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résumé

Soit k un corps parfait. Ce papier présente un algorithme efficace pour calculer le polynome
caractéristique d’endomorphismes d’anneaux quotients définis a partir de 'anneau polynomial
klzy,...,2x,] par un idéal engendé par un ensemble triangulaire de polynomes. Nous établissons
que certains idéaur qui interviennent en théorie de Galois constructive satisfont la condition
ci-dessus. Ces résultats sont exploités pour calculer efficacement les résolvantes relatives qui
sont un outil fondamental en théorie de Galois constructive.
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ABSTRACT. Let k be a perfect field. This paper presents an effective algorithm that
computes characteristic polynomials of endomorphisms of quotient rings defined from
the polynomial ring k[z1,...,2,] by an ideal generated by a triangular set of polyno-
mials. We establish that some ideals which occur in Galois theory satisfy the former
requirement. These results are exploited to compute efficiently relative resolvents which
are a fundamental tool in the effective algebraic Galois theory.

1. INTRODUCTION

Let k be a perfect field and & an algebraic closure of k. Let zqy < ... < x, be n ordered
variables which are algebraically independent over k.

Let I be a radical zero dimensional ideal included in k[zq,... ,2,]. For a polynomial
O € k[z1,...,2,], the endomorphism of A; = k[xy,...,z,]/] associated with O,
and denoted by (:), is defined by:

A[ — A[
P — ©O.P,

where O is the class of © in Aj.
The characteristic polynomial associated with this endomorphism will be denoted by
Co.. Its coefficients lies in the field £ like those of the matrice associated with the

endomorphism ©. It is well known from the classical theorem of Stikelberger that, when
I is a radical ideal, we have:

(1) Cos(X)= [] (X -0(8),

BeV(I)

where V(1) is the algebraic variety of [ in k™.

This paper presents an algorithm for computing the characteristic polynomial in the
particular case where the ideal I admits a separable triangular set of generators (see
Definition 2.6). This algorithm may be exploited in Galois Theory; it may be related to
the computation of resolvents (see Definition 6.5) and more generally to the main problem
of finding the Galois group of a given polynomial f.

The resolvent is the fundamental tool in the effective Galois theory. It has been in-
troduced by J.L. Lagrange (see [3] and [14]). It is important to note that the resolvents
relative to the symmetric group &, called absolute resolvents, can be computed with
many algorithms (see [14], [18], [22] and [24]). But, when L is a proper subgroup of &,,
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2 COMPUTING CHARACTERISTIC POLYNOMIALS ASSOCIATED TO SOME QUOTIENT RINGS

there exists only numerical methods (see [11] or [23]) and a linear method which requires
hard generic computation (see [2] and [9]); the reader can see also [26] for computing
linear factors of resolvents. In fact, the resolvent relative to a group L of permutations
is immediately obtained from the characteristic polynomial C'e ; where [ is a so-called
ideal of relations invariant by L (see Definition 2.1). We show here that the ideal of
relations invariant by some group of permutations which contains the Galois group of f is
generated by a separable triangular set of polynomials. Thus our algorithm can be used
to compute resolvents in Galois theory, and is an efficient tool for the computation of the
Galois group of a given polynomial.

The paper is structured as follows. Section 2 introduces our terminology and nota-
tions. The third section contains some lemmas of commutative algebra; further proofs
will refered to them. In Section 4, we establish a necessary and sufficient condition —
related to its variety — for an ideal [ to be generated by a separable triangular set. For
an ideal [ which satisfies this requirement, Section 5 gives the algorithm which computes
the characteristic polynomial of an endomorphism of A; associated with some polynomial
©. In Section 6 we exploit the former results in Galois theory as mentionned above and
illustrate their interest by an example.

2. DEFINITIONS, NOTATIONS

Let f be a univariate polynomial of k[X] supposed separable, with degree n. Let

Q= (oq,...,0,) be an ordered set of the n roots of f in k™. For P € k[xy,... ,x,], the
evaluation of P in Q is denoted by P(€2). We state &,, for the symmetric group of degree
n. For o € &, the action of o on (), denoted by 7.1 is defined by 0.2 = (a,(1y,. .. , Qo(n)).

Definition 2.1. The ideal of {)-relations invariant by a subgroup L of the sym-
metric group 6, denoted by 1%, is defined by

I ={Rcklxy,...,x,) | (Vo € L) (0.R)(Q) =0},
where (0. R)(x1,... ,2,) = R(To1),- .. s To(n))-
Definition 2.2. The ideal 1" is called the ideal of symmetric relations of f. The
ideal [éld} is called the 1ideal of relations of [ and is simply denoted by Iq.
Let us recall the definition of the Galois group.

Definition 2.3. The Galois group of Q over k, denoted by Ggq, is the subgroup of &,
defined by

G = {O'E &, | (\V/PE [Q) O'P(Q) :0} .
Usually G is also called the Galois group of f over k.
Remark 1. Tt obviously follows from the definition of the Galois group that

159 =1Iq .
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For ¢ € [I,n] and £ C k[x1,...,2;], we denote by Id(F) the ideal generated by E in
k[z1,...,2,], by Zzi(E) the set of zeros of E in k', and V(FE) the variety Zg.(E).

For a variety V in k" we denote J (V) the radical ideal of k[zy,... ,x,] composed by
the polynomials which cancel on V.

Notation 2.4. Let 7 and j be integers such that 1 <7 < j < n. Let V be a subset of k.
We denote by 7;,; the natural projection map from &7 to k', which sends (ay,...,a;) to
(a1,...,a;). Moreover we state V; = 7, ;(V).

Triangular sets of polynomials are an effective tool for solving algebraic systems (see [5]).
In this paper we only need to deal with zero-dimensional ideals; the following definition
is thus adapted from the terminology of the general case of positive dimension.

Definition 2.5. A set T of n polynomials in klx,... ,z,] is called a triangular set of
Eleg, ... a0 f T = {fi(x1),. .. s fula, ... ,2n)}, where the i-th polynomial f; is monic
as a polynomial in x; with degree( f;, x;) > 0.

For a triangular set 1" in k[zq,...,x,], we will always use in the paper the notation

T=A{fi,..., [}, where f; is the unique polynomial of T" with z; as greatest variable. It
is clear that the ideal generated by a triangular set is zero-dimensional.

Remark 2. If the set of polynomials fi,... . f, exists, it is a triangular reduced Grobner
basis of the ideal [ for lexicographical ordering (see [7] or [6]).

For our purposes it is convenient to introduce a stronger concept:

Definition 2.6. We say that a triangular set T = {fi,..., f.} of klx1,... ,2,] is a
separable triangular set if cach polynomial f; satisfies the following condition:

V3 = (B1,...,0i—1) € Vie1, the univariate polynomial f;(0By,... , Bi—1, ;) is separable,
i.e. it has no multiple root in k[x;].

Remark 3. Generally a zero-dimensional variety V' cannot be expressed as zeros of a single
separable triangular set, as shown in [15] with the simple following example:

V = V(l’l,l'z) U V($1,$2—|—1) U V($1—|—1,$2) .

However, it always can be splitted into a finite family of separable triangular sets (see

[4],[15] and [19]).

3. PRELIMINARIES

In this section we give some basic properties that we will use in proofs in the next
section. For a subset F of a ring S, we write Ids(F) for the ideal generated in S by F.

Lemma 3.1. Let ¢ : R — S be a surjective homomorphism of commutative rings. Let [

be an ideal in R such that Ker(¢) C 1. We denote by J the ideal ¢(I). Then I is the
contraction of J to R under ¢, that is:

NN ={reR|¢(r)eJt=1.
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Proof. Note that J is an ideal of S because the homomorphism ¢ is surjective. We have
obviously I C ¢7*(J). Conversely let r € ¢~*(J). We have ¢(r) € J. By definition
of J there exists an element p in [ such that ¢(r) = &(p). Then from the assumption
Ker(¢) C I, we easily obtain that r € I. Thus ¢~*(J) C I. O

Corollary 3.2. With the hypothesis of Lemma 3.1, I is a radical ideal of R iff (1) is a
radical ideal of S.

Proof. We set J = ¢(I). More generally it is known that
(2) o7 (V) = Vo)

when ¢ is an homomorphism and [ an ideal of R (see [21], p. 218). Hence if .J is radical
then I is obviously radical. Conversely let us assume that [ is radical. With our hypothesis
we have I = ¢~'(.J). It follows from Relation (2) that ¢='(v/J) = /I = I. Applying the
homomorphism ¢ we obtain v/J = ¢(I) = J. O

Proposition 3.3. Let M be an ideal of a ring R and [ a proper ideal of R[x] such that
M C I If I # MR|x] then there exists a monic polynomial g € R[z] \ R such that
[ = Tdppy (M U{g}).

Proof. The natural homomorphism from R to R/ M induces a surjective homomorphism

¢ defined by
¢: Rlz] — (R/M)[a]

p= ch LB Z@M 2"
where M is the class of ¢ in R/ M.

The ideal J = ¢(1) is a principal ideal since R/ M is a field. It is not reduced to the null
ideal, otherwise I = M R|[z], which contradicts the hypothesis. Therefore J is generated
by a monic univariate polynomial of (R/M)[z]. Thus there exists g € R[x] — which can be
choosen with monic leading coefficient in @ — such that .J is generated by ¢(¢g). However
note that ¢ is not equal to 1 since [ is a proper ideal by assumption.

It is clear that ¢~'(J) = Idgp(M U{g}). Hence it follows from Lemma 3.1 that
I =Idg (MU {g}). O

Proposition 3.4. Let k be a perfect field. Let M be a mazimal ideal of k[xq, ... x,_1]
and g € kl[x1,... ,x,] such that degree(g,x,) > 0 and g is monic w.r.t. the variable x,.
Then the following are equivalent:

(1) the ideal Id(M U {g}) is radical;
(11) VB = (B1y... , Bne1) EV(IM), g(B1,..., Buo1, @) is a separable polynomial.

Proof. Let 8 € V(M). From the isomorphism between the field K = k(fy,... ,3,-1) and

klz1,... ,2,-1]/ M we deduce the following surjective homomorphism:
o Ky, 1] — K]

p=Y cler, . wa) el — Y b Bao) 2l
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The ideal ¢(Id(M U{g})) is generated in K[z,] by the image of g. Since the field k
is perfect the algebraic extension K is also perfect. Thus Idg.,1(g(51, ..., Beo1,25)) is
radical if and only if the univariate polynomial g(31,... ,B,-1, %) is separable. Then the
assertion follows from Corollary 3.2. U

The following variant of chinese remainder Theorem appears implicitly in [15].

Lemma 3.5. Lel I,... I, be pairwise comazimal ideals in a ring R and I = N2, I;.
Let py,... ., pn be monic polynommls of the same positive degree d in R[X]. Then there
exists a monic polynomial p € R[X] of degree d such that

(3) (Vjel,m]) p=p; (mod [;R[X]).
Moreover we have
(4) Idrx)(L U{p}) = NI Idrx(L; U {ps}) -

Proof. First we show by induction the existence of a polynomial p which satisfies (3). Let
m = 2. Since [; and [, are comaximal in R, there exists a; € I; and ay € I, such that
a; + ay = 1. We state p = agps + arpz. Then p is monic and degree(p) = d. Moreover
one can easily check that p = p; (mod [;R[X]) for 7 € {1,2}. For m > 2, it follows
from hypothesis that [ and NJ2,[; are comaximal ideals. Therefore we obtain the first
property of the lemma by induction.

Now, let us show Relation (4). Let j be an integer in [1,m]. By Property (3), we obtain
p € Idgx(1; U {p;}). Then Idgx)(1 U {p}) € Idgx(L; U {p;}) obviously follows, and
thus IdR ([U {p}) C N IdR 1(L; U{p;})

Conversely, let f € OFIIdR[X]([j U{p;}). For each j € [1,m] there exists ¢; in R[X]
such that f —g¢;p; € I;R[X]. By chinese remainder Theorem there exists a polynomial ¢
in R[X] such that ¢ = ¢; (mod I;R[X]) for each j in [1,n]. Consequently we have

f=ap = f—qp; (mod L;R[X])
= 0 (mod [;R[X]) .
It follows that (f — ¢p) € IR[X] and so f € Idgx)({ U {p}). O

Now, let us recall some properties on zero-dimensional varieties.

Proposition 3.6. Let V be a zero-dimensional variety in k™ and 1 = J (V). Then the
following hold:

1. The ideal I contains a non-constant univariate polynomial in each of the variables
in{x1,...,x,}, and the elimination ideal I N klzy,... ,2,_1] is a zero-dimensional
ideal of k[z1,... ,x,1];

2. For each i in [1,n], the projection V; is a variety in k' which is zero-dimensional,
and V; = Zpi(I N E[xy, ... 24));

3. The ideal of V; in k[ay,... ,z;] corresponds to [ Nk[xy,... z;].

Proof. See Lemma 6.50 in [6] for the first point. We obtain assertion 2 by induction from

first point and Corollary 4 in p.124 of [10]. The third assertion obviously follows from the
relation V; = Zz: (I N k[, ... ,2;]) and the fact that [ is radical. O
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4. ZERO-DIMENSIONAL VARIETIES AND SEPARABLE TRIANGULAR SETS

In this section, we introduce the concept of equiprojectable variety. We show that it
characterizes the zero-dimensional varieties which can be expressed as V(T') where T is
a separable triangular set. It follows that the ideal of the equiprojectable variety is the
ideal generated by T

Now let us state two properties of triangular sets. First, the projection of the algebraic
variety of a triangular set T' is easily obtained from the polynomials of T" in the following
way:

Proposition 4.1. Let T' = {f1,... ., f.} be a triangular set of k[xq,... ,x,] and ¢ be an
integer in [1,n]. Then we have

Toi(V(T)) = Zpe(fil@)s oo filwn, s @)

Proof. We clearly have V(T) N k' C Zp(fi,...,fi). Now let us assume that 3 =
(Biy...,0:) € Zgi( f1, ..., fi). By definition the polynomial f;y1(51,. .., 5, xiy1) is monic.

This univariate polynomial has positive degree; therefore it admits at least one root
Biz1 in k. Thus (B1,...,08:, Bix1) is a zero of {fi,..., fix1} in L. In the same way
we can find Bi42,...,8, such that (f1,...,8,) € V(T), which proves the inclusion
Zisfiseee o ) S VT VR O

Proposition 4.2. Let n > 0 and T be a separable triangular set of k[xq,... ,z,]. Then
Id(T) is radical.

Proof. We show the result by induction on n. If n = 1 we deduce it immediately from
the definition of a separable triangular set. Let n > 1 and T'= {f1,..., f,}. We denote
by T" the triangular set {fi,..., fa_1} of k[x1,... ,2,-1]. By induction hypothesis the
zero-dimensional ideal I’ generated by 7" in k[zq,...,x,_1] is radical. Hence there exists
My, ..., M, maximal ideals of k[xy,... ,z,_1] such that I' = N_; M. Using Lemma 3.5
(with f, for each p;), we obtain

Id(T) = 0, Id(M; U{f.}) .

Then the assertion follows from Proposition 3.4 U

Now we define what is an equiprojectable finite subset V' of k™.

Definition 4.3. Let 1 < i < j < n and V be a finite subset of k'. The set V is said
equiprojectable on V;, ils projection on k', if there exists an integer ¢ such that for
each point M in V;, we have

card(W;iI(M)) =c.
The positive integer ¢ will be denoted by ¢;(V').

Definition 4.4. With the notations of Definition /.3, we say that V is equiprojectable
if V' is equiprojectable on V; for each 1 € [1,7].

An equiprojectable subset of k* may be characterized by induction. This equivalence
will be useful for further proofs.
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Proposition 4.5. Let V be a finite subset of k™. Then V is equiprojectable iff Viyy is
equiprojectable on V; for each v € [1,n —1].

Proof. Let 1 <1 < 7 <n and M be a point of V;. Clearly we have
i)y = o)

—1
Mleﬂ-],i (M)

and this union is disjoint. It follows that

(5) card(m {(M)) = Y card(r }(M")) .

—1
Mleﬂ-],i (M)

Let us assume that V' is equiprojectable on V; for each ¢ € [1,n]. Let ¢ € [1,n — 1].
For some point M in V;, we obtain from Relation (5) above, with j =7+ 1, that ¢;(V) =
Card(wi__l_lu(M)) ¢iv1(V). Therefore Card(wi__l_lu(M)) does not depend on the choice of the
point M of V;; thus V,y; is equiprojectable on V.

Conversely, assume that V;4; is equiprojectable on V; for each ¢ € [I,n —1]. If ¢ €
[1,n — 1] and M is a point of V;, then an easy induction shows that

(6) card(m {(M)) = [] ¢(Virr) -

1<j<n

It follows that V' is equiprojectable on V. O

Before giving the main theorem of this section, we study in the following proposition
the case where V' is a variety such that V,,_; is irreducible. We will refer to this particular
case in Theorem 4.7 by splitting V,,_; into irreducible components and recombining results
with chinese remainders.

Proposition 4.6. Let n > 1 and V be a zero-dimensional variely in k™ such that V,_,
is trreducible over k. Let us denote by [ = J (V') the ideal of V', and M the ideal of V,,_;
in klz1,... ,2,_1]. Then V is equiprojectable on V,_; and there exists a polynomial g in
klz1,... ,2,] of degree d in x, such that

(1) enr (V) =d;
(1) I'=TId(MU{g}) ;
(1i1) g is monic in x, ;
(tv) g(B1,...,0u1,2n) is a separable polynomial for each (B1,... ,Bn-1) in V,_1.
Proof. By Proposition 3.3 there exists g in k[z1, ..., x,] for which properties (i7) and (7i7)
hold. Since the ideal I is radical, property (:v) follows from Proposition 3.4.

Now we prove Relation (i) and consequently that V' is equiprojectable on V,,_;. Let

M = (Bi,...,B,_1) be apoint of V,_; and P = (B1,...,Bn_1,3,) with 3, € k. We have:
Perii (M) = (VfeldMU{Gh) (B B) =0
— g(f1,...,0.)=0.
Thus P € ;L (M) iff 8, is a root of g(B1,... ,Bu_1,7,). It follows that the number of

n,n—1

1
elements in 7~

(M) corresponds to the number of roots of ¢g(81,...,Bn_1,2,). Since
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this polynomial is separable we have Card(w;}l_l(M)) = degree(g, x,) = d. Relation (7)
clearly follows. O

Theorem 4.7. Let V be a zero-dimensional variety in k™. Then the following statements
are equivalent:

(1) there exists a separable triangular set T = {f1,..., fu} such that J(V) = 1d(T);
(2) V is equiprojectable.

Furthermore we have ¢;(Viy1) = degree( fiy1, xi11) and ¢;(V) = H?:i-u degree( f;, ;).

Proof. First, we assume (1). Let T' = {f1,..., f.} and d; = degree(f;, X;). We want

to show that for any ¢ in [1,n — 1], the variety V41 is equiprojectable on V;. Let us
assume that M = (f1,...,03;) is a point of V;. The polynomial fiy1(51,..., 5, xiy1) has

no multiple root, and from Proposition 4.1 we have V41 = Zgiv1 (f1,... , fiz1). Since the
polynomials fi,..., fi cancel for (f1,...,03;), it is clear that the cardinal of 7TZ»__|_117Z»(M)

equals d;1. Therefore V1 is equiprojectable on V;. It follows from Proposition 4.5 that
V' is equiprojectable.

Remark that we also have shown that degree(fit1,2i11) = ¢(Vig1). Moreover the
equality concerning ¢;(V') in the theorem is obtained by Relation (6) above. Thus last
part of the theorem is proved.

Reciprocally, let V' be an equiprojectable variety. We will show by induction on n that
there exists a separable triangular set 7' which generates J (V).

If n = 1, the result is immediate since k[z4] is a principal ideal domain. Of course, there
exists a monic polynomial f; which generates J(V'), and the separability of f; follows
from the fact that J (V') is radical and k is perfect.

Let n > 1. Let V,_;y = Wy U...UW, be the decomposition of the variety V,,_; into
irreducible components. If we denote .|, (W;) = Unew, 7, ,,_, (M), then we have

(7) V=nl (WHU...Um L  (W,).

n,n—1 n,n—1

Let us denote by M, the ideal of W; in k[xy,...,x,-1]; The ideal M; is maximal. If [’
is the ideal of V,,_y in k[zq,...,2,_1], then

I'=M;n...0M, .

(W;) is a variety (since it is the inverse image by an homomorphism of a closed

Each 71

n,n—1
set of k™ in the Zariski topology) which satisfies the hypothesis of Proposition 4.6. Hence
there exists r polynomials g1, ... , g, of k[z1,... ,x,] such that for each j € [1,r]

(1) degree(gj,x,) = Card(W;;_l(M)) where M is a point of W;;
(i) T (71 (W;)) = Id(M; U {g;});
(1i7) g; is monic as univariate in x,;
(1v) ¢i(B1y... ,Bno1,xy,) is a separable polynomial for each (fy,...,5,-1) in Wj.
Besides, it is clear that the variety V,_; in k»~! is equiprojectable. According to the
induction hypothesis, its ideal I’ is therefore generated by a separable triangular set T".
Now, the equiprojectability of V on V,_; will allow us to combine results (¢) to (iv) in
order to exhibit a convenient polynomial ¢ with greatest variable x, to extend T" into a
triangular set of k[xy,... ,x,]. Thus, if we set d = ¢,_1(V), then by assertion (i), each g;
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has degree d relatively to x,. By Lemma 3.5, there exists a polynomial g € k[zq,. .., z,],
monic w.r.t. the variable x, with degree(g, x,) = d, such that

(8) (Vjell,r]) g=g; (modId(M;)),
and
Id(1"U{g}) = NiZ Id(M; U {g;}) -
Together with identity (i), it follows that
Id(1'U{g}) = Ny T (71 (W)
and by Relation (7)
d(I'u{g})=T(V).
Thus we have
J(V)=1d(T"U{g}) .

Hence J (V) is generated by the triangular set T'=T" U {g}.

We have to check that the triangular set T' is separable. Let M = (8y,...,0,-1) be a
point of V,,_1; there exists an index j such that M € W;. From Relation (8) we easily
obtain ¢(B1, ..., Bu-1,%n) = g;(F1, ..., Bn-1,x,) and deduce with assertion (iv) that T is
a separable triangular set. O

5. COMPUTATION OF CHARACTERISTIC POLYNOMIALS

In this section we denote by K an extension of the field & such that KNk[zy,... ,z,] = k.
For two polynomials p and ¢ in K[xq,...,x,] and for ¢« € [1,n], we denote by Res,,(p, q)
the resultant of the polynomials p and ¢ relatively to the variable z;. The following
lemma presents an algorithm which eliminates the variables xy,... , 2, from a polynomial
U in K[zy,...,2,] and a separable triangular set of k[zq,... ,z,]. It will be exploited in
Theorem 5.2 for computing characteristic polynomials Cg¢ ;, where © is a polynomial in
klz1,...,2,] and I is an ideal generated by a separable triangular set.

Lemma 5.1. Let T' = {f1,..., f.} be a separable triangular set of k[xy,... x,]. Let
Ve K[zq,...,x,]. We define inductively the n+ 1 polynomials o, Wy, ... ¥, relatively
to T as follows:

U, = VekKz,...,z,]
U,y = Resy,(filwr,... 2),Vi(ar,... ,2;)) € Klxg,...,2-4],

Then the element Wy of K is given by:
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Proof. At the beginning, Wy =Res,, (fi(x1), U1(x1)) = Hﬁlevl Uy (4y). Let us denote by
V the variety V(7). By induction, we prove that for each j € [1,n]

\I}(): H \I}j(ﬁlv-" 7&]) :

{B1,....8;}€V;

Supposing that our assertion is valid for j =1 — 1, we have

(9) Uy = H Uiy (B, s Bict)

{B1,-Bic1}EVi1

By definition of W,_;, the identity (9) becomes

U, = H Resg, (fi( B, ..., Bicr, i), Vi Br, - oo s Bicr, 20))

{B1:-Bic1}EVi1

Then the result follows from Proposition 4.1 and the fact that, by assumption,
fil By ..., Bic1, x;) is monic and separable in k[x;]. O

Theorem 5.2. Let T' be a separable triangular set and I the zero-dimensional ideal of
klz1,... ,2,] generated by T'. Let © € k[zy,... ,2,]. Then the characteristic polynomial
Co.1(X) of k[ X] is computable by the algorithm presented in Lemma 5.1.

Proof. We just apply Lemma 5.1 with ¥ = (X —0) € k[X][z1,...,2,]. Thus we compute
by successive resultants the polynomial Wy = Hﬁev(T)(X — O(f)). Since the ideal I is
radical (by Proposition 4.2) the characteristic polynomial Cg ;(X) is given by Relation (1)
of Introduction and corresponds to W. O

6. APPLICATION TO GALOIS THEORY

In this section it is shown that if a group of permutations L contains the Galois group
of f, then the ideal I} (see Definition 2.1) is generated by a separable triangular set. We
deduce that in this case, the resolvents of f relative to L can be obtained by computing
characteristic polynomials with the algorithm described in Section 5. For computing such
a relative resolvent, the triangular set which generates I} must be known; but conversely,
it is possible to obtain this triangular set from the generators of an ideal I3, where
L < M, if we are able to compute resolvent relative to M. An example will illustrate
this link between the computation of relative resolvents and the computation of ideals of
relations invariant by a group of permutations. It shows how it can be applied to find the
Galois group of f.
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6.1. Ideals of invariant ()-relations and triangular sets.

Notation 6.1. Let L be a subgroup of &,. We denote by L; the stabilizer of {1,...,¢}
under the natural action of L.

Liy=A{r € L|Vke[l,i, 7(k) =k} .
Thus we obtain a chain of subgroups of L:

L(n) = {[d} < L(n—l) < L(l) < L.

Now let us study the left classes of L modulo L;, that is, the classes of the equivalence
relation ~;, defined by 7~;7" if and only if 77'7" € L(;. We can characterize these classes
as follows:

Lemma 6.2. Let L be a subgroup of &, and (7,7') € L*. Then
Ty T = Vke{l,... i}, (k) =7(k)
and each equivalence class in L/~; has cardinality card(Ly).

Proof. We easily have the following equivalences:

/

T~ = 1T ¢ Ly
— (Vke{l,...,i}) 77 (k)=k
— (Vke{l,...,i}) 7'(k)=r7(k).
The second part of this lemma is a basic result on left classes of a group L modulo a

subgroup of L. O

Lemma 6.2 applies to a particular family of subsets of k™ defined from subgroups of &,
as follows:

Proposition 6.3. Let f be a separable polynomial of k[X] and Q an ordered set of roots
of f. If L is a subgroup of &,, then the subset V' of k" defined by

V={cQ|oel}
is equiprojectable.
Proof. Let i € [1,n] and M € V,. It is sufficient to show that the cardinality of W;i(M)
is independant from the choice of the point M.

It follows from the definition of V that there exists a permutation 7 in L such that

M = (7(1),...,7(2)). Then the inverse image of M by m,; may be defined by
W M)={0.Q|o € Land (VEe€{l,...,i}) o(k)=r71(k)}

(%)

Since the points of V' are all distincts we have
card(m, ;((M)) = card({o € L | o ~; 7}) = card(L;) .
Thus the assertion is proved. O

Remark 4. In general, the set V defined in Proposition 6.3 is not a variety over k. However
it is a variety when G C L.
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Theorem 6.4. Let ) be an ordered set of roots of a univariate polynomial f supposed
separable. Let L be a subgroup of &, which contains Gg. Then there exists a separable
triangular set T such that

Ik =1d(T).

Proof. If L contains the Galois group of €, it is known that V(1) = {0.Q | 0 € L} (see
[25]). Besides it is easy to verify that I% is radical; thus [§ = J(V(1%)). Then the result
follows immediately from Proposition 6.3 and Theorem 4.7. 0

Remark 5. The above result is well known when L is the group &,. Let us recall that
IS is generated by the separable triangular set {fy,... , f.} of Cauchy moduli defined by
induction as follows:

f1(51?1) =
fi(xlv"' ,l’i) =

The reader can refer to [20].

fla)
fi—l(xlv s ,l’i_g,l’i) - fi—l(xlv s ,:1;2'_2,:1;2'_1)

Ti— Xi-1

6.2. Characteristic polynomial and resolvent.

In the following, L is a subgroup of &, which contains G, the Galois group of 2, and
O is a polynomial of k[zy,...  x,].

Definition 6.5. The L-relative resolvent of 2 by O, denoted by Lo 1z, is the following
polynomial of k[ X]:
'CG),ISLZ(X) = H (X —o(92)) ,

PcL.0
where L.O s the natural orbit of the polynomial © under the action of the group L. When
L = &, the resolvent L’@Jgn is called an absolute resolvent of f by O.

Remark 6. In literature the polynomial Lg jz is used to be called an L-relative resolvent
of f by ©. The fact that the coefficients of E@J(Ii are in k easily follows from Galois theory.

Lemma 6.6. Let L be a subgroup of &, such that Go < L. Let © € klzy,... ,x,]. We
set d = card(H). Then we have:

(10) CG)’ISI{ = EéJflzl .
Proof. We saw in the proof of Theorem 6.4 that V(1) = {0.Q | ¢ € L} when Gq < L.

Hence Relation (1) of Introduction becomes
Con(X) = [I(X —00(0))
o€l

The result easily follows. O



COMPUTING CHARACTERISTIC POLYNOMIALS ASSOCIATED TO SOME QUOTIENT RINGS 13

Remark 7. When the L-relative resolvent of () by O is separable, it is exactly the minimal
polynomial of the endomorphism 0.

Definition 6.7. Let H be a subgroup of L and © € k[xy,... ,x,]. The polynomial © is
an L-primitive H-invariant if

H={ocel | 0.0 =0}.

The following lemma is of prime importance for computing ideals of relations invariant
by a subgroup of &. The reader will refer in [25] for the proof. It shows that if we can
compute E@J(Ii then it is possible to construct a system of generators of IZ from a system

of generators of I%.

Lemma 6.8. Let H be a subgroup of L such that G H is a group and © be an L-primitive
H-invariant. We set § = O(Q). Let Mingy be the minimal polynomial of 6 over k. If 0

is a simple root of the resolvent E@J(Ii then
1 = 15 +1d(Ming x(0)) .

Remark 8. In Lemma 6.8 the minimal polynomial Ming j is a simple factor of the resolvent
E@ 7L
g

Remark 9. The fact that § must be a simple root of the resolvent in Lemma 6.8 is not
really restrictive. Indeed it is known that if & is infinite then there exists an L-primitive
H-invariant © such that Le sz is separable (see [3]). In this case we see below that the

problem of finding a system of generators of an ideal I} and the problem of computing
an L-relative resolvent resolve mutually.

Proposition 6.9. Let k be a perfect field which is infinite. The L-relative resolvent E@J(Ii
of Q by O can be computed by using the algorithm of Section 5.

Proof. First, we need a system of generators of the ideal I5. Let us assume without
restriction that we know a system of generators of an ideal I} for a subgroup M of &,
which contains L: of course, we can choose M = &, (see Remark 5). According with
Remark 9 we may assume that we have an M-primitive L-invariant ¥ such that Eq,J(J\Z/I is
separable. The value W(€), which belongs to k, is then obtained by the factorization of
E@J(J\ZJ. It follows from Lemma 6.8 that we know a generator system of I}.

According with Theorem 6.4 the ideal I} is generated by a separable triangular set
{fi,--., fa}. Now, by Remark 2, the polynomials fi,..., f, can be determined by the
computation of a Grobner basis of I5 from our system of generators of this ideal.

The basis { f1, ..., f.} being known, it follows from Theorem 5.2 that the characteristic
polynomial Cg 7 can be computed by the algorithm of Section 5. The resolvent Lg jz is

then immediately obtained with Formula (10). O

Remark 10. In the proof of Proposition 6.9 we obtain a system of generators of I by
the computation of an absolute resolvent. But practically, if we want to avoid computing
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resolvents with high degree, we may obtain I} by several steps with intermediate compu-
tations of relative resolvents and ideals of {)-relations invariant by some subgroups of &,
(see the example of Paragraph 6.4).

6.3. Implementation.

The algorithm presented in this paper for computing relative resolvents is analogous to
a well-known method for computing absolute resolvents when L is the symmetric group
of degree n (see [20]). This latter method becomes very efficient when the coefficients are
reduced by the ideal 13" in each step. Thus the growth of coefficients is controlled and
some variables may be eliminated before the computation of the corresponding resultant.
Moreover extraneous powers which appears during the computation of resultants in the
algorithm can be suppressed in each step by the method given in [17].

Both these previous principles can be applied for computing the resolvent E@J(Ii in the
case where [ # &,,. Thus the method proposed here can be efficient in order to obtain the
Galois group of f in the way suggested in Remark 10. It is always possible to compute
only absolute resolvents; however it is better to compute relative resolvents E@J(Ii for
L # &, since the degree of these resolvents increases with the order of L, and since these
resolvents have to be factorized for extracting informations on the Galois group of f.

6.4. An explicit example.

This example illustrates our method for computing relative resolvents and its interest
for computing the ideal of relations Iq (see Definition 2.2), which is equivalent to compute
the Galois group Gg. It shows how both problems are linked together. We consider the
polynomial f = 2¢ + 2, irreducible over @, whose Galois group is a transitive subgroup
of &¢. We will compute the ideal of relations between the roots of f using relative
resolvents. In this subsection, for a subset F of Q[zy,...,z,] we will denote by < £ >
the ideal generated by E in Q[zy,... ,z,).

The first step consists in computing a triangular set which generates the ideal I} for
M = &g. This set is given by the the Cauchy moduli of the polynomial f:

&
I5° = <ze+as+ag+ a3+ + 20,
2 2 2
Ty + 4%5 + X305 + ks + X1T5 + Ty + T3+ T2Tg + 124 T3 F 2223
2 2
‘123 + 25 + T122 + T,
3 2 2 2 2 2 2
Ty + T3Ty + ToTy + XXy + T4+ ToT3Tg + T1T3T4 + BT + T122T4 + T2y
3 2 2 2 2 3 2 2 3
+x3 + To¥5 + T1T5 + XT3 + T1XeT3 + T3 + Ty + 175 + XjT2 + 27,
4 3 3 2.2 2 2.2 3 2 2
Ts+ Tox3 + T1x53 + Tox3 + X205 + XT3+ TH03 + T105x3 + T]X2T3
3 4 3 2.2 3 4
‘xix3 + x4 + T125 + ]S + TiX2 + Ty,

5 4, 2.3, 32 4 56
T+ x4 2jr, +rijes i ), ) 2> .
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Let L =PGL(2,5) the transitive maximal subgroup of &g of degree 120. We denote by
O3 the primitive L-invariant given in [13] (we do not give the explicite expression of this
very big invariant). The computation of the separable absolute resolvent of f by O3 is
realized by an implementation of the method given in [20] for which the present paper is
a generalization. Its factorization over Q is the following:

Lo yoe(X) = (X = 42)(X = 20)2(X +6)°

In this case we know by partition matrix method (see [3]) that the Galois group of
f is one of the following groups: PGL(2,5), PSL(2,5), the dihedral group Ds or the
cyclic group Cs, which are included in PGL(2,5). By Lemma 6.8 the ideal I} is the ideal
generated by the union of the ideal 5 and the ideal < ©3 — 42 >, where 42 is the value
given by the linear factor over Q of ’C®3,If6‘ The separable triangular set which generates

the ideal I} is obtained by computing a Grobner base for the lexicographical ordering of
this ideal. Thus we have:

PCL(2,5) 2.2.3
Ig

< 24xq + :1; s 521 + 8:1;3 2 2 1+ 6 :1;2:1;1 + 5:1; —|— 8:1;2:1;:2)’:1;% +4xivsay
—|—8:1;3:1;2:1;1 + 6:1;3:1; :1; + 8:1;3:1; :1; 4:1;3:1;2:1;1 + 1225 + 5:1;2:1;1 4+ 1229 + 14z,
24xs — 5:1; 7:1; s 5T — 16:1;3:1;3:1;% Tl :1;2:1;1 5:1; — 8:1; z 5T
—12:1;2:1;2:1;1 — 12:1;2:1;2:1;1 82 :1;2:1;1 12:1;3:1; :1; 16:1;3:1;2:1;1 — 12:}1;3:11;2:)1;‘11
+8x3 — 5:1;‘21:1;:1)’ — babrl — 2y — 27,

24x4 + 5:1; —|— 6:1;3:1;3:1;1 + 8:1;3 2 2 1+ s :1;2:1;1 + 8:1;2:1;4:1;1 + 4:1;2:1;:2)’:1;%
—|—8:1;2:1;§:1;:1)’ + 12:1;3:1;2:1;1 + 10:1;3:1;2:1;1 + 4:1;3:1;2:1;1 + 4:1;3:1;2:1;1 + 4x3 + 5:1;2:1;:1)’
+14xs + 1224,

:Jc;1 + :1;3:1;2 + :1;3:1;1 + :1;%:1;3 + :1;:2)):1;2:1;1 + :1;:2)):1;% + :1;3:1;:2)’ + :1;3:1;3:1;1 + :1;3:1;2:1;3
—|—:1:3:1;:f + :Jc;1 + :1;%:1;1 + :1;%:1;% + :1;2:1;:1)’ + :1;411,

xy + xhry + adet + xjal + xga] +ad, AV +2 > .

Remark 11. We used the very powerful Grébner engine FGb (see [12]) developed by J.C.
Faugere to obtain this Grobner base quickly.

Now, set M =PGL(2,5). We choose the subgroup L = Dg (one of the conjugates) of

M in order to compute an associated resolvent. We are in the following situation:
S ci) iy cil!™.

The polynomial @4 = x124 4+ 2425 + T522 + x223 + ¥376 + Tex1 18 @ primitive Dg-invariant,

and a fortiori a PGL(2,5)-primitive Dg-invariant. The PGL(2,5)-relative resolvent of f
by ©4 has degree 10 = [M : L]; its computation is performed modulo the ideal IPGL(2 )

by our method as follows:

o Let Ro(X,71,...,76) = X — O4. The reduction of Ry modulo the ideal I}
(given by successive euclidean divisions) eliminates the variables xg, x5 and 4. Let
Wo(X, 21,22, 23) be the result of this reduction.
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o Weset R(X,z,23) =Res,,(f3, Ws). The reduction of R; modulo the ideal I} does
not eliminate the variables x; and x, of respective degrees 32 and 28 in Ry, but
produces a new polynomial W; of degree 4 in each variables z; and z5.

e The elimination of the variable x5 is given by Rs( X, x1) =Res,,(f2, Wi). The reduc-
tion of Ry, modulo the ideal I3 produces a univariate polynomial of degree 20 whose
factorization is the following:

X3(X? = 2)2(X° + 2)*.
o The factorization over Q of the resolvent is:

Lo, (X)) = X(X* = 2)(X° 4 2)° .

The partitions matrix associated with M indicates that the Galois group of f is Dg or
Cs. The ideal fixed by Dg is given by:

Do = ML 9,0 >,

where 0 is the value given by the simple linear factor over Q of the resolvent ,6947132/1. In

the same way as for the ideal fixed by PGL(2,5), from a generator system of the ideal 13
and the polynomial O4,we compute with FGb the following triangular set of generators
of our ideal ]56:

D 2 2 6
15 =< a6 — T3 — 21,05 + T3+ 21, T4 + T3, 05 + T1X3 + 2], T + 11,7 2> .

Now we set M = Dg and choose [ = Cs. Let O5 = wya2+asad+asri+aqritasri+a ol
be an M-primitive L-invariant. The degree of an M-relative resolvent is 2, the index of
Lin M.

The reduction of ©5 modulo the ideal [56 produces the value 0. We are in a degenerated
case: the resolvent equals X? and the computation of the resolvent modulo the ideal [56
produces the polynomial X. Many Dg-primitive Cg-invariants computed by Abdeljaouad’s
package (see [1]) are in this case. In order to find a Dg-primitive Cg-invariant which
is not degenerated, we adopt Colin’s method exposed in [9]. We replace the invariant
Os(x1,... ,26) by the invariant ¥ = Os(p(z1),...,p(we)) where p(z) = 2? + 1. The
computation of the Dg-relative resolvent of f by W is realized using two reductions modulo
the ideal [56 and one resultant. It is the following irreducible polynomial:

L, o(X)=X?—24X +252 .

D¢
w1l

Since this resolvent is irreducible over Q, the Galois group of f over Q is Dg and the
ideal of relations among the roots of f is ]56.

7. CONCLUSIONS

Another algebraic method for computing the resolvent E@J(Ii, when L is not the sym-
metric group is proposed in [3]. In [9] an effective algorithm is given for this method. But
this computation induces the formal computation of the coefficients of the polynomial
[lyero(z —¥). The method proposed in this paper is less expensive, since it needs only
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the computation of a Grobner basis for lexicographical ordering of the ideal IF, which can
be realized by the algorithm given in [7] (see also [12] for an efficient method).

The numerical method proposed in [23] in order to compute resolvents is based on
approximations of roots of f. It leads to some problems when the roots of f are close.
This algebraic method avoids this problem and gives a general algorithm for arbitrary
degrees and polynomials.
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