri
d
or

a
D
at
ag

ri
d
is
a
gr
ap

h
ic
al

co
n
tr
ol

el
em

en
t
th
at

p
re
se
n
ts

a
ta
b
u
la
r
v
ie
w

of
d
at
a.

D
P
:
te
x
t
in
p
u
t

O
P
:
W

eb
,
M
o
b
il
e

N
a
v
ig
a
ti
o
n
a
l

C
o
m
p
o
n
e
n
t

B
re
ad

cr
u
m
b

B
re
ad

cr
u
m
b
s
al
lo
w
u
se
rs

to
id
en
ti
fy

th
ei
r
cu
rr
en
t
lo
ca
ti
on

w
it
h
in

th
e
sy
st
em

b
y
p
ro
v
id
in
g
a

cl
ic
k
ab

le
tr
ai
l
of

p
ro
ce
ed
in
g
p
ag

es
to

n
av

ig
at
e.

D
P
:
lo
ca
ti
o
n
s

O
P
:
W

eb

Ic
on

A
n
Ic
on

is
a
si
m
p
li
¯
ed

im
ag

e
se
rv
in
g
as

an
in
tu
it
iv
e
sy
m
b
ol

th
at

is
u
se
d
to

h
el
p
u
se
rs

to

n
av

ig
at
e
th
e
sy
st
em

.
T
y
p
ic
al
ly
,
ic
on

s
ar
e
h
y
p
er
li
n
k
ed
.

D
P
:
sy
m
b
o
l

O
P
:
W

eb
,
M
o
b
il
e

Im
ag
e

C
ar
ou

se
l

Im
ag
e
C
ar
ou

se
ls
al
lo
w
u
se
rs

to
b
ro
w
se

th
ro
u
gh

a
se
t
of

it
em

s
an

d
m
ak

e
a
se
le
ct
io
n
of

on
e
if

th
ey

so
ch
oo
se
.
T
y
p
ic
al
ly
,
th
e
im

ag
es

ar
e
h
y
p
er
li
n
k
ed
.

D
P
:
im

a
g
es

O
P
:
W

eb

L
in
k

A
L
in
k
is
a
re
fe
re
n
ce

to
d
at
a
th
at

ca
n
b
e
d
ir
ec
tl
y
fo
ll
ow

b
y
cl
ic
k
in
g.

It
p
oi
n
ts

to
a
w
h
ol
e

d
oc
u
m
en
t
or

to
a
sp
ec
i¯
c
el
em

en
t
w
it
h
in

a
d
oc
u
m
en
t.

D
P
:
ac
ti
o
n
s,
ti
tl
e

O
P
:
W

eb
M
en
u

M
en
u
is
a
li
st

of
op

ti
on

s
or

co
m
m
an

d
s
p
re
se
n
te
d
to

an
op

er
at
or
.

D
P
:
op

ti
o
n
s

O
P
:
W

eb
,
M
o
b
il
e

013

T
ab

le
3.

(C
o
n
ti
n
u
ed

)

In
t.
el
em

en
t

D
es
cr
ip
ti
on

P
ro
p
er
ti
es

M
en
u It
em

A
M
en
u
It
em

is
a
re
su
lt
an

t
it
em

in
a
li
st

of
op

ti
on

s
or

co
m
m
an

d
s
p
re
se
n
te
d
to

an
op

er
at
or

b
y

cl
ic
k
in
g
in

a
m
en
u
.

D
P
:
ac
ti
o
n
s,
ti
tl
e

O
P
:
W

eb
,
M
o
b
il
e

P
ag

in
at
io
n

P
ag

in
at
io
n
d
iv
id
es

co
n
te
n
t
u
p
b
et
w
ee
n
p
ag
es
,
an

d
al
lo
w
s
u
se
rs

to
sk
ip

b
et
w
ee
n
p
ag
es

or
go

in
or
d
er

th
ro
u
gh

th
e
co
n
te
n
t.

D
P
:
p
a
ge
s

O
P
:
W

eb
S
ea
rc
h

F
ie
ld

A
se
ar
ch

b
ox

al
lo
w
s
u
se
rs

to
en
te
r
a
k
ey
w
or
d
or

p
h
ra
se

(q
u
er
y
)
an

d
su
b
m
it
it
to

se
ar
ch

th
e

in
d
ex

w
it
h
th
e
in
te
n
ti
on

of
ge
tt
in
g
b
ac
k
th
e
m
os
t
re
le
v
an

t
re
su
lt
s.
T
y
p
ic
al
ly
,s
ea
rc
h
¯
el
d
s

ar
e
si
n
gl
e-
li
n
e
te
x
t
b
ox

es
an

d
ar
e
of
te
n
ac
co
m
p
an

ie
d
b
y
a
se
ar
ch

b
u
tt
on

.

D
P
:
te
x
t
in
p
u
t

O
P
:
W

eb
,
M
o
b
il
e

S
li
d
er

A
sl
id
er
,
al
so

k
n
ow

n
as

a
tr
ac
k
b
ar
,
al
lo
w
s
u
se
rs

to
se
t
or

ad
ju
st

a
v
al
u
e.

W
h
en

th
e
u
se
r

ch
an

ge
s
th
e
v
al
u
e,

it
d
oe
s
n
ot

ch
an

ge
th
e
fo
rm

at
of

th
e
in
te
rf
ac
e
or

ot
h
er

in
fo

on
th
e

sc
re
en
.

D
P
:
v
a
lu
e

O
P
:
W

eb
,
M
o
b
il
e

T
ag

T
ag

s
al
lo
w
u
se
rs

to
¯
n
d
co
n
te
n
t
in

th
e
sa
m
e
ca
te
go

ry
.
S
om

e
ta
gg

in
g
sy
st
em

s
al
so

al
lo
w
u
se
rs

to
ap

p
ly

th
ei
r
ow

n
ta
gs

to
co
n
te
n
t
b
y
en
te
ri
n
g
th
em

in
to

th
e
sy
st
em

.
D
P
:
w
o
rd
s

O
P
:
W

eb

T
re
e

W
it
h
a
T
re
e,

w
e
ca
n
d
is
p
la
y
h
ie
ra
rc
h
ic
al

d
at
a.

E
ac
h
ro
w

d
is
p
la
y
ed

b
y
th
e
T
re
e
co
n
ta
in
s

ex
ac
tl
y
on

e
it
em

of
d
at
a,

w
h
ic
h
is
ca
ll
ed

a
n
od

e.
E
v
er
y
T
re
e
h
as

a
ro
ot

n
od

e
fr
om

w
h
ic
h

al
l
n
od

es
d
es
ce
n
d
.
B
y
d
ef
au

lt
,
th
e
T
re
e
d
is
p
la
y
s
th
e
ro
ot

n
od

e.
A

n
od

e
ca
n
ei
th
er

h
av

e
ch
il
d
re
n
or

n
ot
.
W

e
re
fe
r
to

n
od

es
th
at

ca
n
h
av

e
ch
il
d
re
n
���

w
h
et
h
er

or
n
ot

th
ey

cu
rr
en
tl
y
h
av

e
ch
il
d
re
n
���

as
b
ra
n
ch

n
od

es
.
N
od

es
th
at

ca
n
n
ot

h
av

e
ch
il
d
re
n
ar
e
le
af

n
od

es
.

D
P
:
ac
ti
o
n
s

O
P
:
W

eb

014

3.5. State machine concepts

The dialog part of a User Interface, as illustrated by Fig. 7, is described in the

ontology using concepts borrowed from abstract State Machines. A Scenario meant

to be run in a given UI is represented as a Transition, illustrated by Fig. 8. States are

used to represent the original and resulting Uis after a transition occur (States A and

B in Fig. 8). Scenarios in the Transition state always have at least one or more

Conditions (represented in Scenarios by the "Given" clause), one or more Events

(represented in Scenarios by the "When" clause), and one or more Actions (repre

sented in Scenarios by the "Then" clause). The clauses "Given", "When" and
"Then" have been modeled as lndividuals of each respective class.

1 ·•Narrative
► ePlotform
} · • Presentotion
:. ...• Prototype
\• ... eScenario

0Stdl�_Mad1ine_El�111e11
·•Action
·•coMlt1on
·•Event
-estate
••Transition

lndividu,h b1_ 9pc

Objtd property hitrarchy

@)tl

•···•Action (1)
' L. .. ♦Then

•···•Condition (1)
: L. .. ♦Giv<>n

•···•Event (1) · ··♦When

Annotation p1opcrty hicr11rchy

Data property hitra,chy

Oatatyp<)

Fig. 7. State machine elements and their individuals.

.. _ Condition .. _

Oô xo 1)<C) Oô xo 1)<C)

#field 1 #volue \•1

(X) Gi· t:n I go to "#page"

Event

M ,Jh n I choose ''#value" in
the field "#field" �

State A

,,, Action

[X) Then will be displayed
''#message"

Fig. 8. A transition being represented in the state machine.

,,,

State B

015

Behaviors are structured and described in natural language so that they can also

be read by humans. The speci¯cation of behaviors encompasses when the interaction

can be per formed (using Given, When and/or Then clauses) and graphical elements

(i.e. Radio Button, CheckBox, Calendar, Link, etc.). Altogether, behaviors and

graphical elements are used to implement the test of expected system behavior.

In the example below, the behavior receives two parameters: a `̀ $elementName" and

a `̀ $locatorParameters". The ¯rst parameter is associated to data, the second

parameter refers to the Interaction Element supported by this behavior: `̀ Radio

Button", `̀ CheckBox", `̀ Calendar" and `̀ Link". To comply with semantic rules, the

behavior `̀ I chose n "$elementName n "referring to n "$locatorParameters n ""

shown in Fig. 9 can be modelled into a prede¯ned behavior `̀ chooseReferringTo" as shown

in Fig. 10.

The ontology includes a large set of prede¯ned behaviors grouped by context of

use, as shown in Table 4. Notice that each Behavior is associated to diverse transition

components (Context, Event and/or Action) that compose a Transition. The

column UI Elements enlists the set of Interaction Elements that can ¯t to trigger a

particular behavior.

Fig. 9. Behavior `̀ chooseRe®eringTo".

Fig. 10. Components on the ontology used to specify a behavior.

3.6. Scenario-based concepts

Scenario based concepts allow us to model behaviors that describe how users are
supposed to interact with graphical elements of the User Interface. An example of
behavior speci¯cation is illustrated by Fig. 9.

016

Table 4. Predefined behaviors described in the ontology.

Checkbox and Radio Button Behaviors

Behavior

theFieldlsUnchecked

theFieldlsChecked

assureTheFieldlsUnchecked
assureTheFieldlsChecked

Transition

C E A

1 1
1 1

Common Behaviors

Behavior

choose

chooseBvlndexln171eField

chooseReferringTo

choose17ieOptionO!Valueln171eField
clickOn

clickOnReferring To

doNotTypeAnyValueToTheField =
reset171e ValueOflheField
ROTO
goToWithTlieParameters
isDisolaved

setln171eField = tryToSetlnTheField

setln171eFieldReferringTo

tvneAndChooseln1heField
willBeDisolaved
willNotBeDisplayed
willBeDisplayedlnTlieFieldTheValue
wil lNotBeDisolavedln 171eFieldTlie Value
willBeDisvlaved111eValueln171eFieldReferrinRTo
wil lNotBeDiso/aved111e Val ueln171eFieldReferrinll To
isNotVisible
valueReferrinRTolsNotVisible
waitTheFieldBeVisibleClickableAndEnable
waitTheFieldReferringToBeVisibleClickableAndEnable
tlieElement/sVisibleAndDisable
tlieElementReferriml Toi s VisibleAndDisable
setln17ieFieldAndTrigger1neEvent
clicklnTheRowOfTheTree 1

Transition
C E A

UI Elements

Checkbox
Radio Button
Checkbox
Radio Button
Checkbox
Checkbox

UI Elements

Calendar
Checkbox
Radio Button
Link
Droodown List
Calendar
Checkbox
Radio Button
Link
Droodown List
Menu
Menu Item
Button
Link
Menu
Menu Item
Button
Link
Grid

Text Field

Browser Window
Browser Window
Window
Dropdown List
Text Field
Autocomplete
Calendar
Dropdown List
Text Field
Autocomplete
Text
Text
Element
Element
Element
Element
Element
Element
Element
Element
Element
Element
Text Field
Tree

017

Table 4. (Continued)

Data Generation Behaviors

Behavior
Transition

C E A

informARandomNumberWithPrefixlnTheField
in ormARandomNumberlnTheField

Data Provider Behaviors

Behavior

inform
informTheField = informTheFields
selectFromDataSet
informTheValueutlheField
informKeyWithTheValue =
defmeTheVariableWithTheValue
obtainTheValueFromTheField

Behavior

printOnTheCcnsole TheValueOf[he Variable

Behavior

confim1TheDialo2Box
cancelTheDialo2Box
informTheValuelnTheDialogBox
willBeDisolavedlnTheDialo2Box

1

1

1
1

Transition
C E A

1

1

Debug Behaviors
Transition

C E A

[]
Dialog Behaviors

Transition
C E A

1
Mouse Control Behaviors

Behavior

move TheMouseOver

Behavior

clickOnTheRowO[TheTableReferringTo
storeTheCel/f m heTableln
store 17ieCclumnOflhe Tableln
compareTheTextOfTheTableCe/lWith
co,nnnreTheTextOfTheTableColumn With
clickOnTheCel/OfThe Table
clickOnTheCclumnOf[he Table
chooseTlieOptionln17ieCellOf/71eTable
choose TlieOotionl n TlieColumn.Ofl lie Table
tvneTheTextln171eCe/lOfTheTable
typeTheTextln171eColumnOf[lieTable

Transition
C E A

Table Behaviors
Transition

C E A

UI Elements

Text Field
Text Field

UI Elements

Grid
Grid

-
Element

Element

UI Elements

UI Elements

Window Dialo2
Window Dialo2
Window Dialog
Window Dialo2

UI Elements

Menu
Menu Item
Button
Link

UI Elements

Grid
Grid
Grid
Grid
Grid
Grid
Grid
Grid
Grid
Grid
Grid

The vocabulary chosen to express each behavior emerged from Sœnarios specified

in our past projects. It outlines only one of the several possible vocabularies to

represent the same user's behaviors, and could be extended in the future by more

representative phrases or expressions. Sorne synonyms concerning the user's goal

have been also identified in order to increase the expressivity of the ontology.

For example, the behavior doNotTypeAny ValueToTheField is considered equivalent

018

to the behavior resetTheValueOfTheField as they perform or assert exactly the same

action on the a®ected UI element, looking for the same output. Likewise, the

behavior setInTheField is equivalent to the behavior tryToSetInTheField as they

refer to the same action. However, tryToSetInTheField better expresses violation

attempts in the business rules.

4. Validation

The ontology has been validated in two steps: at ¯rst, consistency has been con

tinuously checked through the use of reasoners. Then, using a tool support, we

applied the approach to a case study in the °ight tickets e commerce domain using a

set of tools we have developed for dealing with tests over Prototypes and for testing

the implementation.

4.1. Consistency checking

Consistency checking was done using the reasoners FaCTþþ, ELK, HermiT and

Pellet. FaCTþþ started identifying no support for the datatypes xsd:base64Binary

and xsd:hexBinary used to range images and symbols in the Data Properties. Those

properties have been used to de¯ne domains for objects in the classes Image Carousel

and Icon, respectively. ELK has failed by no support to Data Property Domains as

well as Data and Object Property Ranges. HermiT and Pellet have succeeded pro

cessing the ontology respectively in 4926 and 64 milliseconds, as presented in Fig. 11.

Fig. 11. Results of ontology processing: HermiT (top) and Pellet (bottom).

019

User Story: Flight Tickets Search

Narrative:
As a frequent traveler
I want to be able to search tickets, providing locations and dates
So that I can obtain information about rates and times of the flights.

Scenario: One-Way Tickets Search
Given I go to "Find flights"
When I choose "One way"
And I type "Paris" and choose "CDG - Paris Ch De Gaulle, France" in the field "From"
And I type "Dallas" and choose "DFW - Dallas Fort Worth International, TX" in the field
"To"
And I choose the option of value "2" in the field "Number of passengers"
And I choose "12/15/2016" referring to "Depart"
And I click on "Search"
Then will be displayed "Choose Flights"

4.2.1. Ontology support for testing prototypes using PANDA

PANDA (Prototyping using Annotation and Decision Analysis) [13] is a tool support

speci¯cally created to support the development of UI prototypes built upon an UI

ontology. Using our ontology, PANDA can also support the test of BDD Scenarios.

For that, PANDA starts by reading an OWL ¯le describing our ontology. Using the

inner organization of ontological classes, PANDA dynamically instantiates a palette

of widgets (see Fig. 12) that can be used to build a Prototype. From an interaction

point of view, the construction of Prototypes is done by performing drag and drop

operations. From a storage point of view, a Prototype is an XML ¯le that describes a

composition of widgets whose description is semantically annotated by elements of

our ontology.

For the construction of the palette, PANDA uses a description of a widget we

called `̀ OntologicalClass" which feature its name, list of subclasses and set of

properties. This ontological class has been de¯ned as a generic class that is cus

tomized through its properties. Indeed, those classes represent each component of a

4.2. Validation by a case study

To illustrate how the ontology can be used to support the speci¯cation of require
ments and the testing automation for interactive systems, we have chosen a °ight
tickets e commerce application. Below we describe one of the User Stories from this
case study with a Scenario for searching °ights. Therein, the user should provide at
least: the type of sought ticket (one way or round trip), the departure and the arrival
airports, the number of passengers, and ¯nally the dates. In the Scenario `̀ One Way
Tickets Search", a typical search of tickets is presented concerning a one way
trip from Paris to Dallas for 2 passengers on 12/15/2016. According to the business
rule, the expected result for this search is a new screen presenting the title
`̀ Choose Flights", in which the user might select the desired °ight from a list of
°ights matching his search.

020

Prototype in PANDA and its behaviors regarding their usage in the prototyping

tool: they are placed in an edition area in which the user can edit the instance of a

property. Thus, for the Presentation component, PANDA uses a °exible structure

that allows to dynamically instantiate the set of widgets that will be used to build

Prototypes.

PANDA creates a category for each superclass including: Container, Information

Component, Input Control, Interaction Element, Navigational Component, Plat

form, State Machine Element, Window and Window Dialog. Each category contains

a set of widgets de¯ned by the classes inheriting the superclass. As for the properties,

ontological classes are displayed in the property window in the category `̀ Ontological

properties". Each property identi¯ed in the ontology is therefore inserted in the list

of properties of the class with a name and a value.

For the Dialog component, our ontology encompasses behavioral properties to

describe the interaction supported by a class. For example, a Button must feature a

behavioral property `̀ clickOn" which indicates that buttons support an event click.

Click events allow the designer to specify interactions on widgets. If a button has a

behavioral property `̀ clickOn", PANDA adds an event handler to handle click events

when users interact with the Prototype. Figure 13 shows how Scenarios are tested in

PANDA. For each Step of Scenarios, PANDA assesses actions with respect to widget

properties de¯ned in the ontology. For example, in the Step `̀ And I click on

`̀ Search"", PANDA looks for any widget named `̀ Search" in the initial State, and

check if the description of the widget in the ontology support the behavior `̀ clickOn".

The results of the tests are displayed by a colored symbol next to each Step, a

red `̀ X" representing failure, a green `̀ V" representing success, and a black `̀ ?"

representing an untested Step.

Fig. 12. Pallets with the widget button and its properties extracted from the ontology.

021

Login

Usem3me

last name

Find Rights

Round trip

f,.m

Passwo1d Oepar1

My !rips / ChtGk-în flighl statu,

One way

To

Round 1rip + h@

Numbe, of p;;iHen9e1s

Surch

One-Way Tickets Search

M GiVen I go to .. Flnd flights ..

M When I choose --one wa'('

IX) And I type .. Paris .. choose "CDG - Paris Ch De Gaulle, France .. ln the field .. From ..

IX) And I type .. Dallas" choose .. DFW- Dallas Fort Worth International, lX"ln the field "To ..

IX] And I choose the option of value ·2·1n the field .. Number of passenoers·

IX] And I choose ·12115/2016"referring to "Deparf'

M And I click on ·search ..

M Then will be displayed "Choose Flights•

Flighl!I Oepanure A11N31 Choice

'9 11:X> am 00:35 pm

8'8005 COG OFW

fEEil 07:l5 am 00:'IOam
Ope1a1ed by COG LHR

British Aî,ways

51 œ:ssam 12:25 pm

LHR DFW

$1711
Refundable

$1706
Refundable

Fig. 13. A state machine transition between sketches of a PANDA prototype for the user story "Flight
Tickets Search". From top to bottom: The initial State "Find Fli ghts", a Transition represented by the
Sœnario "One-W ay Tickets Search", and finally the resultant State "Choœe Flights".

4.2.2. Ontology support for testing web final Uls

To test the Scenarios over Web Final Uls, we have employed a set of frameworks to

provide automated simulation of user's interaction. More specifically, we have used

Selenium WebDriver to run navigational behavior as well as JBehave and Demoiselle

Behave to parse Scenario scripts. The ontology is charged as a CommonSteps Java

Class, pre defining behaviors that can be used when writing Scenarios, and where

each action and/or assert for each behavior is defined. This class implements the

dialog component and contains all the knowledge about how performing the men

tioned behaviors on the UI elements, thus when using them to write Scenarios, tests

are delivered without any additional effort of implementation. Hence, methods in

this class have been writ ten for every Step addressed on the ontology. As illustrated
in Fig. 14, behaviors" When/Then I choose " ... " referring to " ... "" are addressed to

the Selenium method click(), with the appropriate sequence of actions to perform this

task on the Final Ul As this behavior can be performed only in Radio Buttons,

022

@When(Yalue - "l choo:se \'"$elementNeme\'" referring to \"SlocatorParameters\"' ", priority - 10)

0Then(Yelue - "I chooise \'"$elementNe:ine\• referring to \"SlocetorParam.eters\"'", priority - 10)

publie void inforrnWithPorom.eter= (String eleœ.ent.Nome, Li�t.<.string> locator?ararnet.er�) {

locator?aramet.er= - Da:taPro'i"iderUti.l .replac:eDat.e.Provider (locatorPara.œ.eter=);

Element elem-=nt - runner .geteleœent (c:urrentPageNom.e, elementNe.œe);

element. se'tLocatorParame'ters (loca'to:r?arameters) ,·
if (e lemen't 1n.ata.noeof Radio) {

((Radio) element). click();
} else 1f (elentent 1.nseanoeof check.Box) {

((CheckBox) elernen't) ,click();
l elae 1f (elentent 1.natanoaof Linlt) {

((I.ink) elernen't) ,click();
l elae if (elero.ene ina"tanceof calend a:r) {

((Calendar) element.) .click();
} elee {

t.b.row new BehaveExcepeion (meeeage.get.sering ("'excepeion-invalid-eype"' , element.. geeclaee () .get.Name ()));

Fig. 14. Behavior "choœeR.efferingTo" béng structured as a Java method.

Check Boxes, Links or Calendars, the concrete in stance of any of these elements are
searched on the Presentation layer.

The Presentation component includes the My Pages Java Class that makes the

mapping between abstract UI element.s of the ontology and the concrete/final UI
components instantiated on the interface being tested. For that purpose, we make

use of annotations in Java code following the Page Objects pattern [14] as illustrated

in Fig. 15. UI components are identified through their XPath references or some

other unique ID eventually used for some frameworks to implement the interface.

This l ink is essential to allow the framework to automatically run the Steps on the

right components on the Final UI.

location • " .. ")

ElementLocatorType.XPath, locator

" ... ")

Fig. 15. C,oncrete and abstract UI elements being associated in a Java class.

For behaviors not addressed by the ontology, the MySteps Java Class allows

developers and testers to set their own business behaviors and implement as well how

they should be attended by the Selenium methods on the UI components. For both

classes the main incomes are behaviors extracted from the User Stories that can be

represented in simple packages of text files.
In short, once the ontology is charged, it is enough to identify on the Final UI

under testing the concrete UI element.s that were instantiated to represent abstract

UI elements. Afterwards, when Scenarios are triggered, the application runs and

Selenium performs Step by Step the specified behaviors, reporting testing results

either by the JUnit green/red bar or by JBehave reports with the context and

attached print screens of each identified failure.

023

4.4. Discussion

The ontology presented in this paper describes behaviors that report Steps of

Scenarios performing actions directly on the User Interface through Interaction

Elements. Thus, the ontological model is domain free, which means that it is not

dependent of business characteristics that are described in the User Stories. Speci¯c

business behaviors shall be speci¯ed only for the systems to which they make ref

erence, not a®ecting the whole ontology. Therefore, it is possible to reuse Steps in

multiple testing Scenarios. For example, the ontological behaviors goTo, choose,

chooseReferringTo, typeAndChooseInTheField, chooseTheOptionOfValueInThe

Field, clickOn, and willBeDisplayed presented in the case study can be reused for

Scenarios of other system requiring those kind of user's actions.

However, Scenarios should be speci¯ed in the user interaction level, writing Steps

for each click, selection, typing, etc. A possible solution to avoid this level of

detail would be to work with higher level behaviors that are described by user's

tasks. Nonetheless, user's tasks often contain information from speci¯c application

Ontological concepts Scenario Prototype and ¯nal UI

Condition: Given Given I go to `̀ Find °ights" Browser Window: `̀ Find

°ights"Behavior: goTo

Event: When When I choose `̀One way" Link: `̀ One way"
Behavior: choose

Event: When And I type `̀ Paris" and choose

`̀CDG - Paris Ch De Gaulle,

France" in the ¯eld `̀ From"

Autocomplete: `̀ From"

Behavior: type-

AndChooseInTheField
Event: When And I type `̀Dallas" and choose

`̀DFW - Dallas Fort Worth

International, TX" in the
¯eld `̀To"

Autocomplete: `̀ To"

Behavior: type-

AndChooseInTheField

Event: When And I choose the option of value

`̀ 2" in the ¯eld `̀Number of

passengers"

Dropdown List: `̀ Number

of passengers"Behavior: chooseTheOptio-

nOfValueInTheField
Event: When And I choose `̀ 12/15/2016"

referring to `̀Depart"

Calendar: `̀ Depart"

Behavior: chooseReferringTo

Event: When And I click on `̀ Search" Button: `̀ Search"

Behavior: clickOn
Action: Then Then will be displayed `̀Choose

Flights"

Text: `̀ Choose Flights"

Behavior: willBeDisplayed

4.3. Mapping ontological concepts

The ontology based approach we have proposed for testing UIs allows us to establish
a direct mapping of abstract concepts in the ontology and concrete instances in
scenarios, prototypes and ¯nal UIs. Table 5 provides an example of how these con
cepts are mapped for the Scenario `̀ One Way Tickets Search".

Table 5. Mapping ontological concepts for scenarios, prototypes and ¯nal UIs.

024

domains. For example, high level Steps like `̀When I search for °ights to

`̀Destination"" encapsulate all low level behaviors referring to individual clicks,

selections, etc.; however, it also contains information that refers to the airline domain

(i.e. behavior `̀ search for °ights"). Therefore, that Step would only makes sense on

that particular application domain. For further researches, it could be interesting to

investigate domain ontologies to be used in parallel with our ontology, de¯ning a

higher level business vocabulary database in which business behaviors could be

mapped to a set of interaction behaviors, covering recurrent Scenarios for a speci¯c

domain, and avoiding them to be written every time a new interaction may be tested.

Another aspect to be discussed is that even having mapped synonyms for some

speci¯c behaviors, our approach does not provide any kind of semantic interpreta

tion, i.e. the Steps might be speci¯ed exactly as they were de¯ned on the ontology.

The JBehave plugin for Eclipse shows (through di®erent colors) if the Step being

written exists or not on the ontology. This resource reduces the workload to

remember as exactly some behavior has been described on the ontology.

On one hand, the restricted vocabulary seems to bring less °exibility to designers,

testers and requirements engineers. Nonetheless, on the other hand, it establishes a

common vocabulary, avoiding typical problems of ambiguity and incompleteness in

requirements and testing speci¯cations. Further studies on Natural Language Pro

cessing (NLP) techniques might help to improve the process of speci¯cation adding

more °exibility to write Scenarios that could be semantically interpreted to meet the

behaviors described on the ontology. This issue is certainly a worthwhile topic for

further research.

It is also worthy of mention that the concepts and de¯nitions in the ontology

presented herein are only one of the possible solutions for addressing and describing

behaviors and their relations with UIs. Despite the fact that our ontology covers

concepts available in well known languages such as MBUI, UsiXML and SCXML, we

do not assume that the coverage is exhaustive. For that, we suggest that other

behaviors, concepts and relationships might be included in the future to express

idiosyncrasies of speci¯c interaction techniques (ex. multimodal interaction techni

ques) and/or speci¯c platforms (ex. ambient systems). If so, new elements can be

added by direct imports into the ontology or simply adding new more expressive

behaviors to the Object Property `̀ behaviors" and linking them to the appropriate

set of Interactive Elements.

Finally, when representing the various Interaction Elements that can attend a

given behavior, the ontology also allows extending multiple design solutions for the

UI, representing exactly the same requirement in di®erent perspectives. Thus even if

a Dropdown List has been chosen to attend for example a behavior setInTheField in

a Prototype, an Auto Complete ¯eld could be chosen to attend this behavior on the

Final UI, once both UI elements share the same ontological property for this behavior

under testing. This kind of °exibility makes tests pass, leaving the designer free to

choose the best solutions in a given time of the project, without modifying the

behavior speci¯ed for the system.

025

5. Conclusion

In this paper, we have presented a behavior based ontology aimed at test automation

that can help to validate functional requirements when building interactive systems.

The proposed ontology acts as a base for a common vocabulary that is articulated to
map interactive behaviors to UI Elements, allowing automation of acceptance test of
functional requirements in Prototypes and/or in full °edge User Interfaces. The
ontology also supports the design of User Interfaces by providing a consistent set of
UI Elements that meet particular behaviors.

In addition, behaviors described in the ontology are already implemented

for automating tests on UIs, which means we can freely reuse them to write new
Scenarios in natural language, providing test automation with little e®ort from
development teams. It allows specifying tests in a generic way, which bene¯ts reuse
along the development process. For that reason, we are also investigating the use of
the ontology for testing model based artifacts such as low ¯delity Prototypes and
Task Models. Testing in this kind of artifacts could be conducted through a static
veri¯cation of their source codes and would help to integrate testing in a wider
spectrum of artifacts commonly used to build interactive systems.

We have also presented tools that demonstrate how this ontology can support
testing of interactive systems. So far, only interactive Prototypes built in PANDA

can be tested by the ontology once it requires that tools are able to read and support
the set of described behaviors. On the other hand, tests in Web Final UIs can run
independently of the frame works used to build these UIs. It is possible because tests
provided by our tool assess the concrete UI elements found on the interface in the
¯nal HTML page.

5.1. Future works

Although the results presented in this paper are still preliminary, the current version
of the ontology opens door for many interesting research questions that motivate our
future work. First of all, we are planning to investigate the acceptability of the
approach with users. The idea is to assess through empirical evaluation whether
(or not) people involved in the development process of interactive applications are
able to employ our approach to specify their functional requirements using the
proposed template and the concepts present in our ontology. We are planning to
conduct these empirical studies with developers, requirement engineers, clients and
end users, in order to determine the potential in the context of multidisciplinary and
complex development teams.

Currently we are also investigating more complex behaviors in real cases of
software development. We suggest that it would be useful to collect data about the
e®ectiveness and the workload when specifying tests using the ontology. Other case
studies including mobile platforms are planned as well. In a longer run, we also want
to explore idiosyncrasies of interaction techniques and/or platforms to check

026

hypothesis related to the coverage of concepts in the current ontology. These studies

might also help to improve the ontology.

Future work should also consider ontologies as knowledge bases, keeping speci¯c

behaviors for speci¯c groups of business models in domain ontologies. It would allow

us to also reuse entire business scenarios in systems sharing similar business models.

Last but not least, we also want to investigate the reuse of User Stories created

using our approach to assess other types of artifacts used during the development

process. In this paper, we have shown how to test model based prototypes build with

PANDA and full °edge implementation of an interactive system. However, we

suggest that stories created with our approach can be potentially reused with other

kind of artifacts that also describe some behavioral aspect of interactive systems.

We are particularly interested in artifacts such as tasks models and business models.

So far, we do not know how much our approach is applicable to these artifacts as they

only partially describe the system behavior. For that, further studies are necessary.

References

[1] D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis and A. Hellesoy, The RSpec
book: Behaviour driven development with Rspec, Cucumber, and friends, Pragmatic
Bookshelf, 2010.

[2] K. Pugh, Lean Agile Acceptance Test Driven Development (Pearson Education, 2010).
[3] G. Adzic, Speci¯cation by Example: How Successful Teams Deliver the Right Software

(Manning Publications, 2011).
[4] M. Cohn, User Stories Applied: For Agile Software Development (Addison Wesley

Professional, 2004).
[5] N. Guarino, D. Oberle and S. Staab, What is an ontology? in Handbook on Ontologies

(Springer, 2009), pp. 1 17.
[6] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon and J. Vanderdonckt,

A unifying reference framework for multi target user interfaces, Interacting with
Computers 15(3) (2003) 289 308.

[7] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon and V. L�opez Jaquero, USIXML:
A language supporting multi path development of user interfaces, EHCI/DS VIS, 2004.

[8] M. Winckler, J. Vanderdonckt, A. Stanciulescu and F. Trindade, Cascading dialog
modeling with UsiXML, in International Workshop on Design, Speci¯cation, and Ver
i¯cation of Interactive Systems, 2008, pp. 121 135.

[9] M. Winckler and P. Palanque, StateWebCharts: A formal description technique dedi
cated to navigation modelling of web applications, in Design Speci¯cation and Veri¯
cation of Interactive Systems, 2003, pp. 61 67.

[10] J. Pullmann, MBUI Glossary W3C, Fraunhofer FIT, 2016. [Online]. https://
www.w3.org/TR/mbui glossary/.

[11] J. Barnett et al., State Chart XML (SCXML): State Machine Notation for Control
Abstraction, W3C, 2016. [Online]. http://www.w3.org/TR/scxml/.

[12] D. North, What's in a Story? 2016. [Online]. http://dannorth.net/whats in a story/.
[13] J. L. Hak, M. Winckler and D. Navarre, PANDA: Prototyping using annotation and

decision analysis, in Proceedings of the 8th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, 2016, pp. 171 176.

[14] M. Fowler, PageObject, 2016. [Online]. http://martinfowler.com/bliki/PageObject.html.

027

