Exploiting Packet Replication and Elimination in Complex Tracks in LLNs
Georgios Papadopoulos, Remous Aris Koutsiamanis, Nicolas Montavont, Pascal Thubert

To cite this version:
Georgios Papadopoulos, Remous Aris Koutsiamanis, Nicolas Montavont, Pascal Thubert. Exploiting Packet Replication and Elimination in Complex Tracks in LLNs. [Research Report] IETF, RAW WG; draft-papadopoulos-6tisch-pre-reqs-01. 2019. hal-02547950

HAL Id: hal-02547950
https://hal.archives-ouvertes.fr/hal-02547950
Submitted on 29 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

The Packet Replication and Elimination (PRE) mechanism duplicates data packets into several paths in the network to increase reliability and provide low jitter. PRE may be used to complement layer-2 Automatic Repeat reQuest (ARQ) and receiver-end Ordering to form the PAREO functions. Over a wireless medium, this technique can take advantage of communication Overhearing, when parallel transmissions over two adjacent paths are scheduled. This document presents the concept and details the required changes to the current specifications that will be necessary to enable the PAREO functions.
This draft describes industrial use cases which require deterministic flows over wireless multi-hop paths.

The RAW use cases explicitly do not propose any specific solution or design for the RAW architecture or protocols. These are the subjects of other RAW drafts. The RAW use cases are not considered to be concrete requirements by the RAW Working Group.

The industrial use cases covered in this draft are professional audio, wireless for industrial applications and amusement parks.
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Tracks

3.1. Tracks Overview

The 6TiSCH architecture introduces the concept of Tracks in 6TiSCH Architecture [I-D.ietf-6tisch-architecture]. A simple track is composed of a sequence of cells (a combination of a transmitter, a receiver and a given channel offset) to ensure the transmission of a single packet from a source node to a destination node across a multihop path.

3.2. Complex Tracks

A Complex Track is designed as a directed acyclic graph from a source node towards a destination node to support multi-path forwarding, as introduced in 6TiSCH Architecture [I-D.ietf-6tisch-architecture]. By employing DetNet [I-D.ietf-detnet-architecture] Packet Replication and Elimination (PRE) functions, several paths may be computed, and these paths may be more or less independent. For example, a complex Track may branch off and rejoin over non-congruent paths (branches).

Some more details for Deterministic Network PRE techniques are presented in the following Section.

4. Packet Replication and Elimination principles

In a nutshell, PRE establishes several paths in a network to provide redundancy and parallel transmissions to bound the end-to-end delay to traverse the network. Optionally, promiscuous listening between paths is possible, such that the nodes on one path may overhear transmissions along the other path. Considering the scenario shown in Figure 1, many different paths are possible for S to reach R. A simple way to benefit from this topology could be to use the two independent paths via nodes A, C, E and via B, D, F. But more complex paths are possible by interleaving transmissions from the lower level of the path to the upper level.

PRE may also take advantage of the shared properties of the wireless medium to compensate for the potential loss that is incurred with radio transmissions. For instance, when the source sends to A, B may listen also and get a second chance to receive the frame without an additional transmission. Note that B would not have to listen if it
already received that particular frame at an earlier timeslot in a
dedicated transmission towards B.

(A) (C) (E)

source (S) (R) (root)

(B) (D) (F)

Figure 1: A Typical Ladder Shape with Two Parallel Paths Toward the
Destination

The PRE model can be implemented in both centralized and distributed
scheduling approaches. In the centralized approach, a Path
Computation Element (PCE) scheduler calculates the routes and
schedules the communication among the nodes along a circuit such as a
Label switched path. In the distributed approach, each node selects
its route to the destination, typically using a source routing
header.

In both cases, at each node in the paths, a default parent and
alternative parent(s) should be selected to set up complex tracks.

In the following Subsections, all the required operations defined by
PRE, namely, Alternative Path Selection, Packet Replication, Packet
Elimination and Promiscuous Overhearing, are described.

4.1. Packet Replication

The objective of PRE is to provide deterministic networking
properties: high reliability and bounded latency. To achieve this
goal, determinism in every hop of the forwarding paths MUST be
guaranteed.

By employing a Packet Replication procedure, each node forwards a
copy of each data packet to multiple parents: its Default Parent (DP)
and multiple Alternative Parents (APs). To do so, each node (i.e.,
source and intermediate node) transmits the data packet multiple
times in unicast to each parent. For instance, in Figure 2, the
source node S is transmitting the packet to both parents, nodes A and
B, in two different timeslots within the same TSCH slotframe. An
example TSCH schedule is shown in Figure 3. Thus, the packet
eventually obtains parallel paths to the destination.
4.2. Packet Elimination

The replication operation increases the traffic load in the network, due to packet duplications. Thus, a Packet Elimination operation SHOULD be applied at each RPL DODAG level to reduce the unnecessary traffic. To this aim, once a node receives the first copy of a data packet, it discards the subsequent copies.

Because the first copy that reaches a node is the one that matters, it is the only copy that will be forwarded upward. Then, once a node performs the Packet Elimination operation, it will proceed with the Packet Replication operation to forward the packet toward the RPL DODAG Root.

4.3. Promiscuous Overhearing

Considering that the wireless medium is broadcast by nature, any neighbor of a transmitter may overhear a transmission. By employing the Promiscuous Overhearing operation, a DP and some AP(s) eventually have more chances to receive the data packets. In Figure 4, when node A is transmitting to its DP (node C), the AP (node D) and its sibling (node B) may decode this data packet as well. As a result, by employing corellated paths, a node may have multiple opportunities to receive a given data packet. This feature not only enhances the end-to-end reliability but also it reduces the end-to-end delay and increases energy efficiency.
5. Requirements

5.1. Requirements Related to Alternative Parent Selection

To perform the Packet Replication procedure, it is necessary to define the Alternative Parent(s) and, consequently, the path to the destination node, for each node in the wireless network. An AP can be selected in many different ways, and is dependent on the implementation.

The requirements are:

Req1.1: The routing protocol SHOULD be extended to allow for each node to select AP(s) in addition to the DP. This enables packet replication to multiple parents.

Req1.2: Considering that the Packet Replication procedure significantly increases the traffic in a network, when proposing solutions for Alternative Parent Selection, they should be efficient enough to mitigate the potential uncontrolled packet duplications.

Req1.3: The topology SHOULD be defined when proposing solutions for Alternative Parent Selection. For instance, the ladder topology should be defined explicitly e.g., number of parallel paths, density.

5.2. Requirements Related to Propagated Information

For Alternative Parent(s) selection, nodes MAY need additional information about the network topology.

This draft does not prescribe the information required for AP selection or how it is to be propagated to the nodes that need to select AP(s). TODO: To be discussed.

The requirement is:
Req2.1: Nodes MUST have a way of receiving the required information for efficient Alternative Parent Selection.

As an example, it is possible to use and extend the RPL [RFC6550] DODAG Information Object (DIO) Control Message to allow nodes to propagate information about themselves to potential children. For instance, "RPL DAG Metric Container (MC) Node State and Attribute (NSA) object type extension" [I-D.ietf-roll-nsa-extension] focuses on extending the DAG Metric Container [RFC6551] by defining a new type-length-value (TLV), entitled Parent Set (PS) which can be carried in the Node State and Attribute (NSA) object.

5.3. Requirements Related to Promiscuous Overhearing

As stated previously, to further increase the network reliability and to achieve deterministic packet deliveries at the destination node, Promiscuous Overhearing can be considered.

As it is described in BCP 210 [RFC8180], in TSCH mode, the data frames are transmitted in unicast mode and are acknowledged by the receiving neighbor. To perform the promiscuous overhearing procedure, there SHOULD be an option for the transmitted frames, i.e., in unicast, to be overheard by the potential neighborhood node.

Destination address filtering is performed at the Medium Access Control (MAC) layer. For example, according to IEEE std. 802.15.4 [IEEE802154-2015], a node receiving a packet with a destination address different than its own and different to 0xFF discards the packet. A change is needed to be able to receive packets whose destination address is neither multicast nor the overhearing node’s MAC address.

The requirements are:

Req3.1:

Req3.1: The MAC implementation MUST be able to disable MAC address filtering to accept the overheard frame.

Req3.2: The 6top Protocol [RFC8480] specification MUST be extended to indicate disabling MAC filtering in a receiving cell. This can be achieved by reserving a bit in the 6P CellOptions Bitmap (Section 6.2.6 [RFC8480]) for this purpose.

Req3.3: The overhearing node can be configured with the timeslot set to shared reception, thus, there will be no acknowledgement
from it. However, there is the security issue that needs to be considered. Since the overhearing case implies that it is not possible to have per-pair keying, there MUST be a key that the overhearing node will be aware of. Hence, the Minimal Security Framework for 6TiSCH [I-D.ietf-6tisch-architecture] specification should consider such a scenario.

5.4. Requirements Related to Packet Elimination

By employing Packet Replication, the wireless network is expected to also perform Packet Elimination to restrict the number of the duplicated packets, i.e., the unnecessary traffic. As per the 6TiSCH Architecture [I-D.ietf-6tisch-architecture], 6TiSCH has no position about how the sequence numbers would be tagged in the packet.

The requirement is:

Req4.1: To perform Packet Elimination the packet copies MUST contain a sequence number which allows identifying the copies.

6. Security Considerations

TODO.

7. IANA Considerations

This document has no IANA considerations.

8. References

8.1. Informative references

[I-D.ietf-6tisch-architecture]

8.2. Other Informative References

Authors’ Addresses

Georgios Papadopoulos (editor)
IMT Atlantique
Office B00 - 102A
2 Rue de la Chataigneraie
Cesson-Sevigne - Rennes 35510
FRANCE

Phone: +33 299 12 70 04
Email: georgios.papadopoulos@imt-atlantique.fr

Remous-Aris Koutsiamanis
IMT Atlantique
Office B00 - 126A
2 Rue de la Chataigneraie
Cesson-Sevigne - Rennes 35510
FRANCE

Phone: +33 299 12 70 49
Email: aris@ariskou.com

Nicolas Montavont
IMT Atlantique
Office B00 - 106A
2 Rue de la Chataigneraie
Cesson-Sevigne - Rennes 35510
FRANCE

Phone: +33 299 12 70 23
Email: nicolas.montavont@imt-atlantique.fr

Pascal Thubert
Cisco Systems, Inc
Building D
45 Allee des Ormes - BP1200
MOUGINS - Sophia Antipolis 06254
FRANCE

Phone: +33 497 23 26 34
Email: pthubert@cisco.com