N

N

A Formal Ontology for Describing Interactive Behaviors
and Supporting Automated Testing on User Interfaces
Thiago Rocha Silva, Jean-Luc Hak, Marco Winckler

» To cite this version:

Thiago Rocha Silva, Jean-Luc Hak, Marco Winckler. A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces. Best Life, 2017, 11 (04), pp.513-539.
10.1142/S1793351X17400219 . hal-02548019

HAL Id: hal-02548019
https://hal.science/hal-02548019
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02548019
https://hal.archives-ouvertes.fr

A OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in: http://oatao.univ-toulouse.fr/22288

Official URL.: https://doi.org/10.1142/S1793351X17400219

To cite this version: Rocha Silva, Thiago and Hak, Jean-Luc
and Winckler, Marco Antonio A Formal Ontology for
Describing Interactive Behaviors and Supporting Automated
Testing on User Interfaces. (2017) International Journal of
Semantic Computing, 11 (04). 513-539. ISSN 1793-351X

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

https://doi.org/10.1142/S1793351X17400219
http://oatao.univ-toulouse.fr/22288
mailto:tech-oatao@listes-diff.inp-toulouse.fr

A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated
Testing on User Interfaces

Thiago Rocha Silva* and Jean Luc Hak'

ICS-IRIT, Université Paul Sabatier
Toulouse, France
*rocha@irit. fr
Yiean-luc.hak@irit. fr

Marco Winckler

SPARKS Team, I8S Universitée Nice Sophia Antipolis, France
winckler@irit. fr

Nowadays many software development frameworks implement Behavior-Driven Development
(BDD) as a mean of automating the test of interactive systems under construction. Automated
testing helps to simulate user’s actions on the User Interface and therefore check if the system
behaves properly and in accordance to scenarios that describe functional requirements. How-
ever, tools supporting BDD run tests on imPlemented User Interfaces and are a suitable
alternative for assessing functional requirements in later phases of the development process.
However, even when BDD tests can be written in early phases of the development process they
can hardly be used with specifications of User Interfaces such as prototypes. To address this
problem, this paper proposes to raise the abstraction level of both system interactive behaviors
and User Interfaces by means of a formal ontology that is aimed at supporting test automation
using BDD. The paper presents an ontology and an ontology-based approach for automating
the test of functional requirements of interactive systems. We demonstrate the feasibility of this
ontology-based approach to assess fmctional requirements in prototypes and full-fledge apPlications
through an illustrative case study of e-commerce applications for buying flight tickets.

Keywords: Behavior-Driven Development (BDD); automated requirements assessment; ontolog-
ical modeling; user interfaces; prototyping; testing of interactive systems.

1. Introduction

Assessing interactive systems is an activity that requires a considerable amount of
efforts from development teams because it implies to assess systems features with
respect to the many possible data and system outputs that might occur when a user
is interacting with the system. Conducting this activity manually is a very time

consuming and error prone task due to the diversity of user scenarios and the many
ways of testing data. Moreover, the system behavior should pass acceptance testing,

001

which is aimed to determine if the user’s point of view about a feature is in accor
dance with the requirements previously specified. Thus, the automation of tests for
assessing the system behaviors becomes a convenient choice, requiring the use of
frameworks to simulate the user’s actions when interacting with the system.

In recent years, there is an increasing interest both from academic and industrial
communities in Behavior Driven Development (BDD) [1-3] for supporting auto
mated acceptance testing of functional requirements. One of the strengths of BDD is
to support the specification of requirements in a comprehensive natural language
format specification, the so called User Stories [4] that encompass testing Scenarios.
With the help of external frameworks, it is possible to automate the test of Scenarios
directly on the User Interface (UI). The execution of such executable requirements
works as a “live documentation” informing developers about the status of the system
with respect to clients’ requests set in the acceptance tests.

During the last seven years, we have been involved in the development of web
applications where we have observed certain patterns of low level behaviors that are
recurrent when writing BDD Scenarios for testing functional requirements with the
User Interfaces (UI). Besides that, we could also observe that User Stories specified in
natural language often contain semantic inconsistencies. For example, it is not rare
to find Scenarios that specify an action such as a selection to be made in semantically
inconsistent widgets such as a Text Field. These observations motivated us to in
vestigate the use of a formal ontology for describing pre defined behaviors that could
be used to specify Scenarios. On one hand, the ontology should act as a taxonomy for
terms removing ambiguities in the description. On the other hand, the ontology
would operate as a common language that could be used to write tests that can be
run on many artefacts used along the development process of interactive systems.

In this paper, we introduce our ontological model for describing interactive
behaviors on Uls. The ontology aims to support testing automation of interactive
systems specified using a scenario based approach, covering Ul concepts in both
presentation and dialog aspects. For the presentation layer, we have modeled the
semantics of several web and mobile UI elements. For the dialog layer, we have
modeled the semantics of User Stories as a State Machine. Such models have allowed
us to provide a semantically consistent catalog of interactive behaviors that can be
used for automating the test of Uls in different levels of abstraction.

Results of our ontology validation are also presented by demonstration of its
correctness through a consistency checking. In addition, we describe an exploratory
case study that has been conducted for the flight tickets e commerce domain. In this
study, we have used our ontology based tools to support the assessment of evolu
tionary prototypes and final Uls. In the following sections, we discuss the founda
tions for this work, how we have built the ontological model to support the
automated assessment of interactive systems, followed by its validation. We con
clude with a discussion and future works.

002

2. Foundations
2.1. Computational ontologies and related works

Computational ontologies [5] come to play as a means to formalize the vocabulary
and the concepts used in User Stories, Scenarios and user’s behaviors. Without a
common agreement on the concepts and terms used it would be difficult to support
the assessment of user requirements. Some approaches have tried to define languages
or at least a common vocabulary for specifying Uls for interactive systems. Useful
abstractions for describing interactive systems include the components that compose
the presentation of a User Interface and the dialog parts that describe the system
behavior.

The Camaleon Framework [6] treats the presentation and the dialog in three levels
of abstractions: Abstract, Concrete and Final User Interfaces. The idea is that as
abstract user interface component (such as a Container) could be refined to a more
concrete representation (such as a Window) that will ultimately feature a final im
plementation in a target platform (e.g. MacOS or Windows). User Interface (UI)
specifications include more or less details according to the level of abstraction as shown
in Fig. 1. The UsiXML (USer Interface eXtensible Markup Language) [7] implements
the principles of the Cameleon framework in a XML compliant markup language
featuring many dialects for treating Character User Interfaces (CUIs), Graphical User
Interfaces (GUIs), Auditory User Interfaces, and Multimodal User Interfaces. UsiXML
is a declarative language that captures the essence of User Interface components. At
the highest level of abstraction, UsiXML describes concepts of widgets, controls,
containers, modalities and interaction techniques. UsiXML contain a few basic ele
ments for describing the dialog part such as the concept of events, conditions and
actions. For that, some authors have proposed to use a notation based on statecharts
called SWC (StateWebCharts) [9] to specify the UsiXML dialog. The same authors [8]
have demonstrated that when using SWC, it is possible to describe the system behavior
at different levels of abstraction using UsiXML.

e Contextofuse A\ /7 Context of use B \

O Task & Concepts

© Task & Concepts

> © Abstract Ul (AUI)

@ Final Ul (FUI)

-

A
| Abstraction <€~ Translation

l Reification
Fig. 1. The Cameleon reference framework (from [7]).

As far as a common vocabulary is concerned, the W3C published a glossary
of recurrent terms for presentation components called MBUI (Model based User

003

Interface) [10]. For the dialog component, SWC [9] and SXCML (State Chart XML:
State Machine Notation for Control Abstraction) [11] offer a language based on the
State Machine concepts.

2.2. User Stories

User Stories in Software Engineering was first proposed by Cohn [4] as a mean to
formalize artifacts for describing system’ features and their corresponding acceptance
criteria. User Stories are formatted to fulfill two main goals: (i) assure testability and
non ambiguous descriptions and (ii) provide reuse of business scenarios. User Stories
express concrete examples of what should be tested to consider these features as
“done”. Below we present a template proposed by North [12] and Cohn [4]:

Title (one line describing the story)
Narrative:

As a [role]

I want [feature]

So that [benefit]

Acceptance Criteria: (presented as Scenarios)
Scenario 1: Title

Given [context]

And [some more context]...

When [event]

Then [outcome]

And [another outcome]...

Scenario 2: ...

A User Story contains a Title, a Narrative and a set of Scenarios representing the
Acceptance Criteria. The Title provides a general description of the story, referring
to a feature that this story represents. The Narrative describes the role (played by
a user), the feature itself, and the benefits it will bring to the business and/or to the
role. The Acceptance Criteria are defined through a set of Scenarios defined with a
Title and three main clauses: “Given” provides the context, “When” describe events
that trigger the Scenario and “Then” shows the expected outcomes (that should be
checked). Each clause can include an “And” statement. Each statement in this
representation is called Step.

In Behavior Driven Development (BDD) [1], the user’s point of view about the
system is captured by User Stories. The BDD approach assumes that clients and
teams can communicate using this semi structured natural language description, in a
non ambiguous way. Following this assumption, we have defined a conceptual model
to represent users’ functional requirements. A functional requirement defines state
ments of services that the system should provide, how the system should react to
particular inputs, and how the system should behave in particular situations.
Requirements should be expressed in a way they can be reused to assess the system’s
behavior.

Figure 2 presents the conceptual model of our approach. Requirements are
expressed as a set of User Stories (US) encompassing a Narrative and Acceptance

004

=

has

-
: o -

1

has

3.7
Interaction Element 0.*-is handled by — 1..* Behavior 1—is represented as—1 “

can mention

[

0.*

Fig. 2. Conceptual model of user requirements.

Criteria. Acceptance Criteria are presented as Scenarios composed by at least three
main Steps (“Given”, “When” and “Then”) that represent the expected system’
Behaviors. Behaviors handle actions on Interaction Elements in the User Interface
(UI) and include data using in the test. These concepts and rules are defined as
classes and axioms in the proposed ontology presented hereafter.

3. Ontology Modeling

Our ontology for describing interactive systems is based on concepts borrowed from
different languages found in the literature. From Camaleon [6] and UsiXML [7] we
borrow concepts of abstract and concrete Uls. Presentation and definition of
graphical components come from W3C MBUI [10]. From W3C Web Ontology
Language we get concepts for graphical components (behavior and presentation
aspects) commonly used to build web and mobile applications, and also the textual
representations used to describe how users interact with those graphical components.
SWC [8] inspire concepts used in the dialog.

The ontology has been modeled in Protégé 5.0. Figure 3 presents the classes of the
ontology and their properties divided in 4 wide groups: Platform Concepts, UI
Concepts, State Machine Concepts and Scenario based Concepts. The first group
defines the web and mobile platforms covered by the ontology. The second one
encompasses concepts allowing modeling the Ul. The classes Dialog, Presentation
and Platform model the concept of a Prototype. A Prototype is built for at least
one Platform and is specified by no more than one Dialog and one Presentation.
The third group specifies the State Machine concepts. A Dialog is described as a

005

T
Platform
Platform

Concepts

- Prototype

isSpeciiedBy
(maz 1)

Presentation

IsComposadBy <
(some)

IsR@prasentedBy
(min 1)

Interaction Element

concerns

State] [Transition

State Machine
Concepts

r—

shouluRepresent
Isame)

User Story

isDescribedBy
(exacty 1

Scenario
IsASetOf
(some)

isAnGecumence Of
(onhy)

Y

Y
Narrative Task

Scenario-based
Concepts

Fig. 3. Main classes and their properties in the ontology.

State Machine while a Presentation is composed by Interaction Elements. Likewise,
in the fourth group, the classes Narrative, Scenario, Step and Task model the concept
of a User Story. A User Story is described by exactly one Narrative and some Sce
narios. A Scenario is an occurrence of only one Task and is a set of Steps. A Step shall
represent some Event, Condition and/or Action that are Transition elements from
the State Machine, performing the Dialog component of a Prototype.

Concepts have been modeled as Classes. Relationships between concepts have
been modeled as Object Properties (subtype “relations”). Classes that handle data
have such descriptions modeled as Data Properties. As core elements in the ontology,
UI Elements and the interactive behaviors are respectively as Classes and Object
Properties (subtype “behaviors”).

In the following subsections, we detail the basic concepts of Object (Sec. 3.1) and
Data Properties (Sec. 3.2), as well as the four main group of concepts described
above: Platform (Sec. 3.3), UI (Sec. 3.4), State Machine (Sec. 3.5), and finally
Scenario based concepts (Sec. 3.6). The current version of the ontology bears an
amount of 422 axioms (being 277 logical axioms), 56 classes, 33 object properties,
17 data properties and 3 individuals. A visual representation of all the concepts

006

can be found at https://goo.gl /1ZqSJ0 and its complete specification in OWL can be
found at https://goo.gl/1pUMqgp.

3.1. Object Properties

Relationships between individuals in classes are represented as Object Properties.
We have classified those properties in “Relations” and “Behaviors”. “Relations”
groups conceptual relationships between objects from internal classes, i.e. objects
that do not directly address interactive behaviors. “Behaviors” on the other hand
groups conceptual relationships between interactive behaviors and UI Elements on
the UL The “Relations” group is detailed hereafter and the “Behaviors” groups will
be detailed in the Sec. 3.6.

3.1.1. Relations

The sub property “relations” defines the semantic correspondence between internal
classes. Table 1 presents the whole set of relationships between objects of internal
classes defined in the ontology. The class that drives the property is called Domain
Class and the class affected by the property is called Range Class. The Restriction
Type adds constraints to the modeled property. Figure 4 illustrates the relations
between elements in the State Machine. As a sub property of Relations, objects from
the Dialog class are composed by some States and Transitions. This relationship is
described by the property isComposedBy (left side of Fig. 4). Accordingly, objects
from the Transition class are triggered by a sequence of some Conditions, Events and
Actions. This relationship is described by the property isTriggeredBy (right side
of Fig. 4).

Table 1. “Relations” as object properties in the ontology.

Domain class Object property Restriction type Range class
State concerns only Presentation
Step isAnOccurrenceOf only Task
Scenario isASetOf only Step
Prototype isBuiltFor min 1 Platform
Dialog isComposedBy some State
isComposedBy some Transition
User Story isDescribed By exactly 1 Narrative
isDescribedBy some Scenario
Presentation isRepresented By min 1 Interaction Element
Prototype isSpecified By max 1 Dialog
isSpecified By max 1 Presentation
Transition isTriggeredBy some Event
isTriggeredBy some Condition
isTriggeredBy some Action
Transition performs only Scenario
Step shoudRepresent some Event
shoudRepresent some Condition
shoudRepresent some Action

007

Description: isComposedBy Descrption: isTriggeredBy

Equivalent To Equivalent Te

i @ relati
mrelations relations

© Transition
1 Dialog

Ranaes (intersectior
®isTriggered8y some Event
#isComposedBy some State ®isTriggered8y some Condition

W isComposedBy some‘Transmon;/} | @ isTriggeredBy some Action

Fig. 4. Object properties isComposedBy (left) and isTriggeredBy (right).

3.2. Data Properties

Data Properties are used to describe semantically data domains used by each class
that handles data. The root tree shown in Fig. 5(a) gives an overview of the prop
erties created, while Fig. 5(b) expands the Data Property “message”, showing that
this kind of data is used by the UI Elements “Message Box”, “Notification”, “Tool
Tip” and “Modal Window”. “Message” has also been defined to range the primitive
data String. Table 2 shows the whole set of Data Properties created, their respective
Domain Classes as well as their Datatypes. As some UI Elements can handle another
UI Elements or even different Datatypes, we have defined the generic type “element”
for modeling this property. For example, Menus present options for users, but these
options can be of any type, i.e. images, text, or even another UI Element such as a

Data groperty hicrarchy: owltcpDataPropel
BT
& uwl:lovDataPluperly
» @ actions
- -@magreement
: mdata_and_time_input
- -@images
-~ mlevel

» - mlocations
: - nur{lberﬁinput Show: M thic ¥ digjoint:
»--@options Found 6 uses of message
@pages v mmessage
-~msymbol ®@message Domain Message_Box
- mtext_input ®message Domain Notification
@ title - message
- -mtrack_bar ®@message Domain Tool_Tip
--mmvalue ®mmessage Range: xsd:string
®mwords ®message Domain Modal_Window
(a) (b)

Fig. 5. (a) Left Data properties; (b) Right Data property “message”.

008

Table 2. Data properties in the ontology.

Data property Domain classes Datatype
Actions Menu Item, Link, Message Box, Button, Modal Window element
State xsd:boolean
Agreement Notification xsd:string
Data and Time Input Calendar xsd:dataTime
Images Image Carousel xsd:hexBinary
Level Prototype
Locations Breadcrumb xsd:string
State xsd:boolean
Message Message Box, Notification, Text, Tool Tip, Modal xsd:string
Window
Number Input Numeric Stepper xsd:double
Options Tabs Bar, Checkbox, Dropdown List, Toggle, List Box, element
Radio Button, Accordion, Menu, Progress Bar,
Dropdown Button

State xsd:boolean
Pages Pagination xsd:integer
Symbol Icon xsd:hexBinary
Text Input Search Field, Text Field, Autocomplete xsd:string
Title Button, Field Set, Link, Label, Menu Item xsd:string
Value Slider xsd:double

xsd:string
Words Tag xsd:string

Menu Item. The other Datatypes come from the standard XSD specification. Finally,
notice that the only Data Property that does not use a Datatype is the property
“Level”, which refers to the level of a Prototype.

3.3. Platform concepts

Concepts of the platform are modeled in the ontology to determine which kind of UI
is supported by the model. So far, the ontology supports only interactive behaviors
for web and mobile Uls. As a consequence of such choice, only UI Elements that are
supported by web and mobile environments have been described in the superclass
Interaction Elements. The set of UI Elements that suits each platform is presented as
Object Properties in Sec. 3.4. Finally, the classes Web and Mobile have been modeled
as specializations of the class Platform, which allows us to eventually cover other
platforms in the future.

3.4. UI elements concepts

UI Elements in the ontology represent an abstraction of GUI components in web and
mobile platforms. Figure 6 illustrates a hierarchy of UI Elements.

As we shall see in Fig. 6, the four main superclasses are Container, Information
Component, Input Control and Navigational Component. The first one contains ele
ments that group other elements in a User Interface, such as Windows and Field Sets.

009

i

Information_Com - - i
® - -o—{*® Window_Dalog |+ ® window |
@ Navigational_Co *0 Interaction_Ele

mponant —<_»—-1 mant
m \y

@ Breadcrumb [l .‘
I @ Image_Carousel “ .‘rllJ j @ Input_Control ” @ Accordion I
/Pf,/ JIIII‘ | @ Radio_Button ///, “ |\
X 'L I @ Dropdown_Bution | \
v : H

ll‘l I @ Numeric_Stepper I Il i
(o] |.ommL.i | vl.m |
| ® search Fisia | | ® Togge ” .cunndnr I

 rcroes

Fig. 6. Graph describing the hierarchy of user interface (UI) elements.

The second one contains elements in charge of displaying information to the users
such as Labels and Message Boxes. The third one represents elements that accept
users inputs such as Buttons and Text Fields. Finally, the last one contains elements
useful to navigate through the system such as Links and Menus. Some elements
like Dialog Windows, for example, are inherited by more than one superclass, once
they keep semantic characteristics of Containers and Information Components
as well.

The complete list of UI Elements modeled in the ontology is presented in Table 3,
specifying for each one the correspondent superclass, a brief description and
both Data and Object Properties associated. In Data Properties (DP) is identified
the type of data handled by the UI Element as well as the Object Properties (OP)
describing, for Interaction Elements, whether they are supported by web and/or mobile

platforms.

010

9MIqOIN ‘PM :dO
oFessour

‘o8essoull JUMLIRM 10 IOLID Ue IO ‘Yse)
® JO U01R[dW0d [NJSSIONS J) ‘S YINS SWY 2)edIPUT 03 pasn A[[eordL} aIe SUOIYedIYIION

“uomaIse g *99S 0 JOS 9} I0] MOU SUIYIOUWIOS SHOUNOUUR JeT[) dFessowr 9jepdn U ST UOTIROYIION Y UOT)eOUTION.
MIYOIN ‘PM :dO
98essotr "PIRMIO] DAOUI TRD A9T[} 9I0Jo(UOTJOR UR OYR] xog
‘suoryoe :Jq 07 WY} SPIMbal pur SI9SN 0} UOTJRULIOJUT SOPIA0Id Jel[) MOPUIM [[RUIS ® SI XOg 93eSSoI\ Y a3essoIN
MO ‘PPM :dO jusuodwoy)
i :dd "UoIyedYIsse[d Juejuod sAe[dsip [oqer] y PqeT UOoIyeULIOJU]
PM dO
o8essowt R)SAS MOPUT A\ Soreiq
‘suoryoe :J(q 91[09 WINJAI Ued £31[) 9I0Joq AeM SUIOS UI 9T TIIM JORIDIUI 0 SIOSN SoIMNbol MOPUIA\ [ePOIN V [ePOIN MOPUT A\
-osuodsal ® 10} wet) sjduord Soreiq
PM dO pue I9SN 97[} 0} UOTJRULIOJUI SOIRITUNIUITIOD JRT[) MOPULM [[RUIS © ST XO¢ SO[Rel(J 10 MOPUIA V MOPUIA
‘snje)s Surproy
o3ed o1} sA®[dSIp Jel[) IRq SNJRIS © UTRIUOD ARUI MOPUIM 9T[} JO W0330q o], 08ed qop\
JUSIIND JT[} JO JUSIUOD B[} ST TR([00) BT} MO[og] 'SU0}IN(UOTIRIIART IDTJ0 PUR ‘SHIRTI{O0]
‘P[P SSOIPPR UR ‘SUO)IN(PIRMIO] PUR YOR([IM TR][00] ® ST 931 o) mo[og ‘o8ed Juolimnd MOPUT
PM dO 9} JO 991} o) SAR[ASIP e[} IR(J[J1} © SUIRIUOD MOPUIM IoSMOI(oA\ [BI1dAY ' Jo dog oy T, Iosmorg MOPUIA
“WODIOS 97 JO 1891 o) wox) Ajyuepuadopur poderdsip
— 3ureq s)UIU0D ST YJIM ‘UOTRULIOJUT SAR[ASIP e} USDIOS OY[) UO BaIR UR ST MOPUIA Y MOPUIA\
AMIqOIN ‘PPM :dO "I9UTRITUOD (B} B SB PISN q Wed 9] "SMIIA JO AJIIISTA
suonpdo :Jq S[0I3U0D YOIYM ‘suojng Ieq qe T, o[drynu A[reotdAy sey] Jet]) 193pim IouTejuod ® st Ieg qe], V Ieq sqeq,
OIqQOIN ‘GOM :dO ‘oureu
ol :dd uowurod e Iepun padnoid Aqreuorydo s[oIjU0d ULIOY JO 90S ' sjuasordol Jueua[e 19§ POL] Y 109G PIotg
“SUISOID Iosn 9T JNOYJIM SUOTIO0S
9IOUI IO U0 [BIADI JRI[) S9JR)S JNRJOP OARY ARUI PUR SWII) © B SUIMOYS SUI)T 9I0UL 10
SO ‘PM :dO 9UO0 OARY URD JIOYJ, "UIYIIM JUSIUOD I} SUIMOYS UOI09S) spuedxo 91 ‘pasdI[D ST [oqe[
suonpdo :Jq UST[A\ “AJ[RUOTIOUN] OPIY/MOT[S SOZI[IIN YR} SWYT JO 9ST[POIR)S A[[RITLIOA © ST UOIPIOIDY UY UOIPI0dDY Isurejuo))
sorpredorg uondLoso(q JULUId[O U]

*£30709U0 91} I SJULWA[[) "¢ O[qR],

011

ordynnsmorre
BIqOIN ‘M ‘dO

‘papaau Jt suorydo jo 9s1] 1e3uof ' jroddns ues pue joedurod

suonndo : g 9I0W dIe JNQ ‘OWI) ' Je ST o[dII[NUI © J09[9S 0 SIOSTL MO[[R ‘SOX0qNDA) OYI] ‘SoxX0g ISTT xog ISI7
anbrunsmoye UOTYOR AIRSS908U 9} 9ZIUZ0001 Iosn oY) d[e1] 0} ,oUO0 199[0G,
OIAOIN ‘PM :dO S® TONS ‘p[eYy o) 09 1X07 SUIPPR IOPISU0) "9ords da®s 0] NOA SUIMO[R 1oedWod dI0W s1]
suonpdo :Jq aIe Jnq ‘su0lIng oIpel 0} A[IR[IWIS ‘OUII) © J& UI9YT SUO }09]as 0) SIoSn Mo[[e s3s1T umopdoi(] umopdoi(g
anbrusmoyre
QOIN ‘PM :dO "SWIO)T SAISN[OXO A[[eninut uoyng
suonydo : g Jo 9s1] umop-doIp © sAR[ASIP POYOI[O USYM JRT[) UWOIIN] ® JO SISISU0d uong umopdoiq ayJ, umopdoi(g
*A1essodou
ardiynNsmorre 9q 98T suLI) Jo uosLIedwoD JT 10 SUI[OIdS oImbal S 91 1Ry} YSnous JUO[ST IST|
OAOIN ‘PPM :dO 9] JT [[oM s® 9[qe)desor ST WWN[0D U0 URY) SIOJN “ISI[[BIIIIDA B UL SOXO(Y9YD Juasaid
suonpdo : g 07 9s9q A[Tensn sl 9] "10s ® WOIJ suoljdo 9I0UW I0 9UO J09[9S 0} IOSN J) MO[[® SOXONT) X0qY29Y))
NGO ‘PPM :dO
mndurewry) ‘we)sAs oY) ojur Jndur pue paj)eulIoj A[jUa)sISU0d ST UOTJRULIOJUT
“pueeiep :dd a1y ‘1oxord oty Sursn £g -owry 10 /pue 9)ep © 19[S 09 SIASN SMO[[R (I)21d 9yep) Iepuare)) Y Tepuoe))
AMqOIN ‘GPM :dO
a9 ‘suorjore 1 Jq "[30q 10 ‘U0dT Ue ‘9xo) Sulsn papqe] A[[eo1dA) ST pue yono) uodn UOIOR Ue S9)edIpul uong y uoyng
PM dO [oxnuop
mdurixe) :dq PRy o3 ojut od£) NoA o[IyM sUO1)se33Ns sop1aoId s1e8pim aje[duoo0INy oY T, 9gerdurooony mduy
Soreiq
- - MOpurm\
SO ‘PM :dO el A} Jo esodmd
agessow :J 10 ouTRU 9} SUIRIIPUI WY UR IOAO IOAOT] A0T[} UAYM SJUIT] 89S 0) Iosn & smofre dijjooT, ¥ diy, [0071,
MO ‘GPM :dO
a8essowl :J ‘a8ed e Ul JU8JUOD SATIRULIOJUT X0,
OIIqOIN ‘qPM :dO *9[qesId Jou oIk sreq sso1doid ‘AeostdA T, ‘sseooid req
suonpdo :qq © ul sdo)s JO SoLIds ® [SNOIY) 0URADR A1) S ST I9ST ® 9IoUM S9JRIIPUI Ivg SS0I1301d Y ssa1301g
sorprodor g uonduoso] JUOWR[O “JuT

(ponunuoy) ¢ o[qe],

012

MO ‘PM :dO
suondo :Jq
M :dO

oMy ‘suonde (g
PPM :dO

sodewnt :Jq
OMIYOIN ‘PM :dO
oquids :ga

PM :dO
suonedo] :dd

OMqON ‘GPM :dO
mdurixe} :gq
onbrupsmore
‘OlI9OIN ‘PPM ‘dO
suondo : g
NGO ‘PM :dO
mdurixel :dq
anbrunsmofye
‘OGO ‘PM :dO
suonpdo : g

9MI9OIN ‘PPM :dO
mndurrequnu :Jq

‘10ye12do uR 09 pejusseld spurUILIOd 10 suOI}do JO ISI[® ST NUSIA
*JUSTINOOP © UIIIM JUSTUS[D OYI0ads & 0] 10 JUewnoop

a[oym ® 0} syutod 9] “SurdID £q MO[[O] A[J00IIp 9 ed Jel[} BIRP 0} SOUSISJAI © SI YUIT Y
‘pasquifredAy oxe soSewr a1} ‘A[[eordA T, -9sooyd os Aot}

J1 9UO JO UOTIIA[eS ® SRUI PUR SWLII JO J9S B FNOIY) 9SMOI] 0} SISSTL MO[[R S[aSTIOIR)) oFeuI]
‘poyuIpedAY oxe suodt ‘A[restdA T, ‘wegsAs o1} ajediaeu

09 s1osn d[o7] 03 Pasn ST () [OqUIAS SATIINIUL UL SB FUIAIDS 9wl poyrduwis © ST U0d[Uy
‘oyesdiaru 0} soged Surpesdoid Jo [reI) o[qeIID

e gurpraoid £q wegsAs o) UIHIM TOTRIO] JUSLIND 1T} AJIIUSPI 09 SISSTL MO[[e SqUINIIPRIIG

"BJEP JO MAIA Te[nqe) © sjussaid Jer) Jueurayd [o1juod eorydels e st puseje(& I0 ply) y

*10UTISIP AJ[RNSIA OIR S97R)S JJO/UO 9T} UM DAl
1SOW 9Ie ASY[T, 'S9JR)S OM]) UOM)S(| SUIIJAS B 9FURYD 0 IISTL 91} SMO[[R U0YIN(d9[330], ¥

*1X99 JO souT] o[dI)[NTUI 10 SUT[S[SUIS © IDT}T0 MO[[® UeD 9] "JX0) I9US 0} SIOSN MO[[R SP[AL] 1X0T,

oUIT) & e UIDYT SUO JI9[9S 0 SIOSTL MO[[R 0} PIsT dIv SUO))NE OIpeY
ouo Aq
JUOUWIDIOUT 0 ONJRA 1]} S9STIR) A[[RULIOU SMOIIR UMOpP pue dn oty Suryor))) Indur oLewnu
97} 09 JXoU smolre umop pue dn Suisn Aq pajsnlpe oq Os[e Ued sonJeA JLIOWNU ‘IOAIMOF]
*300(qo ndur o1f) ojur A[30011p pedA) oq URD SIDqUINU 91} YOTYM Ul)P JLIDWNU SULI)US
Jo poyjeut e st 9] *109[lq(Induj ouPWNN © se uorouny sures o) soales oddelg oW Y

UL

qury
[esnoxe))
agewy

u0o]

quImaopesrg

pPLH

913807,
PRI 1X9T,

uoymg
olpry

Taddeyg
oL N

jyuauoduro)
[euorjeSiaeN

soryredor g

uo1)diIoso (]

JUSWIS[e YU

(panunuoy) ¢ o[qel,

013

"sopou

Jea[9Ie USIP[IYD SART] JOUURD Jel[}) SOPON "SOPOU [DURI(S — USIP[IYD SARY A[JUSIIND
A1) 10U I0 IOIDYM — USIP[IYD SARTY UBD JRY} SOPOU 0} I9JoI A\ “J0U IO USIPIIYD
9ART[IS} URD SPOU Y dPOU 1001 81} sAR[dSIP 921, a1[} ‘ynejop Ag "PUIISIP SOPOU [[©

PM dO UOTM UIOI] 9POU J00I ® SBY 901], ATOAF] "9POTU ® PA[[RI ST YOIYM ‘BJep JO WII oU0 A[)0BX0
suonoe :Jq surejuod 9917, o} Aq pake[dsip mol yoes] “ejep [edryorelsty Ae[dsip ued am ‘991], ® TIAN 9217,
PM dO TIRYSAS o1} 0UT WY} SULIUD A JU0IU0d 0 s8e) umo Iy Adde o)
spiom :Jd SI9STL MO[[R OS[e SWP)SAS Furdde) owog *A1089)e0 dUres o1} Ul JUSJUOD PUT 0} SIOSN MO[[e STeT, el
"TU9AIOS
AMqOIN ‘PM :dO 9T[} UO OJUI I8T[J0 IO SOBJINUI Y} JO JRULIOJ Y[} SFURYD J0U SPOP 1 ‘ONyeA 91} SASURYD
anpea :Jq I9STL 9T} TS A\ "ONJeA ® Jsnlpe I0 49s 0} SI9ST SMO[[R ‘Ie(YOBI} B S8 UMOUY OS[R ‘IOPI[S Y I9PIS
"u0jInq [OIeds ® Aq paruedurodd UYJO oI PUR SIXO(JXI) SUI-I[SUIS IR
AMIQOIN ‘PPM :dO Sp[ey yoIeas ‘A[[eotdA T, 's)INsol JURAS[DI JSOW 91} Yor(SUI})03 JO UOTIUIUIT ST[) [HIM Xopul PRI
mdurixe) :qq a1} oIS 0} 91 JTuIqns pue (L1onb) oseryd 10 PIOMADY & 10JUD 0) SIAST SMO[[R X0 YIIRSS Y oIeag
PM dO *JU9JUO0D O} YSNOI) I9PIO Ul
soSed :gQ 08 10 safed usamjaq dnfs 0} s1osn smof[e pue ‘seSed usamjaq dn JUIJUOD SIPIAIP UOTYRUISE J uorjeurse J
AMIqOIN ‘PM :dO MUSW ® UT FUIHDI[D wel]
a1y ‘suoroe :Jq £q 109e109d0 TR 03 pajusseld spuURUITIOD IO SUOT}AO JO ISI[© UL WISY JUR[NSSI B ST W] NUSN V UL
sorpredorg uondroso(q JUOWISTO "YU

(ponuyuoy) ¢ o[qe],

014

3.5. Stale machine concepts

The dialog part of a User Interface, as illustrated by Fig. 7, is described in the
ontology using concepts borrowed from abstract State Machines. A Scenario meant
to be run in a given Ul is represented as a Transition, illustrated by Fig. 8. States are

used to represent the original and resulting Uls after a transition occur (States A and

B in Fig. 8). Scenarios in the Transition state always have at least one or more

Conditions (represented in Scenarios by the “Given” clause), one or more Events
(represented in Scenarios by the “When” clause), and one or more Actions (repre
sented in Scenarios by the “Then” clause). The clauses “Given”, “When” and
“Then” have been modeled as Individuals of each respective class.

| Ciass hierarchy: State_ Machine_Element

1[=10[E

¢ @ Narrative

¥ © Platform

¢ @ Presentation

@ Prototype

- @ Scenario

Y
- ® Action

Condition

Event

State

Transition

lndividuals by type | Annotation property hiaarchy
Object property hierarchy Data property hierarchy

liegividualc b
] x
v-®Action (1)

@ Then
¥ @ Condition (1)
i l.®Given
V- @Event (1)

-~ @ When

Asserted ~

i Datatypes

Fig. 7. State machine elements and their individuals.

o Condition
X
ARXQC o [X] Given | go to “#page”
Event
#lield |lvc|ue!. [\,] When [ChOOSG ..#valueu in
the field “#field”
= 2 Action
State A [X] Then will be displayed
‘#imessage”

QD X0 — €O

State B

Fig. 8. A transition being represented in the state machine.

015

3.6. Scenario-based concepts

Scenario based concepts allow us to model behaviors that describe how users are
supposed to interact with graphical elements of the User Interface. An example of
behavior specification is illustrated by Fig. 9.

¥ mchooseReferringTo
= ch ReferringTo Range ch
m chooseReferringTo Domain Event
= chooseReferringTo SubPropertyOf behaviors
= chooseReferringTo Domain Action
= chooseReferringTo Range chooseReferringTo some Calendar
= ch ReferringTo Range ch ringTo some Link
- chooseReferringTo
= ch ReferringTo Range ch ReferringTo some Radio_Button

ringTo some Checkbox

Fig. 9. Behavior “chooseRefferingTo”.

Behaviors are structured and described in natural language so that they can also
be read by humans. The specification of behaviors encompasses when the interaction
can be per formed (using Given, When and/or Then clauses) and graphical elements
(i.e. Radio Button, CheckBox, Calendar, Link, etc.). Altogether, behaviors and
graphical elements are used to implement the test of expected system behavior.
In the example below, the behavior receives two parameters: a “$elementName” and
a “$locatorParameters”. The first parameter is associated to data, the second
parameter refers to the Interaction Element supported by this behavior: “Radio
Button”, “CheckBox”, “Calendar” and “Link”. To comply with semantic rules, the
behavior “I chose \ ” £elementName \ ”referring to \ ” £locatorParameters \ ””
shown in Fig. 9 can be modelled into a predefined behavior “chooseReferringTo” as shown
in Fig. 10.

[Radio Button] [CheckBox]

—

__: | choose V$elementMamel’ referring to V'$locatorParametersy” :::::»

R —

[Calendar] [Link]

Fig. 10. Components on the ontology used to specify a behavior.

The ontology includes a large set of predefined behaviors grouped by context of
use, as shown in Table 4. Notice that each Behavior is associated to diverse transition
components (Context, Event and/or Action) that compose a Transition. The
column UI Elements enlists the set of Interaction Elements that can fit to trigger a
particular behavior.

016

Table 4. Predefined behaviors described in the ontology.

Checkbox and Radio Button Behaviors

Behavior CTranEmon A Ul Elements
5 % Checkbox
theFieldlsUnchecked Radio Button
) 3 Checkbox
theFieldlsChecked Radio Button
assureTheFieldlsUnchecked Checkbox
assureTheFieldlsChecked Checkbox

Common Behaviors

Behavior

Transition

C E A

choose

chooseBvindexInTheField

chooseReferringTo

chooseTheOptionOfValuelnTheField

clickOn

clickOnReferringTo

doNotTypeAnyValueToTheField =
resetTheValueOfTheField

goTo

goToWithTheParameters

isDisplaved

setinTheField = tryToSetinTheField

Ul Elements

Calendar
Checkbox
Radio Button
Link

Droodown List

Calendar
Checkbox
Radio Button
Link

Dropdown List

Menu

Menu Item
Button
Link

Menu
Menu Item
Button
Link

Grid

Text Field

Browser Window

Browser Window

Window

Dropdown List
Text Field
Autocomplete
Calendar

L R Sl
tvpeAndChooselnTheField Autocomplete
willBeDisplaved Text
willNotBeDisplayed Text

willBeDisplayedinTheFieldTheValue

Element

wil INotBeDisplavedinTheFieldThe Value

Element

willBeDisplavedTheValuelnTheFieldReferring To

Element

willNotBeDisplavedTheValuelnTheFieldReferringTo

isNotVisible

valueReferringTolsNotVisible

waitTheFieldBeVisibleClickableAndEnable

waitTheFieldReferringToBeVisibleClickableAnd Enable

theElementlsVisibleAndDisable

the ElementReferringTolsVisibleAndDisable

setinTheFieldAndTriggerTheEvent

clickinTheRowOfTheTree

017

Element

Element

Element

Element

Element

Element

Element

Text Field

Tree

Table 4. (Continued)

Data Generation Behaviors

Behavior CTNH% Ul Elements
informARandomNumberWithPrefixIinTheField Text Field
informARandomNumberinTheField Text Field

Data Provider Behavior:
Behavior Tgansition Ul Elements

inform Grid

informTheField = informTheFields Gnd

selectFromDataSet

informTheValueGiTheField Element

informKeyWithTheValue =
defmeTheVariableWithTheValue

C E A

obtainTheValueFromTheField Element

Debug Behaviors

Transition

Behavior < E A Ul Elements
printOnTheConsole TheValueOfTheVariable ; -
Dialog Behaviors

Behavior Jiransition Ul Elements

C E A
confirmTheDialogBox Window Dialog
cancelTheDialogBox Window Dialog
informTheValuelnTheDialogBox Window Dialog
willBeDisplavedinTheDialogBox Window Dialog

Mouse Control Behaviors

Behavior L‘"OHA Ul Elements

C E
Menu
moveTheMouseOver glcn“ Item
utton
Link

Table Behaviors

Transition

Behavior < E A UI Elements
clickOnTheRow OfTheTableReferringTo Gnd
storeTheCellOfTheTableln Gnd
storeTheColumnOfTheTableln Gnd
compareTheTextOfTheTableCellWith Gnd
comnareTheTextOfThe TableColumnWith Gnd
clickOnTheCellOfThe Table Gnd
clickOnTheColumnOfTheTable Gnd
chooseTheOptionInTheCellOfTheTable Gnd
chooseTheOptionInTheColumnOfTheTable Gnd
twneTheTextinTheCellOfTheTable Gnd
typeTheTextIinTheColumnOfTheTable Gnd

The vocabulary chosen to express each behavior emerged from Scenarios specified
in our past projects. It outlines only one of the several possible vocabularies to
represent the same user’s behaviors, and could be extended in the future by more
representative phrases or expressions. Some synonyms concerning the user’s goal
have been also identified in order to increase the expressivity of the ontology.
For example, the behavior doNotType Any Value ToTheF'ield is considered equivalent

018

to the behavior resetThe ValueOfTheField as they perform or assert exactly the same
action on the affected Ul element, looking for the same output. Likewise, the
behavior setInTheField is equivalent to the behavior tryToSetInTheField as they
refer to the same action. However, tryToSetInTheField better expresses violation
attempts in the business rules.

4. Validation

The ontology has been validated in two steps: at first, consistency has been con
tinuously checked through the use of reasoners. Then, using a tool support, we
applied the approach to a case study in the flight tickets e commerce domain using a
set of tools we have developed for dealing with tests over Prototypes and for testing
the implementation.

4.1. Consistency checking

Consistency checking was done using the reasoners FaCT++, ELK, HermiT and
Pellet. FaCT++ started identifying no support for the datatypes xsd:base64Binary
and xsd:hexBinary used to range images and symbols in the Data Properties. Those
properties have been used to define domains for objects in the classes Image Carousel
and Icon, respectively. ELK has failed by no support to Data Property Domains as
well as Data and Object Property Ranges. HermiT and Pellet have succeeded pro
cessing the ontology respectively in 4926 and 64 milliseconds, as presented in Fig. 11.

INFO 13:00:09 Pre-computing inferences:

INFO 13:00:09 - class hierarchy

INFO 13:00:0%9 - object property hierarchy
INFO 13:00:0%9 - data property hierarchy
INFO 13:00:09 - class assertions

INFC 13:00:09 - object property assertions
INFC 13:00:09 - data property assertions
INFO 13:00:09 - same individuals

INFC 13:00:14 Ontologies processed in 4926 ms by null

INFO 13:01:01 Pre-computing inferences:

INFO 13:01:01 - class hierarchy

INFO 13:01:01 - ckject property hierarchy
INFO 13:01:01 - data property hierarchy
INFQ 13:01:01 - class assertions

INFO 13:01:01 - object property assertions
INFC 13:01:01 - data property assertions
INFO 13:01:01 - same individuals

INFC 13:01:01 Ontoclogies processed in 64 ms by Pellet

Fig. 11. Results of ontology processing: HermiT (top) and Pellet (bottom).

019

4.2. Validation by a case study

To illustrate how the ontology can be used to support the specification of require
ments and the testing automation for interactive systems, we have chosen a flight
tickets e commerce application. Below we describe one of the User Stories from this
case study with a Scenario for searching flights. Therein, the user should provide at
least: the type of sought ticket (one way or round trip), the departure and the arrival
airports, the number of passengers, and finally the dates. In the Scenario “One Way
Tickets Search”, a typical search of tickets is presented concerning a one way
trip from Paris to Dallas for 2 passengers on 12/15/2016. According to the business
rule, the expected result for this search is a new screen presenting the title
“Choose Flights”, in which the user might select the desired flight from a list of
flights matching his search.

User Story: Flight Tickets Search

Narrative:

As a frequent traveler

I want to be able to search tickets, providing locations and dates

So that I can obtain information about rates and times of the flights.

Scenario: One-Way Tickets Search

Given I go to "Find flights"

When I choose "One way"

And I type "Paris"™ and choose "CDG - Paris Ch De Gaulle, France" in the field "From"
And I type "Dallas" and choose "DFW - Dallas Fort Worth International, TX" in the field
nron

And I choose the option of wvalue "2" in the field "Number of passengers"

And I choose "12/15/2016" referring to "Depart"

And I click on "Search"

Then will be displayed "Choose Flights"

4.2.1. Ontology support for testing prototypes using PANDA

PANDA (Prototyping using Annotation and Decision Analysis) [13] is a tool support
specifically created to support the development of UI prototypes built upon an UI
ontology. Using our ontology, PANDA can also support the test of BDD Scenarios.
For that, PANDA starts by reading an OWL file describing our ontology. Using the
inner organization of ontological classes, PANDA dynamically instantiates a palette
of widgets (see Fig. 12) that can be used to build a Prototype. From an interaction
point of view, the construction of Prototypes is done by performing drag and drop
operations. From a storage point of view, a Prototype is an XML file that describes a
composition of widgets whose description is semantically annotated by elements of
our ontology.

For the construction of the palette, PANDA uses a description of a widget we
called “OntologicalClass” which feature its name, list of subclasses and set of
properties. This ontological class has been defined as a generic class that is cus
tomized through its properties. Indeed, those classes represent each component of a

020

- o x —p Button Search - Properties X -
Q- Properties. A
Name Search
Type Button
Palette X - Value Search
- Ansotation Visible [
- Ansotation marks -
+ Contaimer Enable true
Information (omponent. Parent state name
VAL o e Dimensions and postion
MoSlicalen Progress Bur PostionX 8.0
Text Teol T PostonY 2440
Window Disiog Width 120.0
Input Control Heght 2.0
Astocomgiete Button
L e BeackOnRefermngTo
e e SusesasaliobieEinment
Ust Bo Numeric Stepper acsckOn
Rado Button £ Text Fiekd DisplayName
Teoge SusesAsAiVebElement
: Interaction thement Asncistion
« Platform
5 Stte casses Button Search [7]
© State Hachine Elemsent Propertes of Search
© Window
- Window Dialog
1:1

Fig. 12. Pallets with the widget button and its properties extracted from the ontology.

Prototype in PANDA and its behaviors regarding their usage in the prototyping
tool: they are placed in an edition area in which the user can edit the instance of a
property. Thus, for the Presentation component, PANDA uses a flexible structure
that allows to dynamically instantiate the set of widgets that will be used to build
Prototypes.

PANDA creates a category for each superclass including: Container, Information
Component, Input Control, Interaction Element, Navigational Component, Plat
form, State Machine Element, Window and Window Dialog. Each category contains
a set of widgets defined by the classes inheriting the superclass. As for the properties,
ontological classes are displayed in the property window in the category “Ontological
properties”. Each property identified in the ontology is therefore inserted in the list
of properties of the class with a name and a value.

For the Dialog component, our ontology encompasses behavioral properties to
describe the interaction supported by a class. For example, a Button must feature a
behavioral property “clickOn” which indicates that buttons support an event click.
Click events allow the designer to specify interactions on widgets. If a button has a
behavioral property “clickOn”, PANDA adds an event handler to handle click events
when users interact with the Prototype. Figure 13 shows how Scenarios are tested in
PANDA. For each Step of Scenarios, PANDA assesses actions with respect to widget
properties defined in the ontology. For example, in the Step “And I click on
“Search””, PANDA looks for any widget named “Search” in the initial State, and
check if the description of the widget in the ontology support the behavior “clickOn”.
The results of the tests are displayed by a colored symbol next to each Step, a
red “X” representing failure, a green “V” representing success, and a black “?”
representing an untested Step.

021

‘gl Fid g (ke Stete)

Login Find Rights My 1nps / Chack-in Flight status

Usemams
Round tiip One way Round 1rip + hﬂ(

| From To Numbsr of passangsss
Last nama | |

Pagsword Dapart

| Search

Lag in

One-Way Tickets Search
V) Given | go to “Find flights"
MWnen Ichoose "One way'
[X] And | type "Paris* choose "CDG - Parls Ch De Gaulle, France"In the field "From*
[X] And | type "Dallas” choose "DFW- Dallas Fort Worth International, TX'In the fleld “To"
[X] And | choose the option of value "2"in the field “Number of passengers”
[¥] And | choose "1 2/15/2016"refering to “Depart’
M And I click on "Search"
M Thenwill be displayed “Choose Flights”

-

Flights Departure Auival Cholce
49 11:30 am Q035 pm 31711
BA8005 CDG DY Refundable
6857 07 45am 09.10 am $1706
Operated by coG LHR Refundable
British Airways
5t €9:55 am 1235 pm

LR DFW

Fig. 13. A state machine transition between sketches of a PANDA prototype for the user story “Flight
Tickets Search”. From top to bottom: The initial State “Find Flights”, a Transition represented by the
Scenario “One-Way Tickets Search”, and finally the resultant State “Choose Flights”.

4.2.2. Ontology support for testing web final Uls

To test the Scenarios over Web Final Uls, we have employed a set of frameworks to
provide automated simulation of user’s interaction. More specifically, we have used
Selenium WebDriver to run navigational behavior as well as JBehave and Demoiselle
Behave to parse Scenario scripts. The ontology is charged as a CommonSteps Java
Class, pre defining behaviors that can be used when writing Scenarios, and where
each action and/or assert for each behavior is defined. This class implements the
dialog component and contains all the knowledge about how performing the men
tioned behaviors on the UI elements, thus when using them to write Scenarios, tests
are delivered without any additional effort of implementation. Hence, methods in
this class have been writ ten for every Step addressed on the ontology. As illustrated
in Fig. 14, behaviors “ When/Then I choose “...” referring to “...”” are addressed to
the Selenium method click(), with the appropriate sequence of actions to perform this
task on the Final UL As this behavior can be performed only in Radio Buttons,

022

8Hhen (value - "$clemeatNome\ " “$locatorParametecs\"", mriority = 10)
@Then(value = "I "SclementName\® = *SlocatorParameters\"", priozity — 10)
public void infozmWith2arameters(8tzing el , List<8tring> locatorParametezs) {
locatorParameters — DataProvicerUtil.replaceDataProvider (locatorParametecs);
Elemeat =lement — runner.getElecent (curzsatPageNamz, =lementNeme);

element.setLocatorParameters(locatorParameters) ;
if (element instanceof Radic) {
((Radio) element).click();
else 1f (element instanceof CkheckBox) {
((CheckBox) element).click();
else if (element instancsof Link) {
((Zink) element).click();
else if (element instanceof Calendar) {
((calendar) element).click();
else {
throw new EBehaverxception(message.getsString(“exception-ine d-type”, element.getClass () .getName())):

~

Fig. 14. Behavior “chooseRefferingTo” being structured as a Java method.

Check Boxes, Links or Calendars, the concrete in stance of any of these elements are
searched on the Presentation layer.

The Presentation component includes the MyPages Java Class that makes the
mapping between abstract UI elements of the ontology and the concrete/final Ul
components instantiated on the interface being tested. For that purpose, we make
use of annotations in Java code following the Page Objects pattern [14] as illustrated
in Fig. 15. UI components are identified through their XPath references or some
other unique ID eventually used for some frameworks to implement the interface.
This link is essential to allow the framework to automatically run the Steps on the
right components on the Final UL

public class MyPages {

@ScreenMap (name = "Find Flights", location = " __*")
nuhlis class MainPage {

"o @ElementMap (name = "Search”, locatorType = ElementLocatorType.XPath, locator
) s/ c ete UI

(VoS G

!l // abstract UI element

Fig. 15. Concrete and abstract UT elements being associated in a Java class.

For behaviors not addressed by the ontology, the MySteps Java Class allows
developers and testers to set their own business behaviors and implement as well how
they should be attended by the Selenium methods on the Ul components. For both
classes the main incomes are behaviors extracted from the User Stories that can be
represented in simple packages of text files.

In short, once the ontology is charged, it is enough to identify on the Final UI
under testing the concrete Ul elements that were instantiated to represent abstract
UI elements. Afterwards, when Scenarios are triggered, the application runs and
Selenium performs Step by Step the specified behaviors, reporting testing results
either by the JUnit green/red bar or by JBehave reports with the context and
attached print screens of each identified failure.

023

4.3. Mapping ontological concepts

The ontology based approach we have proposed for testing Uls allows us to establish
a direct mapping of abstract concepts in the ontology and concrete instances in
scenarios, prototypes and final Uls. Table 5 provides an example of how these con

cepts are mapped for the Scenario “One Way Tickets Search”.

Table 5.

Mapping ontological concepts for scenarios, prototypes and final Uls.

Ontological concepts

Scenario

Prototype and final Ul

Condition: Given

Behavior: goTo

Event: When

Behavior: choose

Event: When

Behavior: type-
AndChooseInTheField

Event: When

Behavior: type-
AndChooseInTheField

Event: When

Behavior: chooseTheOptio-
nOfValueInTheF'ield

Event: When

Behavior: chooseReferringTo

Event: When

Behavior: clickOn

Action: Then

Behavior: willBeDisplayed

Given I go to “Find flights”
When I choose “One way”

And I type “Paris” and choose
“CDG - Paris Ch De Gaulle,
France” in the field “ From”

And I type “Dallas” and choose
“DFW - Dallas Fort Worth
International, TX” in the
field “To”

And I choose the option of value
“2” in the field “ Number of
passengers”

And I choose “12/15/2016”
referring to “ Depart”

And I click on “Search”

Then will be displayed “Choose
Flights’

Browser Window: “Find
flights”
Link: “One way”

Autocomplete: “From”

Autocomplete: “To”

Dropdown List: “Number
of passengers”

Calendar: “Depart”
Button: “Search”

Text: “Choose Flights”

4.4. Discussion

The ontology presented in this paper describes behaviors that report Steps of
Scenarios performing actions directly on the User Interface through Interaction
Elements. Thus, the ontological model is domain free, which means that it is not
dependent of business characteristics that are described in the User Stories. Specific
business behaviors shall be specified only for the systems to which they make ref
erence, not affecting the whole ontology. Therefore, it is possible to reuse Steps in
multiple testing Scenarios. For example, the ontological behaviors goTo, choose,
chooseReferringTo, typeAndChooselnTheField, chooseTheOptionOfValuelnThe
Field, clickOn, and willBeDisplayed presented in the case study can be reused for
Scenarios of other system requiring those kind of user’s actions.

However, Scenarios should be specified in the user interaction level, writing Steps
for each click, selection, typing, etc. A possible solution to avoid this level of
detail would be to work with higher level behaviors that are described by user’s
tasks. Nonetheless, user’s tasks often contain information from specific application

024

domains. For example, high level Steps like “When I search for flights to
”” encapsulate all low level behaviors referring to individual clicks,
selections, etc.; however, it also contains information that refers to the airline domain
(i.e. behavior “search for flights”). Therefore, that Step would only makes sense on
that particular application domain. For further researches, it could be interesting to
investigate domain ontologies to be used in parallel with our ontology, defining a
higher level business vocabulary database in which business behaviors could be
mapped to a set of interaction behaviors, covering recurrent Scenarios for a specific
domain, and avoiding them to be written every time a new interaction may be tested.

Another aspect to be discussed is that even having mapped synonyms for some
specific behaviors, our approach does not provide any kind of semantic interpreta
tion, i.e. the Steps might be specified exactly as they were defined on the ontology.
The JBehave plugin for Eclipse shows (through different colors) if the Step being
written exists or not on the ontology. This resource reduces the workload to
remember as exactly some behavior has been described on the ontology.

“Destination

On one hand, the restricted vocabulary seems to bring less flexibility to designers,
testers and requirements engineers. Nonetheless, on the other hand, it establishes a
common vocabulary, avoiding typical problems of ambiguity and incompleteness in
requirements and testing specifications. Further studies on Natural Language Pro
cessing (NLP) techniques might help to improve the process of specification adding
more flexibility to write Scenarios that could be semantically interpreted to meet the
behaviors described on the ontology. This issue is certainly a worthwhile topic for
further research.

It is also worthy of mention that the concepts and definitions in the ontology
presented herein are only one of the possible solutions for addressing and describing
behaviors and their relations with Uls. Despite the fact that our ontology covers
concepts available in well known languages such as MBUI, UsiXML and SCXML, we
do not assume that the coverage is exhaustive. For that, we suggest that other
behaviors, concepts and relationships might be included in the future to express
idiosyncrasies of specific interaction techniques (ex. multimodal interaction techni
ques) and/or specific platforms (ex. ambient systems). If so, new elements can be
added by direct imports into the ontology or simply adding new more expressive
behaviors to the Object Property “behaviors” and linking them to the appropriate
set of Interactive Elements.

Finally, when representing the various Interaction Elements that can attend a
given behavior, the ontology also allows extending multiple design solutions for the
UI, representing exactly the same requirement in different perspectives. Thus even if
a Dropdown List has been chosen to attend for example a behavior setInTheField in
a Prototype, an Auto Complete field could be chosen to attend this behavior on the
Final UI, once both Ul elements share the same ontological property for this behavior
under testing. This kind of flexibility makes tests pass, leaving the designer free to
choose the best solutions in a given time of the project, without modifying the
behavior specified for the system.

025

5. Conclusion

In this paper, we have presented a behavior based ontology aimed at test automation
that can help to validate functional requirements when building interactive systems.
The proposed ontology acts as a base for a common vocabulary that is articulated to
map interactive behaviors to UI Elements, allowing automation of acceptance test of
functional requirements in Prototypes and/or in full fledge User Interfaces. The
ontology also supports the design of User Interfaces by providing a consistent set of
UI Elements that meet particular behaviors.

In addition, behaviors described in the ontology are already implemented
for automating tests on Uls, which means we can freely reuse them to write new
Scenarios in natural language, providing test automation with little effort from
development teams. It allows specifying tests in a generic way, which benefits reuse
along the development process. For that reason, we are also investigating the use of
the ontology for testing model based artifacts such as low fidelity Prototypes and
Task Models. Testing in this kind of artifacts could be conducted through a static
verification of their source codes and would help to integrate testing in a wider
spectrum of artifacts commonly used to build interactive systems.

We have also presented tools that demonstrate how this ontology can support
testing of interactive systems. So far, only interactive Prototypes built in PANDA
can be tested by the ontology once it requires that tools are able to read and support
the set of described behaviors. On the other hand, tests in Web Final Uls can run
independently of the frame works used to build these Uls. It is possible because tests
provided by our tool assess the concrete Ul elements found on the interface in the
final HTML page.

5.1. Future works

Although the results presented in this paper are still preliminary, the current version
of the ontology opens door for many interesting research questions that motivate our
future work. First of all, we are planning to investigate the acceptability of the
approach with users. The idea is to assess through empirical evaluation whether
(or not) people involved in the development process of interactive applications are
able to employ our approach to specify their functional requirements using the
proposed template and the concepts present in our ontology. We are planning to
conduct these empirical studies with developers, requirement engineers, clients and
end users, in order to determine the potential in the context of multidisciplinary and
complex development teams.

Currently we are also investigating more complex behaviors in real cases of
software development. We suggest that it would be useful to collect data about the
effectiveness and the workload when specifying tests using the ontology. Other case
studies including mobile platforms are planned as well. In a longer run, we also want
to explore idiosyncrasies of interaction techniques and/or platforms to check

026

hypothesis related to the coverage of concepts in the current ontology. These studies
might also help to improve the ontology.

Future work should also consider ontologies as knowledge bases, keeping specific
behaviors for specific groups of business models in domain ontologies. It would allow
us to also reuse entire business scenarios in systems sharing similar business models.

Last but not least, we also want to investigate the reuse of User Stories created
using our approach to assess other types of artifacts used during the development
process. In this paper, we have shown how to test model based prototypes build with
PANDA and full fledge implementation of an interactive system. However, we
suggest that stories created with our approach can be potentially reused with other
kind of artifacts that also describe some behavioral aspect of interactive systems.
We are particularly interested in artifacts such as tasks models and business models.
So far, we do not know how much our approach is applicable to these artifacts as they
only partially describe the system behavior. For that, further studies are necessary.

References

[1] D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis and A. Hellesoy, The RSpec
book: Behaviour driven development with Rspec, Cucumber, and friends, Pragmatic
Bookshelf, 2010.

[2] K. Pugh, Lean Agile Acceptance Test Driven Development (Pearson Education, 2010).

[3] G. Adzic, Specification by Example: How Successful Teams Deliver the Right Software
(Manning Publications, 2011).

[4] M. Cohn, User Stories Applied: For Agile Software Development (Addison Wesley
Professional, 2004).

[5] N. Guarino, D. Oberle and S. Staab, What is an ontology? in Handbook on Ontologies
(Springer, 2009), pp. 1 17.

[6] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon and J. Vanderdonckt,
A unifying reference framework for multi target user interfaces, Interacting with
Computers 15(3) (2003) 289 308.

[7] Q.Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon and V. Lépez Jaquero, USIXML:
A language supporting multi path development of user interfaces, FHCI/DS VIS, 2004.

[8] M. Winckler, J. Vanderdonckt, A. Stanciulescu and F. Trindade, Cascading dialog
modeling with UsiXML, in International Workshop on Design, Specification, and Ver
ification of Interactive Systems, 2008, pp. 121 135.

[9] M. Winckler and P. Palanque, StateWebCharts: A formal description technique dedi
cated to navigation modelling of web applications, in Design Specification and Verifi
cation of Interactive Systems, 2003, pp. 61 67.

[10] J. Pullmann, MBUI Glossary W3C, Fraunhofer FIT, 2016. [Online]. https://
www.w3.org/TR/mbui glossary/.

[11] J. Barnett et al., State Chart XML (SCXML): State Machine Notation for Control
Abstraction, W3C, 2016. [Online]. http://www.w3.org/TR /scxml/.

[12] D. North, What’s in a Story? 2016. [Online]. http://dannorth.net/whats in a story/.

[13] J. L. Hak, M. Winckler and D. Navarre, PANDA: Prototyping using annotation and
decision analysis, in Proceedings of the 8th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, 2016, pp. 171 176.

[14] M. Fowler, PageObject, 2016. [Online]. http://martinfowler.com/bliki/PageObject.html.

027

