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NON-PERIODIC MOTION CAUSED BY GRAZING 

INCIDENCE IN AN IMPACT OSCILLATOR 

A. B. NORDMARK 

Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden 

The motion of a single-degree-of-freedom, periodically forced oscillator subjected to a 
rigid amplitude constraint is considered. Using analytical methods, the singularities caused 
by grazing impact are studied. It is shown that as a stable periodic orbit comes to grazing 
impact under the control of a single parameter, a special type of bifurcation occurs. The 
motion after the bifurcation may be non-periodic, and a criterion for this based on 
orientation and eigenvalues is given. 

1. INTRODUCTION

In recent years, single-degree-of-freedom impacting linear oscillators subjected to periodic 
external forcing have been intensively studied by using the methods of dynamical systems 
theory. Shaw and co-workers [ 1-4] have studied clearance systems and have analyzed 
subharmonic periodic motions and the bifurcations leading to them. In numerical simula
tions, their systems have also been found to exhibit symptoms of chaotic motion. A similar 
model with preload or clearance has been studied by Whiston [5, 6], who has provided 
an analysis of global bifurcations. There are also several experimental studies on impacting 
oscillators, for example, that of Moon [7]. 

As noted by Shaw and Holmes [1], the Poincare mappings derived for impacting 
systems have singularities in the derivative. These singularities can clearly be seen in the 
one-dimensional mappings derived for a system with large dissipation [2]. Whiston has 
analyzed the singularities and shown their importance for the global dynamics of impact 
oscillators. The present work is focused on the effect of the singularities on a stable 
periodic orbit, showing by analytical methods the possibility of chaotic motion for these 
systems. 

The oscillator model used in this paper is a general model for a single-degree-of-freedom, 
periodically forced impacting oscillator, where the amplitude is limited by a stop on one 
side. The impact process is idealized to take place in zero time, and with the velocity 
coming out of the stop being a function of incoming velocity only. The systems that can 
be described by this model include the linear impact oscillators and the problem of a 
ball bouncing on a vibrating table. 

The first section of the paper consists of a presentation of the system studied, and a 
discussion of the geometry of the state space of the system and ways to introduce Poincare 
sections and mappings. Locally valid, basic mappings between different sections of the 
state space are defined. These can then be composed to give locally defined Poincare 
mappings near some orbit of the system. 

In the Poincare sections, there are curves of points where the mappings show a 
singularity in the Jacobian as the curves are approached from one side, while the Jacobians 
on the other side stays bounded and slowly varying. These curves represent points that 
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are brought to a zero velocity "impact" with the stop, here referred to as a grazing impact. 
If a stable periodic point under the control of a single system parameter crosses one of 
these curves from the non-singular side, the stability characteristics of the point change 
suddenly. Because of the discontinuous and singular change in derivatives as the curve 
is crossed, this bifurcation is not one of the well known bifurcations that frequently occur 
in the study of smooth non-linear systems [8]. The later part of the paper consists of a 
study of this bifurcation. At the bifurcation point two cases are distinguished: either the 
periodic point suddenly loses its stability, causing the motion of the system to leave the 
immediate neighborhood of the bifurcation point; or the point will retain its stability. In 
the latter case, a trapping region is found to exist after the bifurcation. The size of the 
trapping region grows continuously from the bifurcation point, and a simple analysis of 
stability gives an inequality condition on the largest eigenvalue of the periodic point, 
under which no stable periodic points are possible in the trapping region for an interval 
of the bifurcation parameter. For other regions of the eigenvalues, the analysis shows the 
possibility of a sequence of points of arbitrarily long periods, and the corresponding 
sequence of bifurcation parameter values is found to obey a geometric scaling law. 

2. THE SYSTEM 

The system treated is a single-degree-of-freedom impact oscillator that is being driven 
by a periodic force. As it is a single-degree-of-freedom system, being externally forced, 
the acceleration of the mass is a function of displacement, velocity and time. The 
periodicity of the forcing requires the acceleration function to be periodic in the time 
variable. At a fixed value of the displacement co-ordinate, the mass strikes a stop, causing 
it to rebound. The impact process is considered to be so rapid that the time spent in the 
rebound can be taken to be zero. The velocity coming out of the stop is assumed to 
depend only on the velocity coming in. The time co-ordinate is denoted by T and the 
displacement by x. With scaling and shifting the co-ordinates if necessary, it can be 
assumed that the time period of the forcing is 2 7T, the impact boundary is given by x = i,., 
and the oscillator moves on the side x � ic. 

2.1. FORMULATION OF DIFFERENTIAL EQUATION 

The equation governing the motion is a second order differential equation: 

d2xjdT2=A(x, dx/dT, T), ( 1) 

and the periodicity of the acceleration function is expressed by 

A(x, dx/dT, T+27T) = A(x, dxjdT, T). 

2.2. THE SYSTEM AS A THREE-DIMENSIONAL FLOW 

Equation (1) describes a one-dimensional non-autonomous second order system, but 
the system can equivalently be described as a three-dimensional autonomous first order 
system in the following standard manner. Define a new time variable t� T-To, where To 
can be freely chosen. Then define the three state variables: namely x (still displacement), 
v�dx/dT, and (J'�{ T (mod 27T). The flow equations for the new variables are 

(2) 

This gives a picture of the system without reference to an absolute time, so all the dynamics 
is in the geometry of the fiow. 
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It is worth discussing the geometry of the state space and the flow in some detail. 
x and v are real numbers, and fJ is a circular phase, so the state space is a subset 
of R x R x S'. It can be visualized in R3 by using cylindrical co-ordinates with the 
radius taken as x- Xc + r0, r0 a positive constant, the angle as 8, and the height as v (see
Figure 1). 

It is convenient to introduce notations for some subsets of the state space: 

E '1�t (X"' 00) X R X s I' e 8 d�[ [ Xo 00) X R X { 0}' .l" �f { Xc} X R X s I' 
.l"+�r{xc} x (0, oo)xS1, .l"0�r{xJ x {0} x S1, .l"-'��t{xJ x ( -oo, O)xS1• 

The flow (2) is defined in E, 88 is a plane of some constant phase if, and .l" is the impact 
boundary. On .l"- the oscillator hits the boundary with negative velocity, and on .l" + it 
leaves the boundary with positive velocity . .l"0 represents the state of being at the boundary
with zero velocity, and the possibility for a flow line to enter or leave a point in .l"0 is 
determined by the value of the acceleration function A (in .l"0 a function of phase only). 

If A is positive (directed away from the impact boundary) for a phase interval around 
a point in .l"0, then the flow can enter and leave that point. This is the situation of a 
grazing impact; the oscillator just touches the boundary, without being effected by it. 
A periodic orbit, projected onto the x-v plane, with a grazing impact, is shown in 
Figure 2 (a). As will be shown later, grazing impact has a large influence on the stability 
of the motion of the system. 

E 

Figure I. The state space. 
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Figure 2. Periodic orbit with (a) a grazing impact, and (b) an infinite number of impacts. 
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If A is negative in 2'0, the flow cannot leave or enter that point. This happens when
the oscillator is at rest at the boundary, being pressed against it by the force. The motion 
will thus stay in 2'0 until the acceleration becomes positive again. Although such points
are not at the end of any flow line in E, they could be reached by the motion. For example, 
if there is damping in the impact, they might be reached through an infinite number of 
impacts in finite time. This is illustrated in Figure 2 (b ). However, a motion coming through 
one of these points cannot in general be uniquely followed backwards in time. 

The formal solution of the flow equations (2) for initial conditions x0, v0, (}0 given at 
t = 0 can be written in terms of a displacement function, x, as 

where 

x(O, Xo, Vo, Oo) = Xo, 

( x) ( x(t, x0, v0 , Oo) )
v = axjat(t, Xo, Vo, Oo) ' 
(} t + 00 (mod 27T) 

ax 
- (0, Xo, Vo, Oo) = Vo, 
at 

and 
a2x ( ax )
-2 =A X, -, t + (}0 • 
at at 

(3) 

The impact law is described by a function G, G: ( -oo, 0]�[0, oo), with the properties 
Vour=G(v;n) , and G(O) =O. The impact law maps points in ..r- to points in ..r+ with the 
displacement and phase unchanged. 

2.3. POINCARE MAPPINGS 

As an aid in describing and understanding the system one can introduce mappings 
between different sections of the state space (Poincare mappings). There are two different 
kinds of sections that are natural for this system. One is the constant phase section 8°, 
where a point is determined by its displacement x0 and velocity Vii in the plane correspond
ing to a given, constant phase 6. This kind of section can be used in any problem with 
periodically forced oscillators. The other choice is connected to the impact process, and 
the section used is .l', where a point is determined by its phase (}c and velocity vc- It 
should be noted that when using these sections as a base for defining a globally valid 
mapping, care has to be taken to make the definition precise, and in general the mapping 
will be discontinuous. The cause of discontinuity is, however, different for the two choices 
of section. 

In the case of the constant phase plane mapping, the discontinuity is due to the fact 
that a point with x = ic is really a pair of points, one with negative and one with positive 
velocity, since the impact process is considered to be instantaneous. The mapping will 
thus be discontinuous at points which are mapped to x = ic. However, the control over 
which constant phase plane is to be used as the section might be used to move the 
discontinuities out of a regions of interest. This discontinuity is then just an artifact of 
having an instantaneous impact process, and can be regarded as a limit of a steep, 
continuous mapping when the impact boundary stiffness goes to infinity. In the present 
work, treating only local regions, it will not be a cause of trouble. 

In the case of mapping between impacts, there is a more fundamental problem due to 
tangential flow. At v = 0, the flow is tangent to the Poincare section, so that nearby points 
may impact with low velocity, or may miss and impact at a later time. This is an inherent 
problem when choosing a section where the flow is not everywhere transversal, and it 
will cause discontinuities to appear at points being mapped to the line v = 0. 

The local Poincare mappings derived later in the paper will use a constant phase plane 
as the section. 
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2.4. LOCAL MAPPINGS 

The careful definition of globally valid mappings will not be required for the present 
purpose. Instead, four basic, locally defined classes of mappings between different sections 
in state space will be studied. These mappings can then be composed to give a local 
Poincare mapping in the neighborhood of a trajectory in state space. The primary goal 
is to obtain expressions for the derivative of the mappings, since this information is used 
for stability calculations, both in analytical work and in numerical simulations. The local 
decomposition of a Poincare mapping into a sequence of mappings from four basic classes 
is convenient for calculation, and distinguishes between the contributions from the flow 
and those from the impact process. 

The derivative of the final point with respect to the starting point when integrating flow 
equations such as (2) for a fixed interval of time is obtained by standard methods (the 
variational equations). The time taken to reach the impact boundary is, however, depen
dent on the starting point. Thus there is a need for an expression for the derivative when 
going from a plane of constant time to some other type of surface in state space. The 
following theorem, illustrated by Figure 3, can be used to determine the derivative of the 
projection mapping implied by the flow from one surface to another, at a point which 
lies on both surfaces. 

B ----

xi 'P(xl 
---- �' 

' \ I I I I I / 
s 

Figure 3. Flow projection onto a surface. 

Suppose a flow in R" is given by dx/ dt = F(x)  and a smooth surface S in R" is given 
by H(x ) = 0, and let x be a point in S. The points in R" and the functions Fare represented 
by column vectors and gradients by row vectors. Then the following holds. If 

(aHjax )F;eO (4) 

at x (the flow is not tangent to S at x) , then there is a neighborhood B of x and a mapping 
P: B-+ S, such that for x E B, x and P(x) is connected by a part of a flow line, contained
in B. The mapping P is differentiable at x, and the derivative is 

aP/ax =I- F(aH/ax)/(aH ;ax )F, (5) 

where I is the n x n identify matrix. 
To establish this result, one notes that the time of flight from x to P(x )  is implicitly 

defined by the condition that P(x)  E S. A direct calculation with use of the implicit 
function theorem will then give the expression (5) for the derivative. It can be noted that 
the linear part (5) describes linear projection onto a plane tangent to S at x in the direction 
of the flow at x. When using this result to obtain a mapping from one surface ( T)  through 
x to another (S), local co-ordinates in T are transformed to R", subjected to the mapping 
P and then transformed to local co-ordinates in S. 

The four classes of local mappings will now be defined. The position of the sections 
in state space near a typical trajectory is shown in Figure 4. 
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Figure 4. The local mappings. 

I. A flow mapping P1 from a constant phase plane Be• to a constant phase plane Be,,
defined near a trajectory starting at (xe,, Ve1, OJ) and reaching (xe,, Be,, 02) with a time of
flight f and no impacts: 

with P (xe,) = (xe,)1 
Ve1 iie, · 

The formal solution of t�e flow eq_uations
_
is given by equation (3), so Xe, = x(l, Xe,, iJ111, OJ),i3e, =(ax/ at)( l, Xe,, iie,, OJ), and fJ2 = f +OJ (mod 27T ) . The Jacobian of P1 at (xe,, v6) is 

JP1= ( axjaxo ax/avo ) 
a2xjat axo a2x/at avo .

If the function x is not known explicitly, the Jacobian can be found by integrating the 
variational equations numerically during the time f. 

II. A flow projection mapping P11 from a constant phase plan� Be to �-. defined near
a point p = (xc. v, 0) with iJ < 0. In the notation used in the above theorem, the vector 
field F is given by (2), the surface S is � -, and the function H is given as x- Xc = 0. The 
non-tangential condition (4) becomes i5 '1:- 0, which is satisfied. Thus there is a local 
mapping from points near p to �-, and if restricted to points in Be. the mapping becomes:

with 

The derivative according to equation (5) is 

(1 0 0) ( j] 
o 1 o -� A
0 0 1 1 

0 0)
0 0 ' 
0 0 

where A�r A(xc. v, 0), and when this is restricted to the rows corresponding to fJ and v,
and the columns corresponding to x and v, the Jacobian of the mapping P11 at (xc, v) 
becomes 

lPu = -� ( � 0_) . 
v A -v 

6



III. The impact mapping P111 from I- to I+, globally defined:

where Be+= 8c- and Vc+ = G(vc_) . The Jacobian is 

JPm =G dG�dv;J.

IV. A flow projection mapping from I+ to a c.9n�tant phase plane 86, defined near a
point p = (.X0 v, O) with v > 0. The surface S is $6, given by 8 -8 = 0. The non-tangential 
condition (4) gives 1 ;e 0, and restricted to I+, the mapping becomes: 

P . �+ � t;;>ii IV ·..:;, 0' ' 

The Jacobian at (if, v) is found to be 

( -jj JP1v = -
-A 

with 

�).
A Poincare mapping, either of the constant phase type or the impact type, can locally 

be constructed out of compositions of mappings from the four classes above. Mappings 
of class I are used to go from a constant phase plane through the point where the impact 
surface is left to a constant phase plane through the point of the next impact. A class II 
then goes from the constant phase plane to I-, a class III to I+, and a class IV to a 
constant phase plane through the point where the impact boundary is left, where the 
motion can again be continued with a class I mapping, and so on. A Poincare mapping 
of the constant phase type thus locally consists of a series of mappings of class I, alternating 
with mappings of type P1v o Pw o Pu. A Poincare mapping of the impact type, mapping
I- to I- , would look like P11 o P1 o P1v o Pm. 

In this way these local mappings can be used to compute the stability of an orbit. It 
should be noted that the determinant of the Jacobian of a mapping of type P1v o Pm o Pu 
is (vow! V;n)(dGjdv;n) . This expression is not large, even if V;n is small. On the other hand, 
the Jacobian has elements that are very large, due to the factor 1/ V;n in fPu. Although 
the area of a constant phase region is changed by a factor of order one by a low-velocity 
impact, it will undergo a large stretching and compression. The effect of the mapping Pu 
when V;n is small can be compared with the shadow cast by a plane object onto the 
ground when the sun is standing low over the horizon, causing expansion in one direction, 
while the effect of the mapping P1v when Vow is small can be compared to the shadow
cast by a plane object which is held almost parallel to the light rays, causing contraction 
in one direction. Thus the projection mappings Pu and P1v clearly plays an important
role for stability, and cannot be neglected. This is also true for models in which the 
impact takes place over finite time, with velocity continuous across the boundary. If the 
acceleration is discontinuous across the boundary, Jacobians of type II and IV must be 
used as well as those obtained from the variational equations to calculate stability. 

3. LOCAL MAPPINGS NEAR GRAZING IMPACT

In this section, low-order series expansions of mappings around an orbit having a 
grazing impact will be derived. In the derivation, it is always assumed that the generic 
case is at hand, for example that terms in series expansions are non-zero. The acceleration 
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function A and the impact law function G are considered to be sufficiently many times 
continuously differentiable whenever necessary, and the same for the inverse of G (which 
is assumed to exist). 

The situation considered is one where there is a trajectory of the system that has a 
grl!zing imp�ct at a point Oc: (.X,., 0, iic) in 2"0 (see Figure 5). Two constant phase planes
88• and 882 are now chosen such that the trajectory first intersects 88• at a point 
01: (.X9,, Y8,, ii1), then has the grazing impact, and then intersects 88' at a point
02: (x9,, fe,, ii2). It is assumed that there is only one grazing impact on the trajectory
between the first and second planes. The task is to find representations for the local 
mapping from a neighborhood of 01 in 88• to 882• 

3. 1. GEOMETRY NEAR GRAZING IMPACT 

In Figure 6, the mapping of a region around 01 in 88•, (a), to its image in 882, (b), 
is shown. Mappings between constant phase planes are smooth except at points that lead 
to grazing impact. Points that impact with very low velocity acquire Jacobians that may 
have some very large elements, while points that just miss the impact will not be affected 
at all. At points leading to grazing impact the Jacobian is undefined. The locus of these 
points will form a curve separating impacting and non-impacting points. Likewise, the 
locus of the points coming from grazing impact will form a curve in the second constant 
phase plane. 

At 00 since the impact is grazing, the acceleration is positive. Upon looking at the 
Jacobian JP1v, it is seen that a tangent vector in the p�sitive 8 direction in I is mapped 
to a non-zero vector in the positive v direction in 89•. Thus the mapping P1v maps a 

Figure 5. A trajectory with a grazing impact. 

(a) (b) 
Figure 6. Geometry of the mapping near grazing impact. 
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segment of ..!'0 near Oc to a smooth curve in 89·, which is then mapped to a smooth
curve L2 in 892 through 02• Moving backwards in time there is a smooth curve L1 in 
e9' through 01• On these curves a sense of direction is introduced in such a way that in
moving in the positive direction on L1, the time to reach grazing impact will decrease, 
corresponding to decreasing value of the phase at grazing impact. On L2, the direction 
is the one implied by mapping L1 to L2, which means that, in moving in the positive 
direction along L2, points coming from earlier grazing impacts are encountered. These 
directions makes it possible to say "to the right of a line", meaning on the right-hand 
side when facing in the positive direction. Using the fact that mappings of type I and II 
are orientation preserving, it is found that points to the left of L1 are the impacting ones, 
while points to the right will miss. Likewise it is foun� that the impacting side of L2 is 
again the left one. The mappings on the different sides of L1 are totally different in 
character: on the non-impacting side the Jacobian is well behaved and slowly varying all 
the way up to L1, while on the impacting side the Jacobian becomes singular as it 
approaches L1• This means that a surface element near L1 on the impacting side will be 
very distorted by the mapping. Furthermore, a smooth curve A1B1C1 crossing L1 at B1
will be mapped to a curve A2B2C2 with a comer at B2• In fact, any curve segment directed 
from L1 into the impacting side at a non-zero angle will be mapped to a segment tangent 
to and in the positive direction of L2, and it will also be very stretched out along Lc. 
3.2. ALGEBRAIC REPRESENTATIONS 

The lines L1 and L2 are important for the mappings, and hence the co-ordinate systems 
should be chosen to simplify the form of these lines. In @9', new local co-ordinates
(x1 , 1/lt) are introduced by a smooth, orientation preserving co-ordinate transformation 
in such a way that (X�> 1/11) = (0, 0) corresponds to 01, X 1 = 0 to L�o and X1 < 0 to the 
impacting side of L1• A similar co-ordinate system (x2, 1/12 ) is introduced in @9'. In ..!', 
local co-ordinates near Oc are introduced by defining a local phase as rPc �r (Jc- ifc. The 
trailing part of a power series is represented by the symbol 0. For example, O'(x, y, z )3 
indicates terms that are of total order three or higher in the variables x, y and z, such as 
xyz or x

2
y.

First look at the mapping of type P1v near 0, .. The mapping is given by 

Expanding in powers of rPc and Vc gives 

Xii, = Xc + Ar/J�/2- rPcVc + (}( rPco V, )3, 
where A is the acceleration at Oc. From this it is seen that the line segment rPc = 0, vc;;;.: 0 
is mapped tangent to the image of the line Vc = 0, in the direction of decreasing ¢co and 
that it curves away from it. Now the mapping from 89• to e9z is smooth, so it preserves
these_characteristics. By using these facts and the definition of the local co-ordinate system 
in @62, the mapping from ..r+ to @82 is found to have the form: 

where a, /3, y > 0. 
Going backwards in time from 0" the mapping from ..r- to gii, is found to have the 

same form: 

where a, b, c > 0. 
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Finally, the mapping from �- to �+ has the form: 

where r�r-G '(O). 
Putting these three mappings together to obtain the mapping from 861 to 862 (on the

impact side X1 < O) gives 

On the non-impact side X1 > 0 the mapping to first order is given by 

where A is an invertible matrix that satisfies certain relations to make the full mapping 
continuous along the line x1 = 0. 

This is the lowest order form of the mapping from 861 to 862 near 01, in which the
singularities in derivative on the impact side are clearly seen. 

4. GRAZING IMPACT IN A PERIODIC ORBIT, AND TRAPPING CONDITIONS

Now consider the case in which a stable periodic orbit of the system, with no low-velocity 
impacts, is close to a grazing impact somewhere in the orbit. If a system parameter is 
changed, then the shape of the periodic orbit changes with it, and it might happen that 
the orbit is brought to a grazing impact by this, so the situation looks like Figure 2(a). 
To study _this phenomenon a Poincare mapping P is set up, mapping some constant phase 
plane 86 back to itself after a time of flight equal to the period of the periodic orbit. 
This will make the mapping have fixed points where the orbit crosses the plane. One 
such fixed point O* is studied. Near this point there is a line L0 of points leading to 
grazing impact and a line L1 ( = P (  L0)) of points coming from grazing impact. When the 
system parameter is changed, O* crosses L0 from the non-impact side. It is here assumed 
that as the system parameter is changed, the fixed point crosses with non-zero speed, so 
the distance is to first order proportional to the offset of the system parameter. The offset 
of the system parameter is described by a normalized bifurcation parameter J.L, which is 
negative when O* is on the non-impact side, zero at the crossing, and positive when O*
is on the impact side. 

Since the Jacobian of P changes discontinuously at L0, with singularities on the impact 
side, the fixed point will in general loose stability as it crosses, and the dynamics will 
consequently change. It will be shown that under certain conditions the motion will still
be trapped near the former fixed point, and the dynamics in this situation will be analyzed. 
Under other conditions, the motion will be mapped away from the region near the former 
fixed point, and in such cases a global analysis is needed to determine the resulting 
motion. No such analysis is presented here. 

It should be noted, that there is no information in the stability of the periodic orbit 
predicting that it is close to a grazing impact situation. This is in contrast to the ordinary 
types of bifurcations, where some eigenvalues of the mapping approach the unit circle 
in the complex plane as the bifurcation is approached. In the case of grazing impact, the
bifurcation comes totally unexpectedly, from a local point of view. From the local informa
tion of the mapping on the non-impact side, there is no way of predicting where the line 
L0 is located. 
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4.1. THE MAPPING WHEN iJ. = 0 
At f.L = 0, the periodic orbit has a grazing impact, which means that O* is both coming

from and leading to a grazing impact. Thus L0 and Lt must intersect at O*. In the general 
case the intersection will be transversal, and since the lines are oriented there are two 
possible orientations for the crossing of the lines: 

L0 and Lt form a right-hand system (the same orientation as the x- and v-axes), so 
the positive direction of Lt points into the left-hand side of L0• This will be called positive 
orientation of L0 and Lt. In this case there are two local invariant half-manifolds in the 
impact side of L0, both beginning at O*. The unstable one is tangent to the positive 
direction of Lt with the derivative along the manifold going to +co as O* is approached,
while the stable one is tangent to the negative direction of L0 with derivative going to 
0+. On the impact side, O* acts like an infinitely attracting/ repelling saddle point; thus
it loses its stability the moment f.L has increased to zero. Since the derivative along the 
unstable manifold is positive, most points on the impact side will be mapped back to the 
impact side again, making nearly all points quickly vanish from the neighborhood of O*. 
When the orientation is positive the system will quickly move away from the former stable 
periodic orbit. 

L0 and Lt form a left-handed system, so the positive direction of Lt points into the 
right-hand side of L0• This is then called negative orientation. Now most points on the 
impact side are mapped to the non-impact side, so it is more likely that the motion stays 
close to O*. A local co-ordinate system (x, 1/J ) is chosen with origin at O*, Lt as the
x-axis, and L0 as the 1/J-axis (keeping the directions). Now let the subscripts 0 and 1
denote a point and its image under the mapping P. Using the fact that x = 0 (the curve
L0) is mapped to 1/J = 0 (the curve Lt), the mapping on the non-impact side is found to be 

Xt = atxo+ a31/Jo+ O(xo, t/Jo)2, 1/Jt = -a2xo[l + O(xo, 1/Jo)] , Xo;;;. 0. 
By changing scales if necessary, the element a3 can be made equal to 1. The elements at 
and a2 can then be expressed in terms of the two eigenvalues of the non-impact mapping, 
evaluated at O*, At and A2: at= At+ A2, a2 = AtA2• With this notation the mapping becomes

Xo;;;.O. (6) 

On the impact side, points will have gone through an extra low-velocity impact, described 
by a mapping of type P1v o Pm o P11. This will contribute an extra factor ( Vout! V;n) x 
(dG/dv;n) to the determinant of the Jacobian of the mapping. By I'Hopital's rule, 

Jim ( V0u,/ V;n) = - r, v'"-o-
so at O* the extra factor is r2• Using this and the continuity of the mapping gives the
mapping on the impact side as 

Xt = B-J-xo+ 1/Jo+O(-J-xo, t/Jo)2, 1/Jt = AtA2r2( -xo)[l + 0(-J-xo, 1/Jo)] , Xo.;;;O, (7) 

where B >O. 
The next task is to establish whether O* is still stable. Since the mapping is orientation 

preserving, the eigenvalues At and A2 are either (a) both negative, (b) both complex or
(c) both positive. Since the motion was assumed to be stable before coming to grazing 
impact, their absolute values are less than one. By taking a point on the impact side near 
O* with Xo = -l> and iterating P until the image returns to the impact side again, in cases
(a) and (b) it is found that Xn = 0(../5) when returning, so points move away from O*.
In case (c) on the other hand, the iterates never return to the impact side, but instead 
converge to O* from the non-impact side. The former stable fixed point O* has thus 
become unstable except in case (c). 
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To summarize, a stable periodic orbit that comes to grazing impact will lose its stability

unless the eigenvalues are positive and the orientation is negative. In this case, however, it 
will be shown that the motion stays near O* even when � > 0, and that the motion can 
be analyzed to a substantial extent. 

4.2. THE MAPPING WHEN 1-t > 0 
When � > 0 there is no longer a fixed point on the non-impact side, but the non-impact 

side mapping is totally "unaware" of the existence of the line L0 and the change in the
mapping. This gives a way to define a virtual fixed point O* as the location of where a 
fixed point would have been, had not the change in the mapping been present. This 
virtual fixed point is located on the impact side of L0• Denote the distance between O*
and L0 by d (measured in x units of the (x. r/J) co-ordinate system defined when � = 0). 
Given that the crossing of L0 by O* is transversal, d is proportional to � to the first
order. The constants in the mappings (6) and (7) have changed by O(d ) amounts, so L0
is  approximately described by a vertical line at a horizontal distance d to the right O*, 
and L1 is approximately described by a horizontal line at a vertical distance )qA2d below
O*. Now make an O(d ) co-ordinate change from (x, r/J) to ({, 71), making O* correspond 
to ( {, 1J )  = ( 0, 0), L0 to { = d, and L1 to 1J = -A 1 A2d. In the new co-ordinates the mapping
is 

{{I= BKo+ 1Jo+ (AI+ A2)d + O(d, K0, 7Jo)2 } {o,;;;d,1/1 = -A1A2d + A1A2r2K�[l + O(d, Ko, 7Jo)J ' 
{{I= (AI+ A2){o+ 7Jo+ O(d, {o, 7Jo)O({o, 7Jo) } {o;;;.d,1J1 = -A1A2d -AIA2({o-d )[1 + O({o, 7Jo)(l + O(d ))] ' 

where Ko �r../d -{0• Upon noticing that (0, 0) is mapped to a point with co-ordinates of
0( Jd )  it seems reasonable to make a uniform change of scale to make the co-ordinates
describing the dynamics be of 0(1). Therefore define 

8�rJd /B, X�rg /B28, y�r1J /B28, K�r../1-X /8.  
Here, 8 is  a new parameter, proportional to  ..fii to first order, and X and Yare the new 
co-ordinates. The mapping becomes 

{X1=Ko+Yo+(AI+A2)8 +0(8)0(8,Xo, Yo? } X0,;;;8,Y1 = -A1A28 + A1A2r28K�[l + 0(8)0(8, X0, Y0)] ' 
{X1 = (A1 + A2)X0+ Y0+ 0(8 )0(8, Xo, Yo)(J(Xo, Yo)}, Xo;;;. 8. (8) Y1 = -A1A28 -A1A2(Xo-8)[1 +0(8)0'(Xo, Yo)] 

In the case (c) it can be seen that if co-ordinates are of 0(1) on the non-impact side, and
of 0(8) on the impact side, they will remain so under iteration of the mapping. This
shows that the scale chosen is the correct one when describing the dynamics for � > 0. 

Neglecting higher order terms, a truncated mapping is obtained: 

{XI= Ko+ Yo+ (AI+ A2)8}
Y1 = -A1A28 [1- r2 K�] '
{XI: (AI+ A2)Xo+ Yo} 

Y1--A1A2Xo 

X0,;;;8, 

(9) 

When 8 becomes smaller, the real mapping (8) will approach the truncated mapping (9), 
so conclusions drawn from the truncated mapping should apply to the real one for 8
sufficiently small. 
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5. STUDY OF THE TRUNCATED MAPPING

In the following, lower case letters are used for the co-ordinates. 

{Xt =/co+ Yo+ (At+ A2)8} 2 2 x0o;;; 8 {I), Yt=-AtA28 [1-r ko] '
{Xt =(At+ A2)xo+ Yo} , Yt = -AtA2xo x0;;. 8 ( II). (10)

The non-linear (impact) region is denoted by I, and the linear region by II. By assumption, 
the eigenvalues satisfy 1 > A 1 > A2 > 0, and 8 > 0.

In region II the mapping is given by 

where 

The eigenvectors corresponding to A1 and A2 are

and 

5.1. EXISTENCE OF A TRAPPING REGION 

Consider the line segment y = -A2x for x:;;;. 0. This line is in the direction of��, so the
part of the line in region II is mapped onto the line. This makes the line act like a 
boundary in region II. The form of the mapping in region I shows that if x0:;;;. 0, then
y1,;;; 0 (since r,;;; 1). Furthermore, in region II line y = 0 is mapped below itself but above
y = -A2x. The sector between the lines y = -A2x for x:;;;. 0 andy = 0 for x:;;;. 0 is consequently
mapped inside itself in region II. Examining the mapping in region I of the triangle 
bounded by these two lines and the line x = 8, reveals that the comer A0 = (0, O) maps
to A1 = (1 + (A1 + A2)8, -A1A28(1- r2)), which is inside the sector, while the other two
corners, by the continuity of the mapping and the results found for region II, also map 
inside the sector. This establishes a trapping sector of infinite size. By cutting it off with 
a line between the points B0 = (c, O) and C0 = ( cA 1/(1-A2), -cA1A2/(1- A2)), where c is
a constant slightly greater than one and chosen to make the image of A0 fall inside the
triangle, a trapping region of size 0'(1) is obtained. 

An example of the trapping region and its image at parameter values A 1 = 0· 5, A 2 = 0· 2,
r = 1 and 8 = 0·1 is given in Figure 7. 
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Figure 7. The trapping region. 
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5.2. STABILITY OF PERIODIC POINTS 

The Jacobians in the two regions are 

and 

All points in region II are eventually mapped into region I, so there can be no periodic 
point the orbit of which is entirely located in region II. In region II, where both eigenvalues 
are less than one, an area element will be compressed in both the eigenvalue directions 
by the mapping. In region I, the presence of the entry 1/ (28ko) in the Jacobian will have
the effect of a very large stretching and compression of the area element. The most 
favorable situation for stability in a periodic orbit is to have the iterates mainly stay in 
region II, with occasional visits to region I. If the stability acquired in region II outweighs 
the unstability acquired in region I, the point is stable. To determine whether stable 
periodic points are possible at all, an estimate of the eigenvalue of largest absolute value 
for any periodic point will be established. 

For any steady motion in the trapping region, the value of k obeys 0,;;;; k,;;;; � < 1
when iterates are in region I. The dominating element in 11 when 8 is small is 1/(28k0), 
which is larger than 1/(28). A point making n consecutive visits in region II acquires a
Jacobian L ", that can be evaluated explicitly as 

Now define a mapping F taking points in region I to their first return to region I. The 
Jacobian JF of this mapping will be L "JJ. where n is the number of iterations spent in 
region II. The structure of this matrix is 

n ( 1 JF= L 11 =-A a 
�).

where {3 and 'Yare 0(8), and a is 0(1); so, when seeking the largest eigenvalue, it can
be approximated as 

0)
0 

. (11)
If ko= 0(8), then x1 = 0(8), so the point will return to region I in a few iterations,

making L" = 0(1) and A= O(lj(8ko)) = 0(8 -2). If k0 = 0(1), then the number of iterations
n must be estimated. 

Having k0 = 0(1) leads to

so (Xn+t) = Ln (ko) + L "0(8).Yn+! 0 

By the definition of n, A18,;;;; Xn+t,;;;; 8, so L "0(8) is 0(8)2• Using Xn+t = (L")11ko+ 0(8),
an estimate of n is given by 

A �+1[1-(A2/ A,)"+'] A 1,;;;; k0.;;; 1 (12)8(A1-A2) '
to 0(1). Evaluating (11) explicitly gives 

A= _1_ A �+1(1-(A2/ A,)"+']
2 ko 8 (A1-A2) ' (13) 
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and when combining expressions ( 1 2) and ( 13), .A1:,;;; 2k�A:,;;; 1. Since k�:,;;; 1- .A1, this gives 

( 14) 

When multiplying two Jacobians of the form (11), the result is a matrix of the same form, 
with A= -A1A2• This shows that if every A is greater than one, then there can be no 
stable periodic points for the mapping F, and consequently none for the truncated mapping 
itself. From ( 14), this happens when � < .A1 • The above calculations can be viewed as an 
estimate of a lower bound of the largest Lyapunov exponent, showing that when � < .A 1, 
the largest Lyapunov exponent must be positive. Since this estimate is independent of 5 
as long as 8 is small, the conclusion is that if the largest eigenvalue is greater than �, there

are no stable periodic points in the trapping region for an interval 0 < 5 < 5'. 
5.3. DEPENDENCE ON THE PARAMETER 1.1. 

As the parameter J.t increases from zero, the dynamics of the system will in general 
undergo a complex series of bifurcations, accumulating on J.t = 0, which can be studied 
by the truncated mapping ( 10). The co-ordinates of first return are given to 0'(8) by 

and if n is large, 

Xn+i =--�- k 
( ) .An+! ( 1 )

Yn+i .Al-.A2 -.A2 °' 
since .A2/ .A 1 < 1. If n is large then ( 12) simplifies to 

A7+1 
.AI:,;;; ko:,;;;1, 

8(AI-.A2) 
so when 8 is small, n is indeed large, unless k0 is 0'(8). If 8 changes by a factor .A1 then 
n changes by one. This means that except in the small region where k0 is 0'( 5), the 
mapping F taking points in region I to their first returns will come back the same when 
5 has changed by a factor .A1• The same goes for the dynamics, so if some type of motion 
is observed when 8 = 8*, then a similar type of motion (with the number of visits in 
region II between visits in region I increased by one) is observed when 8 = A 15*. Thus 
similar types of motion tend to re-appear at a sequence of values 51, 52, • • •  , where 

1• 5k+i-5k A lffi = I• k-+OO 5k-5k-l 
or, since 5 is proportional to ./; to first order,

10 f..tk+i-f..tk ' 2 1m ="I· k-+OO f..tk-f..tk-1 ( 15) 

In Figure 8 is shown a bifurcation diagram obtained by numerical simulation of the 
first return mapping. The parameters are .A1 = 0·5, A2 = 0·2 and r = 1. Only the x co-ordinate
is shown. The similarity between motion at values of 8 that differ by a factor .A 1 is clearly 
seen. 

In the co-ordinates used in the truncated mapping ( 10) the dynamics move over a 
region of size 0'( 1). Since these co-ordinates are scaled by 1/5, the size of the region in 
the usual co-ordinates (x, v) is 0(8), or 0(./ji) (for positive J.t). 
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Figure 8. Bifurcation diagram for the first return mapping. 
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Figure 9. One thousand iterations of the truncated mapping in a chaotic region. 

5.4. NUMERICAL EXAMPLE OF THE DYNAMICS 

The dynamics of the truncated mapping for parameter values A1 = 0·5, A2 = 0·2, r = 1 
and 8 = 0·01 is shown in Figure 9. 8 = 0·01 corresponds to log (8)/log (A1) = 6·65, so it 
is in one of the chaotic regions in Figure 8. A striking feature is that iterates line up in 
curve-like objects. This is due to the very strong expansion/ compression in region I. In 
the figure showing the trapping region this effect is easy to see. This nearly one-dimensional 
feature of the dynamics becomes more pronounced as 8 becomes smaller, and the same 
results regarding stability and 8 dependence are found for a one-dimensional mapping 
consisting of a square root part and a linear part pasted together. Another feature which 
is typical of grazing impact is the corner of the attractor near (0, 0). This is the same 
corner effect as was shown in Figure 6(b). 

6. USING THE THEORY IN NUMERICAL SIMULATIONS

When applying the theory to a specific system, the system must first be put into the 
standard form with functions A and G and a fixed impact boundary. If the impact 
boundary is moving, this motion is subtracted from the displacement so the impact 
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boundary in the new co-ordinates is at rest. Next, one wants to locate periodic orbits 
having a grazing impact. If a period and a plane of constant phase is chosen, this can 
be achieved by taking a point in �0 with A >  0 and following the motion forwards and
backwards in time to the intersection with the constant phase plane. The points of 
intersection for the forward and backward trajectories must then coincide, since the 
motion is to be periodic. This condition gives two equations (equality in displacement 
and velocity in the constant phase plane) for the starting phase in �0 and the system
parameters. If all but one of the system parameters are kept fixed, the two equations can 
then be solved for the starting phase and the remaining system parameter by a numerical 
root finding algorithm. If derivatives with respect to the system parameter are needed for 
the algorithm, they can be calculated through the trick of augmenting the system (2) with 
the system parameter as a new dependent variable, with a zero time derivative. The 
Jacobians equivalent to JP1_1v for the augmented system are easily derived, by using the 
same kind of derivation. The local mappings are composed to give a mapping from � to 
the constant phase plane backwards in time, and a mapping from � to the constant phase 
plane forwards in time. Subtracting one of the mappings from the other gives a mapping 
which must be zero at a grazing fixed point. When a grazing fixed point is located, the 
Poincare mapping near it is given by the inverse of the backward mapping composed 
with the forward mapping, and the two eigenvalues can thus be calculated. The directions 
of the curves L0 and L1 are given by the image of a vector tangent to �0 in the direction
of decreasing phase under the backward and forward mappings respectively. The orienta
tion condition is then determined by whether the two image vectors form a right-hand 
pair or not. Thus all quantities needed in the theory are determined by the first derivative 
information given in JP1_1y, and can easily be computed. 

7. RESULTS AND DISCUSSION

In this paper the motion of single-degree-of-freedom, periodically forced impact oscil
lators has been discussed, and in particular the consequences when a stable periodic orbit 
comes to a grazing impact under the control of a single parameter. Unless one orientation 
condition (orientation being negative) and one condition on eigenvalues (eigenvalues 
being positive) are satisfied, the orbit becomes unstable, so motion will go elsewhere. 
However, if these conditions are satisfied, the motion will stay trapped near the periodic 
orbit and the dynamics in this case include either orbits of arbitrarily long periods, 
possibly interleaved by non-periodic motion, or non-periodic motion for an interval of 
parameter values down to the point at which grazing impact appeared. If arbitrarily long 
periods appear, the parameter values of similar bifurcations form a geometric sequence 
such as expression ( 15). The linear size of the trapping region scales as the square root 
of the normalized bifurcation parameter. 

These results have been derived for a situation in which the impact is considered to 
be instantaneous. In this case it was shown that a square root singularity existed at lines 
of points leading to grazing impact, and a truncated map was derived that becomes a 
better and better approximation as a bifurcation parameter goes to zero. If a model with 
more structure in the impact is used, for example a stiff spring model, then the notion 
of impact may become less distinct. There may be no true singularity at the lines leading 
to grazing impact, and the lines themselves can be hard to define. Then the truncated 
mapping will not be a good approximation for very small values of the parameter, since 
impacts are so soft that the system will hardly be affected by them. On the other hand, 
as the bifurcation parameter grows larger, the truncated mapping will lose accuracy, being 
a truncated power series. For a more realistic model, one will have to investigate whether 
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these two regions of non-validity overlap, or if there is an interval where this theory is 
applicable. The shorter the time of impact is, the more favorable is the situation for 
finding such an interval. 

A "fingered" structure of chaotic attractors in constant phase Poincare sections has 
been observed earlier in impact oscillators: see, for example in Figure 10 of Shaw's paper 
[9]. The forms of the attractors are somewhat similar to the form of the attractor in Figure 
9. In both cases only a minor part of the attractor impacts within a period of the force,
forming a finger-like part of the attractor which is then mostly left undisturbed since it 
takes several periods until the points in that part impacts again. This phenomenon creates 
a sequence of fingers, each mapped onto the next during a period of the force. In the 
former case, however, when looking closely the structure of the attractor can be seen to 
be far more complex, showing clear fractal layers. The size of the attractor is not small, 
and it is not born out of a stable periodic point, but instead out of a period-doubling 
sequence. The number of fingers is also roughly proportional to the ratio of driving 
frequency to natural frequency of the oscillator, while in the grazing impact attractor the 
number of fingers grows steadily as the bifurcation parameter goes to zero. The theory 
presented here then does not claim to explain these types of attractors. There is, however, 
a geometrical feature of these attractors that can be attributed to low-velocity impact. In 
the "tips" of the fingers there is a curled-up structure that ends in a sharp corner, and 
which seems almost to be disconnected from the rest of the attractor. The curling is a 
result of a series of low-velocity impacts with negative acceleration, and when the 
acceleration subsequently becomes positive the structure leaves the neighborhood of the 
impact boundary through low-velocity impact with positive acceleration. A line of points 
will have zero-velocity impacts and at that line a corner is formed in the attractor, and 
the large stretching near this line is the cause of the apparent non-connectedness. 

The non-periodic motion that can occur right after the bifurcation is not very dramatic 
in character. When the periodic orbit passes through the bifurcation, the orbit starts to 
jitter around the former periodic orbit, and the amplitude of the jitter grows after the 
bifurcation. This local character of the non-periodic motion is what makes a theory based 
on series expansions work and give precise results, but, as it is a local theory, the results 
are guaranteed to be valid only near the point of bifurcation. Nonetheless, the results 
give a mechanism for the onset of chaotic motion in impacting oscillator problems, and 
gives criteria that are easy to check for a given system. 

The cause of the phenomena described here is the fact that the flow is tangent to a 
boundary in state space where the system characteristics change. Here a simple mechanical 
system has been studied, but in general, the tangency of a flow to a boundary in state 
space could be the cause of similar effects in different systems. 
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