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Abstract
Graphical models (GMs) define a family of mathematical models aimed at the concise description of
multivariate functions using decomposability. We restrict ourselves to functions of discrete variables
but try to cover a variety of models that are not always considered as “Graphical Models”, ranging
from functions with Boolean variables and Boolean co-domain (used in automated reasoning) to
functions over finite domain variables and integer or real co-domains (usual in machine learning and
statistics). We use a simple algebraic semi-ring based framework for generality, define associated
queries, relationships between graphical models, complexity results, and families of algorithms, with
their associated guarantees.
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1 Introduction

Graphical models are descriptions of decomposable multivariate functions. A variety of
famous frameworks in Computer Science, Logic, Constraint Satisfaction/Programming,
Machine Learning, Statistical Physics and Artificial Intelligence can be considered as specific
sub-classes of graphical models. In this paper, we restrict ourselves to models describing
functions of variables having each a finite (therefore discrete) domain with a totally ordered
co-domain, that may be finite or not. This excludes, for example, “Gaussian Graphical
Models” which are used in statistics, describing continuous probability densities.
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4:2 Graphical Models

A graphical model over a set of variables is defined by a finite set of small functions
which are combined together using a binary associative and commutative operator, defining
a joint multivariate function. The combined functions may be small because they involve
few variables or because they are described using a restricted language.

As an example, propositional logic (PL) is organized around the idea of describing logical
properties as functions over Boolean variables. From the values of these variables, one should
be able to determine if a property is true or not. A usual way to achieve this is to use clauses
(disjunction of variables or their negation) as “small functions” and combine them with
conjunction, defining the Conjunctive Normal Form. The resulting joint function defines the
truth value of the formula. Various queries on such graphical models have been considered:
existence of a variable assignment that optimizes the joint function, the SAT/PL problem,
model counting (the #P-complete #-SAT/PL problem), etc.

If we instead use tensors to describe Boolean functions over sets of variables of bounded
cardinality and combine these functions with conjunction again, we obtain a constraint
network (CN) and the existence of an assignment that optimizes the joint function is the
Constraint Satisfaction Problem (CSP/CN).

In the extreme, we may use tensors to describe small real (in R) functions combined
using addition or multiplication, enabling the description of discrete probability distributions,
as done with Markov Random Fields (MRFs) and Bayesian Networks (BNs) [74, 16]. The
associated optimization problem is the Maximum A Posteriori (MAP/MRF) problem and
weighted counting allows to compute the partition function [74] (or normalizing constant),
another #P-complete problem with important applications in statistical physics and machine
learning. The terminology of “graphical models” comes from the stochastic facet of GMs.
Stochastic graphical models are of specific interest because they can be learned (or estimated)
from data. Assuming that an i.i.d. sample of an unknown probably distribution is available,
one may look for a graphical model that gives maximum probability to the sample. This
maximum-likelihood approach has attractive asymptotic properties [74]. Efficient approximate
estimation algorithms based on convex optimization exist [95]. Because of the unavoidable
sampling noise, exact optimization algorithms are usually not sought. In this paper, we
assume that the graphical models are known, either because they describe known rules or
functions or have been previously estimated from data.

In this stochastic case, algorithms that provide some form of guarantee remain desirable,
especially if the considered graphical model combines logical (deterministic) information,
describing known/required properties, with probabilistic information learned from data.
Indeed, logical information cannot be approximated without a complete loss of semantics.

In the rest of this paper, we first give an algebraic definition of what a graphical
model is and consider the most usual queries. We then introduce the two main families of
algorithms that can be used to exactly solve such queries: tree search and non-serial dynamic
programming. Restricted to small sub-problems, we show how dynamic programming can
provide fast approximate algorithms, called message-passing or local consistency enforcing
algorithms, including associated polynomial classes. We then consider some empirically
useful hybrid algorithms, with associated solvers, based on these approaches and recent
applications in structural biology.

2 Notations, Definition

Variables are denoted as capital variables X,Y, Z, . . . that may be optionally indexed (Xi or
just i). Variables can be assigned values from their domain. The domain of a variable X
is denoted as DX or Di for variable Xi. Actual values are represented as a, b, c, g, r, t, 1 . . .
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and an unknown value denoted as u, v, w, x, y, z . . . . Sequences or sets of objects are denoted
in bold. A sequence of variables is denoted as X,Y ,Z, . . . A sequence of values is denoted as
u,v,w,x,y, z . . .. The domain of a sequence of variables X is denoted as DX , the Cartesian
product of the domains of all the variables in X. An assignment uX is an element of DX

which defines an assignment for all the variables in X. Finally, we denote by uX [Y ] (or uY )
the projection of uX on Y ⊆X: the sequence of values that the variables in Y takes in uX .

I Definition 1 (Graphical Model). A Graphical ModelM = 〈V ,Φ〉 with co-domain B and a
combination operator ⊕ is defined by:

a sequence of n variables V , each with an associated finite domain of size less then d.
a set of e functions (or factors) Φ. Each function ϕS ∈ Φ is a function from DS → B.
S is called the scope of the function and |S| its arity.

M defines a joint function:

ΦM(v) =
⊕

ϕS∈Φ
ϕS(v[S])

In this definition we assume that the co-domain B is totally ordered (by ≺) with a
minimum and maximum element. Arbitrary elements of B will be denoted by Greek letters
(α, β, . . .). The combination operator ⊕ is required to be associative, commutative, monotonic
and has an identity element 0 ∈ B, the minimum element of B. The maximum element > of B
is required to be absorbing (α⊕> = >). This set of axioms defines what is called a valuation
structure [104], introduced in AI to represent graded beliefs or costs in Constraint Networks.
It is closely related to triangular co-norms, often using B = [0, 1] [72]. It is also known as
a tomonoid in algebra and includes tropical algebra [56]. Commutativity and associativity
make the combination insensitive to the order of application of ⊕. Monotonicity captures
the fact that adding more information can only strengthen it. Finally, the specific roles of
the maximum and minimum elements of B are here to express deterministic information: 0
represents the fact that a function has reached an absolute minimum and this has no effect
on the value of the joint function value Φ. Instead, any combined function taking value >
will lead to a joint function that is also equal to >. For simplicity, we assume that elements
of B can be represented in constant space and that a⊕ b can be computed in constant time.
An important additional property of ⊕ is often considered: idempotency (α⊕ α = α). As
section 6.1 will show, it has strong algorithmic implications. Finally, such valuation structures
are said to be fair if, for any elements of B such that β 4 α, there exists a maximum γ such
that β ⊕ γ = α (such a γ may not exist in infinite structures). This element γ is denoted
α	 β and defines a pseudo-inverse operator 	 (we have β ⊕ (α	 β) = α).

Table 1 Some valuation structures. Idemp. indicates the idempotency of ⊕. See [33] for details.

Structure (GM) B a⊕ b ≺ 0 > Idemp. a	 b
Boolean (PL,CN) {t, f} a ∧ b t<f t f yes a

Additive (GAI) N̄ a+ b < 0 +∞ no a− b
Weighted (CFN) {0,1, . . . , k} min(k, a+b) < 0 k no (a=k ? k : a−b)
Probabilistic (MRF,BN) [0, 1] a× b > 1 0 no a/b

Possibilistic (PCN) [0, 1] max(a, b) < 0 1 yes max(a, b)
Fuzzy (FCN) [0, 1] min(a, b) > 1 0 yes min(a, b)

Valuation structures have been analyzed in detail [33, 31]. We know that any fair
and countable valuation structure can be viewed as a stack of additive/weighted valuation
structures, which interact with each other as an idempotent structure (thus using ⊕ = max).

STACS 2020
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The case ⊕ = max being very close to the case of classical Constraint Networks [88, page
293], most of the work has since then focused on the weighted and probabilistic cases.

The mathematical definition of graphical models above needs to be further refined by
defining how the functions ϕS ∈ Φ are represented. Thanks to the assumption of finite
domains, a universal representation of functions can be obtained using tensors (or multi-
dimensional tables) that map any sequence of values uS ∈ DS to an element of B. This
representation requires O(d|S|) space where d is the maximum domain size. When useful,
alternative specialized representations may be used, with possibly different complexities for
various elementary operations and queries.

Altogether, this definition of graphical models covers a variety of well-studied frameworks,
including constraint networks [101] (tensors + Boolean), propositional logic [14] (Boolean
domains, clauses + Boolean), generalized additive independence models [7] (tensors + addi-
tive), weighted propositional logic (Boolean domains, clauses + additive), Markov Random
Fields [71, 74] (tensors + Probabilistic), Bayesian networks [74] (MRFs with normalized
tensors describing conditional probabilities, organized according to a directed acyclic graph),
Possibilistic and Fuzzy Constraint Networks [48] (tensors + Possibilistic/Fuzzy). There are
various related models, such as Ceteris Paribus networks (or CP-nets [47]) that could be
covered using a weaker set of axioms, possibly too weak to prove interesting results.

We are biased in the paper towards the family of Cost Function Networks (CFN) which
are GMs using tensors (extended with so-called “global functions”, see e.g. [81, 3]) and the
Weighted structure. This combines the ability of combining additive finite weights with a
finite upper bound cost that appears naturally in many situations.

I Definition 2. Two graphical models M = 〈V ,Φ〉 and M′ = 〈V ,Φ′〉, with the same
variables and valuation structure are equivalent iff they define the same joint function:
∀v ∈ DV ,ΦM(v) = ΦM′(v).

CFNs have a tight relationship with stochastic graphical models. Since log(a × b) =
log(a) + log(b), a −log transform applied to elements of B followed by suitable scaling,
shifting and rounding can transform any stochastic graphical model into a Cost Function
Network defining a joint function that represents a controlled approximation of the −log() of
the joint function of the stochastic model. The function log being monotonic, MAP/MRF
and WCSP/CFN are essentially the same problems.

I Definition 3. Given two graphical modelsM = 〈V ,Φ〉 andM′ = 〈V ,Φ′〉, with the same
variables and valuation structure,M is a relaxation ofM′ iff ∀v ∈ DV ,ΦM(v) 4 ΦM′(v).

In a graphical model, the set of variables V and the set of scopes S of the different
functions ϕS ∈ Φ define a hyper-graph whose vertices are the variables of V and the
hyper-edges the different scopes. In the case in which the maximum arity is limited to 2,
this hyper-graph is a graph, called the constraint graph or problem graph (hence the name
graphical model). When larger arities are present, one can use the 2-section of the hypergraph
as an approximation of it, often called the primal or moral graph of the GM. The bipartite
incidence graph of this hypergraph has elements of V and Φ as vertices, an edge connecting
X ∈ V to ϕS iff X ∈ S and is often called the factor graph [1] of the graphical model.
This hyper-graph or its incidence graph only captures the overall structure of the model but
neither the domains nor the functions. Therefore, a more fine-grained representation, known
as the micro-structure graph, is often used to represent (pairwise) graphical models, vertices
representing values and weighted edges the value of functions on pairs of values.
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3 Queries

A query over a graphical model asks to compute simple statistics over the function such
as its minimum or average value. Such queries already cover a wide range of practical
usages. Assuming that true ≺ false, the SAT/PL [14] and CSP/CN [101] problems
are equivalent to finding the minimum of the joint function, which is also the case for
(Weighted) Max-SAT, WCSP/CFN, MAP/MRF (or MPE/BN aka Maximum Probability
Explanation in Bayesian Networks). In these optimization problems, we want to compute
minv∈DV

Φ(v). Alternatively, for numerical B, counting problems require to compute∑
v∈DV

Φ(v). A relatively general situation can be captured by introducing a so-called
“elimination” operator ⊗, assumed to be associative, commutative and such that ⊕ distributes
over ⊗: α ⊕ (β ⊗ γ) = (α⊕ β)⊗ (α ⊕ γ). The two operations (⊗,⊕) and their associated
properties have been studied, with some variations, under a variety of names, often in relation
with non-serial dynamic programming [110, 17, 1, 73, 72, 56]. The query to answer becomes⊗

v∈DV
⊕ϕS∈ΦϕS(v[S]).

A powerful toolbox on graphical models can be built from three simple operations:
assignment (or conditioning), combination and elimination.

Given a function ϕS , it is possible to assign a variable Xi ∈ S with a value a ∈ Di. We
obtain a function on T = S − {Xi} defined by ϕT (v) = ϕS(v ∪ {Xi = a}). If we assign all
the variables of a function, we obtain a function with an empty scope, denoted ϕ∅. This
operation has negligible complexity (we directly access a part of the original cost function).

The second operation is the equivalent of the relational join operation in databases:
it combines two functions ϕS and ϕS′ into a single function, which is equivalent to their
combination by ⊕. The resulting function has the scope S ∪ S′ and is defined by (ϕS ⊕
ϕS′)(v) = ϕS(v[S])⊕ ϕS′(v[S′]). The calculation of the combination of the two functions is
exponential in time and space (O(d|S∪S′|)). Observe that we can replace a set of functions
by their combination without changing the joint function defined by the graphical model
(preserving equivalence).

Finally, the elimination operation consists in summarising the information from a function
ϕS on a subset of variables T ⊂ S. The elimination of the variables of S − T in ϕS leads
to its so-called projection (or marginal) onto T , the function ϕT (u) =

⊗
v∈DS−T

ϕS(u ∪ v).
Since elimination requires enumerating the whole domain DS of ϕS , it has time complexity
O(d|S|). The resulting function requires O(d|T |) space. If S − T is a singleton {Xi}, we will
denote by ϕS [−Xi] = ϕS [S − {Xi}] the result of the elimination of the single variable Xi.

These complexities are given for functions represented as tensors. They may change if
other languages such as clauses, analytic representation or compact data structures such as
weighted automata or decision diagrams [38, 51] are used to represent functions.

We close this section by expressing simple graph problems as WCSP/CFNs.
Given an undirected graph G = 〈V ,E〉 with vertex set V and edge set E, we can define

the following WCSP/CFNM = 〈V ,Φ〉 problems, having one variable per vertex:
s−tMin-Cut: ∀i ∈ V \{s, t}, Di = {a, b}, Ds = {a}, Dt = {b}, and Φ = {ϕij | (i, j) ∈ E},
with ϕij(a, a) = ϕij(b, b) = 0 and ϕij(a, b) = ϕij(b, a) = 1.
Max-Cut: ∀i ∈ V , Di = {a, b}, Φ = {ϕij | (i, j) ∈ E}, with ϕij(a, a) = ϕij(b, b) = 1 and
ϕij(a, b) = ϕij(b, a) = 0.
Vertex Cover: ∀i ∈ V , Di = {a, b}, Φ = {ϕi | i ∈ V }

⋃
{ϕij | (i, j) ∈ E}, with ϕi(a) = 0,

ϕi(b) = 1, ϕij(a, b) = ϕij(b, a) = ϕij(b, b) = 0 and ϕij(a, a) = >.
Max-Clique: ∀i ∈ V , Di = {a, b}, Φ = {ϕi | i ∈ V }

⋃
{ϕij | (i, j) 6∈ E}, with ϕi(a) = 0,

ϕi(b) = 1, ϕij(a, b) = ϕij(b, a) = ϕij(b, b) = 0 and ϕij(a, a) = >.

STACS 2020



4:6 Graphical Models

2

43

1 5

7 8

6

Figure 1 Simple graph example (from Wikipedia DSATUR). Optimum value and corresponding
solution for Min-Cut (s=1, t=8): ΦM(aaaabbbb)=2, Max-Cut: ΦM(aabbbbaa)=2 (i.e., a maximum
cut involving 12−2=10 edges), Vertex Cover: ΦM(bbaaaabb)=4, Max-Clique: ΦM(aaabbbbb)=5
(i.e., a maximum clique of size 8−5=3), 3-Coloring: ΦM(abccccab)=0, and Min-Sum 3-Coloring:
ΦM(bcaaaabc)=14.

Graph Coloring with 3 colors: ∀i ∈ V , Di = {a, b, c}, Φ = {ϕij | (i, j) ∈ E}, with ∀u, v,
ϕij(u, v) = 0 if u 6= v and ϕij(u, v) = > otherwise.
Min-Sum Coloring with 3 colors: ∀i ∈ V , Di = {a, b, c}, Φ = {ϕi | i ∈ V }

⋃
{ϕij |

(i, j) ∈ E}, with ϕi(a) = 1, ϕi(b) = 2, ϕi(c) = 3, and ∀u, v, ϕij(u, v) = 0 if u 6= v and
ϕij(u, v) = > otherwise.

An example of optimal solution for each problem is given in Fig.1.

4 Tree search

One of the most basic algorithms to answer the query
⊗

v∈DV
⊕ϕS∈Φ relies on conditioning

and can be described as brute force tree-search. It relies on the fact that if all variables in a
graphical model are assigned (all variables have domain size 1), the answer can be obtained
by just computing Φ on the assignment. If a given model has a variable Xi ∈ V with a larger
domain, the query can be reduced to solving two queries on simpler models, one where Xi is
assigned to some value a ∈ Di and the other where a is removed from Di. The result of these
queries is then combined using ⊗. This can be understood as the exploration of a binary
tree whose root is the original graphical model and where leaves are fully assigned models
on which the query can be answered. This tree can be explored using various strategies
(Depth-First, Breadth-First, Iterative [94],. . . ), DFS has O(nd) space and θ(exp(n)) time.

In the case of optimization (⊗ = min) on a GMM it is possible to exploit any available
lower bound on the values of the leaves below a given node in the tree for pruning. If this
lower bound is larger than or equal to the value of the joint function on a best known leaf,
then the sub-tree can be pruned. IfM contains a constant function ϕ∅ with empty scope,
then the value of this function provides such a lower bound, thanks to monotonicity and
non-negativity. With pruning, the order in which this tree is explored (the choice of the
branching variable Xi and value a) becomes crucial for empirical efficiency.

5 Non-serial Dynamic Programming

An alternative approach for answering the query above consists in using non-serial dynamic
programming (DP) [11], also called Variable-Elimination (VE), bucket elimination [44],
among other names [74, 110, 1]. The process relies on the distributivity of ⊗ over ⊕ and has
also been described as the Generalized Distributive Law[1]. To our knowledge, its axiomatic
requirements in a general situation were first studied in [110]. The fundamental idea itself is
reminiscent of famous elimination algorithms (e.g. Gaussian elimination) and was already
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described in 1972 under the name of Non-Serial Dynamic Programming [11], which we use.
This book also defines a graph parameter (Dimension), and is the same as tree-width [19].

In its simplest variable elimination variant, non serial DP works variable per variable,
replacing a variable X and all functions that involve it by a function on the neighbors of
X. Following the stochastic GMs terminology, this new function will be called a “message”.
Given a graphical model M = 〈V ,Φ〉, a variable X ∈ V , let ΦX be the set of functions
ϕS ∈ Φ such that X ∈ S and T the neighbors of X in the graph of the problem, we define
the message mΦX

T from ΦX to T as:

mΦX

T = (
⊕

ϕS∈ΦX

ϕS)[−X] (1)

By distributivity, it is now possible to rewrite our query as:⊗
v∈DV

⊕
ϕS∈Φ

ϕS(v[S]) =
⊗

v∈DV−{X}

⊕
ϕS∈Φ−ΦX∪{mΦX

T
}
ϕS(v[S])

This equality shows that our initial query can be answered by solving a similar query on
a graphical model that has one variable less and where all functions involving this variable
have been replaced by a new function (or message) mΦX

T . This operation can be applied
to every variable successively until a final graphical model with no variable and a constant
function ϕ∅ is obtained. The value of this function is the answer to the initial query.

When tensors are used to represent functions, the successive applications of combination
and elimination show that computing mX

T is O(d|T +1|) time and space but space can be
easily reduced to O(d|T |) if elimination is performed incrementally. This can be different
with other representations. In propositional logic, if ` is a literal over variable X and if ΦX

contains the two clauses ϕS = (`∨L) and ϕS′ = (¬`∨L′), where L and L′ are clauses, then
the message mX

T obtained by combining the two clauses and eliminating X is the function
represented by the clause L ∨ L′: the resolution principle [99] performs efficient variable
elimination [45].

It is well-known that the order in which the variables are eliminated can have a strong
influence on the complexity of the whole process. Each elimination creates a new function
whose scope is known. As each step is exponential in the number of variables in the
neighbourhood of the eliminated variable X which come after X in the elimination order,
one may prefer to simulate the process (play the elimination game) and get an estimate of
the global complexity without actually performing the calculations. It is the step for which
the number w of future neighbors is maximum which determines the complexity (spatial and
temporal): this complexity is exponential in w. The parameter w is called the induced width
of the graph of the GM but is better known as its tree-width for the given elimination order.
Minimizing w is known to be NP-hard, but useful heuristics exist [18].

This algorithm defines the first non-trivial tractable class for the query above: graphical
models with a bounded tree-width graph.

5.1 Message passing
The bounded tree-width class is specifically interesting for pairwise modelsM with an acyclic
graph (tree-width one). In this case, the query above can be solved by rooting the tree in
any variable X ∈ V and iteratively eliminating the leaves of this graph until only the root
remains. In this case, messages mX

T are such that |T | = 1 and the message that corresponds

STACS 2020



4:8 Graphical Models
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Figure 2 The graph of a GM with three pairwise functions. The marginal of Φ on X2 can be
computed by combining all three incoming messages: m3

2,m
1
2,m

4
2.

to the elimination of variable Xi with parent Xj through edge ϕij is just denoted mi
j (a

message from i to j). Denoting by neigh(X) the set of neighbor variables of X in the tree,
the message computed by applying Eq. 1 is:

mi
j = ⊗

Xi

(ϕi ⊕ ϕij ⊕
Xo∈neigh(Xi),o 6=j

mo
i )

In the end, one variable X remains and the joint function Φ it defines describes the
so-called marginal of the joint function defined byM. This is a function of X that answers
the query for every possible assignment of X.

These marginal functions are of specific interest in counting queries over stochastic models
as they provide marginal probabilities. Specific algorithms have therefore been developed to
compute the marginals over all the variables of acyclic models. This requires only two steps
(instead of one per variable). In this algorithm, messages are computed and kept aside and no
function is removed from the graphical model. We therefore have an initially empty, growing
list L of computed messages. If a variable has received messages from all its neighbors but
one, it becomes capable of computing the message for this variable and adds it to the list of
computed messages. The algorithm therefore starts by computing messages from leaves and
ultimately computes two messages mi

j and mj
i for every edge ϕij . For any variable Xi, the

marginal of the joint function Φ on Xi is directly accessible as ϕi⊕o∈neigh(Xi)m
o
i . It is easy

to check that the gathered messages for every vertex X are exactly those that would have
been done if the tree had been rooted in X.

If the initial graph is cyclic, a tree decomposition of the graph can be identified and
the algorithm above used to send messages mC

S by combining all functions in cluster C

and projecting to separator S. The resulting algorithms similarly computes marginals
over clusters which can be further projected onto every variable inside [74]. This has two
advantages over the pure variable elimination algorithm above: the space complexity is
O(exp(s)) where s is the size of the largest separator in the tree decomposition and all the
marginals are accessible. In its “one-pass” variant, this algorithm is the “block-by-block”
elimination introduced in 1972 by Bertelé and Brioschi [11]. Despite the improved space
complexity (but unchanged time complexity), this algorithm is restricted to problems with
very small tree-width (especially with large domain sizes).
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6 Loopy Belief propagation and Local Consistency

The Loopy Belief Propagation heuristic can be used when the algorithm above cannot finish
in reasonable time. In a pairwise model, the list L is initialized with all possible constant
empty messages mj

i = mi
j = 0 for all ϕij ∈ Φ. Every message is then updated using the

same equation as above: mi
j = ⊗Xi

(ϕi⊕ϕij ⊕Xo∈neigh(Xi),o6=j m
o
i ). These updates can be

done synchronously (new versions are all computed simultaneously and replace those of the
previous iteration) or asynchronously. This is repeated until quiescence or after a finite
number of iterations as the algorithm has no guarantee of termination in general. Loopy
BP was introduced by Pearl [96] and later used for signal coding and encoding defining
Turbo-decoding [10]. Despite its limited theoretical properties, it is one of the most used
algorithms over stochastic graphical models, probably the most cited (implemented in every
GSM phone). It has been the object of intense study [117]. It can be used to get heuristic
answers for optimization or counting queries under the name of the max-sum, min-sum or
sum-prod algorithm [1].

6.1 Local consistency and Filtering
For optimization (⊗ = min), if ⊕ is either idempotent or fair, these algorithms can be
transformed into well-behaved polytime reformulation techniques that provide incremental
lower bounds, for Branch and Bound algorithms.

I Theorem 4. Suppose that ⊕ is idempotent, and considerM = 〈V ,Φ〉 andM′ = 〈V ,Φ′〉
a relaxation ofM. ThenM′′ = 〈V ,Φ ∪ Φ′〉 is equivalent toM.

Proof. From the axioms of an idempotent valuation structure, consider two valuations
0 4 β 4 α ∈ B. Then α = α ⊕ 0 4 α ⊕ β 4 α ⊕ α = α by identity, monotonicity and
idempotency successively. Then ΦM′′ = ΦM ⊕ ΦM′ . The results follows from the fact that
M′ is a relaxation ofM. J

I Theorem 5. If ⊗ = min, any message mX
T computed by elimination is a relaxation of ΦX

and therefore ofM.

This follows directly from the definition of a message and the fact that ⊗ = min.
Together, these results show that any message (computed by Eq. 1) can be added to an
idempotent graphical model, without changing its meaning. This result applies to the
Boolean, Possibilistic and Fuzzy cases. In the Boolean case, we recover the trivial fact that
a logical consequence (relaxation) of a formula can be added to it without changing its
semantics (as achieved by the resolution principle [99] and the seminal Davis and Putnam
algorithm [40]). It also immediately provides algorithms for Possibilistic and Fuzzy graphical
models [49].

These observations are very useful in the context of message passing algorithms. If ⊕
is idempotent, it becomes possible to add the generated messages to the set of functions
Φ of the graphical model with the guarantee that equivalence will be preserved. This idea
underlies all the “(Boolean) constraint propagation” algorithms (e.g., unit propagation in PL
and arc consistency filtering in CNs) that have been actively developed in the last decades.
We now give a non-standard definition of Arc Consistency in binary idempotent graphical
models to illustrate this:

I Definition 6. A graphical modelM = 〈V ,Φ〉 with idempotent ⊕ is arc-consistent iff every
variable X ∈ V is arc consistent w.r.t. every function ϕS s.t. X ∈ S. A variable Xi is
arc-consistent w.r.t. a function ϕij iff the message mj

i is a relaxation of ϕi.
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This local consistency property can be satisfied (or not) by an idempotent graphical model.
When it’s not satisfied, there is an obvious brute force algorithm that can transform the non
AC model into an equivalent AC model: it suffices to apply message passing and directly
combine all messages mj

i inM until the ϕi do not change. One can show that this algorithm
must stop in polytime and that the process is confluent (there is only one fixpoint). This
algorithm is not optimal however and several generations of AC algorithms for e.g. Constraint
Networks have been proposed until the first time optimal algorithm (AC4 [89]), the first
space and time optimal (AC6 [13]) and the simplest empirically most efficient time/space
optimal variant (AC2001 aka AC3.1) came out [12, 118].

Arc consistency and Unit Propagation in SAT are fundamental in efficient CSP and
SAT provers. Adding messages (new unary functions) to the problem makes these unary
functions increasingly tight. Ultimately, it may be the case that some ϕi ∈ Φ becomes such
that ∀a ∈ Di, ϕi(a) = >. Because equivalence is preserved, it is then known that the joint
function of the original graphical model is always equal to > (it is inconsistent in logical
terminology). Naturally, being a polytime process, arc consistency enforcing cannot provide
such an inconsistency proof in all cases (assuming P 6= NP). Stronger, more expensive,
messages can be obtained using messages mC

T combining functions in C projected onto
T . In pairwise GMs, when C is defined by all functions whose scope is included in any
set of cardinality less than i projected on any sub-scope of cardinality i− 1, this is called
i-consistency enforcing [30, 5], which solves idempotent GMs with tree-width less than i in
polynomial time.

6.2 The non idempotent fair case
When optimizing, if ⊕ is not idempotent, it becomes impossible to simply add messages
to the graphical model being processed and preserve equivalence. However, the pseudo-
difference operator 	 of fair structures makes it possible to add the message to the model and
compensate for this by subtracting the message from its source [103]. Such a generalization
may lead to loss of guaranteed termination since information can both increase and decrease
at different local levels. While usual local consistency enforcing takes a set of functions and
adds the message m obtained by eliminating a subset of variables in the problem, what has
been called an Equivalence Preserving Transformation (EPT) combines a set of functions
into a new function ϕ, computes the associated message (or any relaxation of it) and replaces
the original set of functions by m and ϕ	m. When scopes are unchanged, this has been
called reparameterizations in MRFs [115].

If the problem of computing an optimal sequence of EPTs (in the sense that applying
these messages reformulate the GM into another one that has a maximum ϕ∅) is NP-hard
for integer costs, finding an optimal set of messages using rational costs can be reduced to
a linear programming instance of polynomial size [32], a reduction which was previously
published in 1976 [109], in Russian. Schlesinger’s team has produced a variety of results on
GMs that have been reviewed in English [116]. The LP-based algorithm has the ability to
exactly optimize additive or weighted [29] GMs with a tree-structure or with only submodular
functions but solving the LP is empirically too slow to be of practical use in most cases. This
LP has been shown to be universal, in the sense that any reasonable LP can be reduced to
(the dual of) such an LP in linear time, with a constructive proof [97].

I Definition 7. Function ϕS is submodular if ∀u,v ∈ DS , ϕS(min(u,v))+ϕS(max(u,v)) ≤
ϕS(u) + ϕ(v).
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This assumes that domains are ordered, max and min being applied pointwise. If it exists, a
witness order for submodularity can be easily found [108] defining the polynomial class of
weighted GMs with permutated submodular functions [107].

The best known general algorithm for Boolean submodular function minimization is
O(en3 logO(1) n) [82]. For CFNs, practical algorithms can be obtained by exploiting a
connection with idempotent GMs (here CNs). Any weighted function ϕS can be transformed
into a Boolean function Bool(ϕS) which is true iff ϕS is non 0.

I Definition 8 ([34, 29]). Given a weighted GM (or CFN) M = 〈V ,Φ〉, Bool(M) =
〈V , {Bool(ϕS) | |S| > 0}) (a constraint network).

I Definition 9 (Virtual Arc Consistency (VAC)[34]). A weighted GMM = 〈V ,Φ〉 is Virtual
Arc Consistent iff enforcing AC on Bool(M) does not prove inconsistency.

If enforcing AC on Bool(M) yields an inconsistency proof, it is possible to extract a
minimal sub-proof and transform it in a set of EPTs that will increase ϕ∅ when applied on
M. The repeated application of this principle leads to an O(ed2m/ε) time, O(ed) space VAC
enforcing algorithm (where ε is a required precision). It can be seen as a sophistication of
max-flow algorithms using “augmenting proofs” [77, 116]. On Min-Cut problems, proofs can
have the expected augmenting path structure. Related algorithms, using a Block Coordinate
Descent approach to approximately solve the LP above have also been investigated in Image
processing: the TRW-S algorithm [75] fixpoints satisfy the VAC property (called Weak Tree
Agreement in MRFs) which can be exploited to detect strongly persistent assignments [57]
(subsets of variables having the same value in all optimal solutions). On GMs with Boolean
variables, the bound ϕ∅ is related to the max-flow roof-dual lower bound of Quadratic
Pseudo-Boolean Optimization [20].

All these algorithms ultimately produce strengthened lower-bounds ϕ∅. In the con-
text of Branch & Bound, looser approximations of the dual are often used because of
their high incrementality. One of the most useful is existential directional arc consistency,
with O(ed2 max(nd,m)), O(nd) space complexity on pairwise models [80], that solves tree-
structured problems.

7 Hybrid algorithms

In this section, we rapidly review a subset of the large number of hybrid algorithms that have
been designed to rigorously answer optimization queries over graphical models. The arena of
existing algorithms is currently clearly dominated by a family of algorithms that combines
tree search with local consistency enforcing. Local consistency enforcing strengthens the
obvious lower bound defined by ϕ∅. It reformulates the graphical model associated with
each node of the search-tree incrementally. It provides improved information with tightened
unary ϕi. This information can be used in cheap variable and value ordering heuristics, to
decide which variable to explore first, along which value. These heuristics are crucial for
the empirical efficiency of the algorithms (as evaluated on large sets of benchmarks, which
are increasingly available in this data era). They have have become adaptive [90, 21]: they
are parameterized and these parameters change during tree search, trying to identify and
favor the selection of variables that belong to the regions of the graphical model that contain
strong information, variables which once assigned would lead to rapid backtracking.

These algorithms can be (empirically) enhanced by hybrid branching strategies mixing
depth and best-first, restarts (preserving information not invalidated by restart), stronger
message passing at the root node, dominance analysis (showing a value a can always be
replaced by value b without degrading Φ allows us to remove a).
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In the idempotent ⊕ case, conflict analysis [15] is a powerful technique that allows to
produce a new informative relaxation (or logical consequence) of the model when a conflict
occurs during tree search (a backtrack must occur). Initially developed [42] and improved [106]
for Constraint Networks, this has been adapted to SAT and is now a fundamental ingredient
of the modern CDCL (Conflict Directed Clause Learning) SAT provers that obsoleted the
90’s generation of advanced DPLL (Davis, Putnam, Logemann, Loveland) provers [39].

At this point, one may note that for optimization at least, the empirically most efficient
algorithms are algorithms that have O(exp(n)) worst-case complexity while algorithms with
better worst-case complexity (based on non-serial dynamic programming) are restricted to
a small subset of problems having (small) bounded tree-width (depending on d). A series
of proposals tried to define algorithms that combined the empirical efficiency of enhanced
tree-search algorithms with tree-width based bounds. To the best of our knowledge, the first
algorithm along this line is the Pseudo-Tree search algorithm [53], for solving the CSP in
constraint networks. Defined in 1985, this algorithm relies on a so-called pseudo-tree (defined
below). It is shown to have a complexity which is exponential in the height of the pseudo-tree
and uses only linear space. This pseudo-tree height was later shown to be related by a log(n)
factor to induced width (a synonymous of tree-width) in 1995 [9, 105]. Pseudo-tree height
seems to be the exact equivalent of tree-depth [92].

I Definition 10 (pseudo-tree, pseudo-tree height [53]). A pseudo-tree arrangement of a graph
G is a rooted tree with the same vertices as G and the property that adjacent vertices in G
reside in the same branch of the tree. The pseudo-tree height of G is the minimum, over all
pseudo-tree arrangements of G of the height of the pseudo-tree arrangement.

The idea was revived in the context of counting problems in the “Recursive Conditioning”
algorithm, relying on the related notion of d-tree [37]. This was quickly followed by the
proposal of two algorithms for CSP/CN, WCSP/CFN and MAP/MRF relying either on
pseudo-trees, leading to the family of AND-OR tree and graph search algorithms [84, 86,
85, 87] or tree-decompositions, leading to the Backtrack Tree-Decomposition algorithm
(BTD [66, 67, 41]) . These algorithms enhance the original pseudo-tree search along two lines:
they add some form of local consistency enforcing to prune the search tree, with associated
non trivial per-cluster lower-bound management and may also memorize information, leading
to algorithms with worst-case time/space complexity that reach those of the best elimination
algorithms, with much better empirical complexity, thanks to pruning and variable ordering
heuristics.

These algorithms take as input a graphical model (we assume a pairwise GM for simplicity)
and a tree decomposition of its graph. The tree decomposition is rooted in a chosen cluster.
Then a usual (hybrid) tree-search algorithm is used but the variable assignment order is
constrained by a rule that forbids to assign a variable from a cluster if all the variables of
its parent cluster have not already been assigned. When this happens, the variables in the
separators between the parent cluster and any of its sons are assigned: the functions that
connect the parent and son clusters can be cheaply eliminated, the clusters disconnect and
can be solved independently given the current assignment of the separator. This principle
is applied recursively on sub-problems. For every first visit of a given assignment of a
separator, it is possible to memorize the value of the query for this assignment. When the
same assignment is revisited later, it can be directly reused. This is what the AND/OR
graph search and BTD algorithms do, at the cost of an O(ds) space complexity. Their time
complexity, in the simplest case of the CSP problem, is just exponential in the tree-width
instead of the pseudo-tree height. Alternatively, no space is used in the AND/OR tree search
algorithm and the worst-case space and time complexity become those of the Pseudo-Tree
Search algorithm (but with improved empirical complexity thanks to mini-bucket elimination,
a specific form of message passing that provides the bounds required for pruning [43, 46]).
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Thanks to the bounds and reformulations provided by local consistency enforcing, these
algorithms will typically explore a tiny fraction of the separators, empirically requiring
much less space than a pure non-serial dynamic programming algorithm. The constraint
that the rooted tree decomposition imposes on variable assignment ordering will however
play a possibly negative role. Finally, because space is an abrupt constraint in practice,
tree-decompositions with large separators may be unexploitable in practice if a space-intensive
approach is used. One usual way to deal with space constraints is to use a bounded amount
of space for caching separator assignments and corresponding query answers and have some
dedicated cache management strategy. In the end, the best tree-decompositions for hybrid
algorithms such as BTD or Pseudo-Tree Search will usually not be minimum tree-width
decompositions (if they could be computed). The usual approach here is to rely on simple
heuristics such as min-degree, Maximum Cardinality Search [100] or min-fill to heuristically
build a decomposition. This may be randomized and iterated [70]. The result may then be
improved by cluster-merging operations, trying to minimize separator sizes while preserving
sufficient cluster size so that variable ordering heuristics do not get too constrained. Not
only we do not have any final definition of what is an optimal tree decomposition but
even a simple min-fill heuristics may be too long in practice to be useful (on large GMs,
executing the polytime min-fill algorithm on the GM graph may take more time than solving
the later NP-hard query on the GM). For this reason, new approaches that directly and
efficiently build empirically useful decompositions for GM optimization queries are now being
introduced [64, 63]. To better exploit the fact that different assignments may lead to different
subproblems, with different graphs at the micro-structure level, dynamic decomposition is
also explored. Some of these strategies rely on iterated (hyper)graph-partitioning using
large-graphs dedicated heuristics such as Metis [69] or PaToH [24, 79], in the spirit of the
seminal Nested Dissection algorithm [54].

Table 2 Time and space complexities of exact methods for a CFN with tree-width w, s maximum
separator size (s ≤ w ≤ n), and initial problem upper bound k.

Exact Method Time Space
Depth First Branch & Bound O(exp(n)) O(n)
Hybrid Best-First Search [4] O(exp(n)) O(exp(n))
Variable elimination [11] O(n exp(w)) O(n exp(w))
Block-by-block elimination [11] O(n exp(w)) O(n exp(s))
Pseudo-Tree Search [53, 9] O(n exp(w log(n))) O(n)
AND/OR tree search [84, 86] O(n exp(w log(n))) O(n)
AND/OR graph search [85, 87] O(n exp(w)) O(n exp(s))
BTD and variants [66, 112, 41, 102, 4] O(k n exp(w)) O(n exp(s))

In the idempotent cases, the exploitation of tree-decompositions is implicit in algorithms
relying on a combination of clause/constraint learning and restarts (confirmed in practice [62]).

I Theorem 11 ([6, 62]). A standard randomized CDCL SAT-solver with a suitable learning
strategy will decide the consistency of any pairwise Constraint Network instance with tree-
width w with O(n2wd2w) expected restarts.

8 Additional complexity results

Although NP-hard in general, under certain restrictions, calculating the global value of a GM
can be achieved in polynomial time. We have seen that this is the case when the tree-width
of the primal graph is bounded by a constant. In terms of graph structure, the family of GMs
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with bounded tree-width has been clearly the most exploited in practice (with the closely
related branch-width [98]). In the non-pairwise case, parameters such as hypertree-width are
implicitly exploited by hybrid algorithms such as BTD [65].

In the case of CFNs, restrictions on the language of cost functions can also define tractable
classes. Restrictions which are not exclusively concerned with the graph, nor exclusively
concerned with the language of cost functions define what are known as hybrid classes. We
consider language-based tractable classes first.

The characterisation of all tractable languages of cost functions was a long-standing
problem which has recently been solved thanks to the characterisation of tractable languages
in the last remaining (and most difficult) case of Boolean valuation structures [22, 119]. This
latter result resolved positively the so-called Feder and Vardi Conjecture [52] that there is
a P/NP-complete dichotomy for the constraint satisfaction problem parameterized by the
language of possible constraint relations [23].

There is only one non-trivial class of cost functions defining a tractable subproblem of
CFNs which comes out of the study of Max-SAT: the class of submodular functions (see
Definition 7). The class of submodular functions includes all unary functions, the binary
functions

√
x2 + y2, ((x ≥ y)?(x−y)t : k) (for t ≥ 1), K−xy, the cut function of a graph and

the rank function of a matroid [55]. Efficient algorithms have been developed in Operations
Research to minimize submodular functions [82, 25]. Another approach [34] consists in
establishing virtual arc consistency (which preserves the submodularity of the cost functions).
By the definition of VAC, the arc-consistency closure Q of Bool(P) is non-empty and, by
definition of submodularity, its cost functions are both min-closed and max-closed [61]; to
find a solution of Q (which is necessarily an optimal solution of P), it suffices to assign
always the minimum (or always the maximum) value in each domain of Q.

A CFN can be coded as an integer programming problem (whose variables include
via ∈ {0, 1} which is equal to 1 if and only if Xi = a in the original CFN instance [60]). The
linear relaxation of this integer programming problem (in which via is now a real number
in the interval [0, 1]) has integer optimal solutions if all cost functions are submodular,
meaning that the CFN can be solved by linear programming. The dual of this relaxation
is exactly the linear program used by OSAC [29] to find an optimal transformation (set of
EPTs) [116]. CFNs restricted to a language of finite-valued cost functions over the valuation
structure Q≥0 ∪ {∞} is tractable if and only if it is solved by this linear program [113].
This notably includes languages of cost functions that are submodular on arbitrary lattices.
State-of-the-art results concerning the tractability of languages of cost functions are covered
in detail in a recent survey article [78].

These theoretical results demonstrate the importance of submodularity and linear pro-
gramming in the search for tractable subproblems of the CFN. However, we should mention
that there are tractable languages of cost functions other than the class of submodular func-
tions. For example, replacing the functions min and max in the definition of submodularity
by any pair of commutative conservative functions f, g (where conservative means that ∀x, y,
f(x, y), g(x, y) ∈ {x, y}) gives rise to a tractable class [28].

Hybrid classes [36] may be defined by restrictions on the micro-structure of the CFN. To
illustrate this, we describe the hybrid tractable class defined by the joint winner property
(JWP) [35]. A class of binary CFNs satisfies the JWP if for any three variable-value
assignments (to three distinct variables), the multiset of pairwise costs imposed by the binary
cost functions does not have a unique minimum. If there is no cost function explicitly defined
on a pair of variables, then it is considered to be a constant-0 binary cost function. Note
that the unary cost functions in a CFN that satisfies the JWP can be arbitrary. It has been
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shown that there is a close link between the JWP and M]-convex functions studied in [91].
Indeed, a function satisfying the JWP can be transformed into a function represented as the
sum of two quadratic M-convex functions, which can be minimized in polynomial time via an
M-convex intersection algorithm. This leads to a larger tractable class of binary finite-valued
CFNs, which properly contains the JWP class [59].

9 Solvers and applications

Thanks to a simple algebraic formulation of graphical models and queries over GMs, this
review covers a very large variety of algorithms and approaches that have been developed
in probabilistic reasoning, propositional logic and constraint programming. On the non
stochastic side, SAT and CSP solvers have had a significant impact in several areas such
as Electronic Design Automation (where SAT solvers are used as oracles to solve complex
Bounded Model Checking problems), Software Verification (where suitable Abstraction
Refinement Strategies are used to manage possibly very large instances [27, 58]) or for task
scheduling [8] or planning [114] among many others. Stochastic variants are one of many
modeling tools available in Machine Learning [16], but Markov Random Fields have been
more specifically applied in Image processing for tasks such as segmentation [83]. In most
Image Processing applications, a variable of the GM is associated with a single pixel, leading
to very large MAP/MRF optimization problems that are never solved exactly (with a proof
or theoretical guarantee), using instead heuristic or primal/dual approaches offering a final
optimality gap [68]. However, the class of submodular problems with Boolean domains,
solvable in polytime using a min-cut (max-flow) algorithm has been exploited intensely under
the name of the “Graph-Cut” algorithm [76, 120].

In this final section, we rapidly describe recent results we obtained using an exact
WCSP/CFN solver. Toulbar2 implements most of all the algorithms we have described above
to solve the WCSP/CFN problem, which is essentially equivalent (up lo a − log transform
and bounded precision description of real numbers) to MAP/MRF. Toulbar2 is becoming
increasingly famous for its ability to solve “Computational Protein Design” problem instances.
Proteins are linear polymers made of elementary bricks called amino acids. Each amino
acid a in a protein can be chosen among a fixed alphabet of 20 natural amino acids and
each choice in this alphabet is defined by the combination of a fixed “backbone” part and
a variable side-chain, a highly flexible part on the molecule. The computational protein
design problem starts from the three-dimensional description of a protein backbone and
asks to determine the nature and orientation of all side-chains that minimizes the energy of
the resulting molecule (a minimum of energy defining a most stable choice for a given rigid
backbone). The combination of dedicated pairwise separable (non-convex) energy functions
with a discretization of orientations in side chains (so-called rotamer libraries) allows to
reduce this problem to a pure WCSP/CFN problem. On such problems, Toulbar2 has been
used to bring to light the limitations of dedicated highly optimized Simulated annealing
implementations [111], being capable of providing guaranteed optimal solutions for problems
with search space larger than 400100 in reasonable time on a single core, on problems that
cannot be tackled by state-of-the-art ILP, Weighted MaxSAT or quadratic boolean solvers,
even those based on powerful SDP-based bounds [2]. The instances are not permutated
submodular [108] and do not have a sparse graph that would make dynamic programming
feasible. This has enabled the design of a real new self-assembling protein [93].
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Conclusion

Algorithms for processing graphical models have been explored mostly independently in
the stochastic and deterministic cases. In this review, we have tried, using simple algebra,
to cover a large set of modeling frameworks with associated NP-hard queries and showed
that there is a strong common core for several algorithms in either case: non serial dynamic
programming. Restricted to sub-problems, combined with tree-search, learned heuristics,
and other tricks, these bricks have generated impressive algorithmic progress in the exact
solving of SAT/PL, CSP/CN, WCSP/CFN aka MAP/MRF or MPE/BN problems and even
for #P-complete problems [26, 50].
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