T. Yatsunenko, Human gut microbiome viewed across age and geography, Nature, vol.1, issue.7, 2012.

S. L. Schnorr, Gut microbiome of the Hadza hunter-gatherers, Nat. Commun, vol.5, 2014.

J. C. Clemente, The microbiome of uncontacted Amerindians, Sci. Adv, vol.1, pp.1500183-1500183, 2015.

I. Martínez, The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes, Cell Rep, vol.11, pp.527-538, 2015.

A. Obregon-tito, Subsistence strategies in traditional societies distinguish gut microbiomes, Nat. Commun, vol.6, pp.1-9, 2015.

A. Gomez, Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns, Cell Rep, vol.14, pp.2142-2153, 2016.

P. Vangay, US Immigration Westernizes the Human Gut Microbiome, Cell, vol.175, pp.962-972, 2018.

M. E. Hansen, Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana, Genome Biol, vol.20, p.16, 2019.

S. A. Smits, Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania, Science, vol.357, pp.802-806, 2017.

L. Mancabelli, Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations: The urbanization/industrialization of humans and gut microbiomes, Environ. Microbiol, vol.19, pp.1379-1390, 2017.

M. G. Dominguez-bello, F. Godoy-vitorino, R. Knight, and M. J. Blaser, Role of the microbiome in human development, Gut gutjn l, 2018.

M. J. Blaser, The theory of disappearing microbiota and the epidemics of chronic diseases, Nat. Rev. Immunol, vol.17, pp.461-463, 2017.

E. D. Sonnenburg and J. L. Sonnenburg, The ancestral and industrialized gut microbiota and implications for human health, Nat. Rev. Microbiol, vol.17, p.383, 2019.

K. Makki, E. C. Deehan, J. Walter, and F. Bäckhed, The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease, Cell Host Microbe, vol.23, pp.705-715, 2018.

M. J. Blaser and S. Falkow, What are the consequences of the disappearing human microbiota?, Nat. Rev. Microbiol, vol.7, pp.887-894, 2009.

E. Dikongué and L. Ségurel, Latitude as a co-driver of human gut microbial diversity?, BioEssays, vol.39, p.1600145, 2017.

A. R. Jha, Gut microbiome transition across a lifestyle gradient in Himalaya, 2018.

C. Girard, N. Tromas, M. Amyot, and B. J. Shapiro, Gut Microbiome of the Canadian Arctic Inuit, vol.2, pp.297-313, 2017.

A. V. Tyakht, Human gut microbiota community structures in urban and rural populations in Russia, Nat. Commun, vol.4, p.2469, 2013.

F. A. Ayeni, Infant and Adult Gut Microbiome and Metabolome in Rural Bassa and Urban Settlers from Nigeria, Cell Rep, vol.23, pp.3056-3067, 2018.

K. Winglee, Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes, 2017.

J. Zhang, Mongolians core gut microbiota and its correlation with seasonal dietary changes, Sci. Rep, vol.4, p.5001, 2014.

B. Das, Analysis of the Gut Microbiome of Rural and Urban Healthy Indians Living in Sea Level and High Altitude Areas, Sci. Rep, vol.8, p.10104, 2018.

K. Stagaman, Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development, vol.3, pp.122-139, 2018.

G. Falony, Population-level analysis of gut microbiome variation, Science, vol.352, pp.560-564, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01518384

A. Lokmer, Use of shotgun metagenomics for the identification of protozoa in the gut microbiota of healthy individuals from worldwide populations with various industrialization levels, PLOS ONE, vol.14, p.211139, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02120849

M. Chabé, A. Lokmer, and L. Ségurel, Gut Protozoa: Friends or Foes of the Human Gut Microbiota?, Trends Parasitol, 2017.

E. R. Morton, Variation in rural African gut microbiota is strongly correlated with colonization by Entamoeba and subsistence, PLoS Genet, vol.11, p.1005658, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02122300

L. O. Andersen and C. R. Stensvold, Blastocystis in Health and Disease: Are We Moving from a Clinical to a Public Health Perspective?, J. Clin. Microbiol, vol.54, pp.524-528, 2016.

C. Audebert, Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota, Sci. Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363189

F. Beghini, Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome, ISME J, vol.11, p.2848, 2017.

R. Y. Tito, Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota, Gut gutjnl, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01893208

F. Lassalle, Oral microbiomes from hunter-gatherers and traditional farmers reveal shifts in commensal balance and pathogen load linked to diet, Mol. Ecol, 2017.

I. Nasidze, High Diversity of the Saliva Microbiome in Batwa Pygmies, PLOS ONE, vol.6, p.23352, 2011.

J. Li, Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa, BMC Microbiol, vol.14, p.316, 2014.

A. T. Ozga, Oral microbiome diversity among Cheyenne and Arapaho individuals from Oklahoma, Am. J. Phys. Anthropol, vol.161, pp.321-327, 2016.

T. Takeshita, Distinct composition of the oral indigenous microbiota in South Korean and Japanese adults, Sci. Rep, vol.4, p.6990, 2014.

J. Si, C. Lee, and G. Ko, Oral Microbiota: Microbial Biomarkers of Metabolic Syndrome Independent of Host Genetic Factors, Front. Cell. Infect. Microbiol, vol.7, 2017.

C. De-filippo, Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy, Front. Microbiol, vol.8, 2017.

D. T. Shirley, L. Farr, K. Watanabe, and S. Moonah, New Diagnostics, and Current Therapeutics for Amebiasis, vol.5, 2018.

J. Luke?, C. Stensvold, K. Jirk?-pomajbíková, and L. Wegener-parfrey, Are Human Intestinal Eukaryotes Beneficial or Commensals?, PLoS Pathog, vol.11, p.1005039, 2015.

D. Vandeputte, Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates, Gut, vol.65, pp.57-62, 2016.

N. Segata, Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples, Genome Biol, vol.13, p.42, 2012.

T. Ding and P. D. Schloss, Dynamics and associations of microbial community types across the human body, Nature, vol.509, pp.357-360, 2014.

I. Olsen and K. Yamazaki, Can oral bacteria affect the microbiome of the gut?, J. Oral Microbiol, vol.11, 2019.

J. R. Willis, Citizen science charts two major "stomatotypes" in the oral microbiome of adolescents and reveals links with habits and drinking water composition, vol.6, p.218, 2018.

R. Lira-junior, S. Åkerman, B. Klinge, E. A. Boström, and A. Gustafsson, Salivary microbial profiles in relation to age, periodontal, and systemic diseases, PLOS ONE, vol.13, p.189374, 2018.

C. Strobl, A. Boulesteix, A. Zeileis, and T. Hothorn, Bias in random forest variable importance measures: Illustrations, sources and a solution, BMC Bioinformatics, vol.8, p.25, 2007.

C. Strobl, A. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, Conditional variable importance for random forests, BMC Bioinformatics, vol.9, p.307, 2008.

S. Sharma, Development of food frequency questionnaires in three population samples of African origin from Cameroon, Jamaica and Caribbean migrants to the UK. Eur, J. Clin. Nutr, vol.50, pp.479-486, 1996.

S. J. Lewis and K. W. Heaton, Stool Form Scale as a Useful Guide to Intestinal Transit Time, Scand. J. Gastroenterol, vol.32, pp.920-924, 1997.

D. Quinque, R. Kittler, M. Kayser, M. Stoneking, and I. Nasidze, Evaluation of saliva as a source of human DNA for population and association studies, Anal. Biochem, vol.353, pp.272-277, 2006.

M. Poyet, A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research, Nat. Med, 2019.

. R-core-team, R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019.

P. D. Schloss, Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities, Appl. Environ. Microbiol, vol.75, pp.7537-7541, 2009.

D. J. Stekhoven and P. Bühlmann, MissForest-non-parametric missing value imputation for mixed-type data, Bioinformatics, vol.28, pp.112-118, 2012.

S. Mangiafico, rcompanion: Functions to Support Extension Education Program Evaluation, 2019.

S. Lê, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, J. Stat. Softw, vol.25, pp.1-18, 2008.

B. J. Callahan, DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods, vol.13, pp.581-583, 2016.

J. Kozich, S. Westcott, N. Baxter, S. Highlander, and P. Schloss, Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform, Appl. Environ. Microbiol, vol.79, pp.5112-5120, 2013.

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Appl. Environ. Microbiol, vol.73, pp.5261-5267, 2007.

J. R. Cole, Ribosomal Database Project: data and tools for high throughput rRNA analysis, Nucleic Acids Res, vol.42, pp.633-642, 2014.

F. O. Gl?ckner, 25 years of serving the community with ribosomal RNA gene reference databases and tools, J. Biotechnol, 2017.

M. Mysara, Y. Saeys, N. Leys, J. Raes, and P. Monsieurs, CATCh, an Ensemble Classifier for Chimera Detection in 16S rRNA Sequencing Studies, Appl. Environ. Microbiol, vol.81, pp.1573-1584, 2015.

S. L. Westcott and P. D. Schloss, OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units, vol.2, pp.73-90, 2017.

M. Groussin, Unraveling the processes shaping mammalian gut microbiomes over evolutionary time, Nat. Commun, vol.8, p.14319, 2017.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

A. Stamatakis, Using RAxML to Infer Phylogenies, Curr. Protoc. Bioinforma, vol.51, 2015.

H. Shimodaira and M. Hasegawa, Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference, Mol. Biol. Evol, vol.16, pp.1114-1114, 1999.

L. Jost, Entropy and diversity. Oikos, vol.113, pp.363-375, 2006.

A. Chao, C. Chiu, and L. Jost, Phylogenetic diversity measures based on Hill numbers, Philos. Trans. R. Soc. B. Biol. Sci, vol.365, pp.3599-3609, 2010.

D. Li, hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers, J. Open Source Softw, vol.3, p.1041, 2018.

E. Smirnova, S. Huzurbazar, and F. Jafari, PERFect: PERmutation Filtering test for microbiome data, Biostatistics

J. Palarea-albaladejo and J. Martin-fernandez, A. zCompositions -R package for multivariate imputation of left-censored data under a compositional approach, Chemom. Intell. Lab. Syst, vol.143, pp.85-96, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01504132

J. Aitchison, The statistical analysis of compositional data, J. R. Stat. Soc. Ser. B Methodol, vol.44, pp.139-177, 1982.

G. B. Gloor, J. M. Macklaim, and A. D. Fernandes, Displaying Variation in Large Datasets: Plotting a Visual Summary of Effect Sizes, J. Comput. Graph. Stat, vol.25, pp.971-979, 2016.

G. B. Gloor, J. M. Macklaim, V. Pawlowsky-glahn, and J. J. Egozcue, Microbiome Datasets Are Compositional: And This Is Not Optional, Front. Microbiol, vol.8, 2017.

J. Aitchison, On criteria for measures of compositional difference, Math. Geol, vol.24, pp.365-379, 1992.

P. J. Mcmurdie and S. Holmes, phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLOS ONE, vol.8, p.61217, 2013.

J. Pinheiro, D. Bates, S. Debroy, D. Sarkar, . &-r-core et al., Linear and Nonlinear Mixed Effects Models, 2019.

J. Fox and S. Weisberg, An R Companion to Applied Regression, 2019.

A. D. Fernandes, Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis, vol.2, p.15, 2014.

A. D. Washburne, Phylofactorization: a graph partitioning algorithm to identify phylogenetic scales of ecological data, Ecol. Monogr, 1353.

I. Holmes, K. Harris, and C. Quince, Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics, PLOS ONE, vol.7, p.30126, 2012.

M. Morgan, Dirichlet-Multinomial Mixture Model Machine Learning for Microbiome Data, 2019.

M. Arumugam, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

T. Hothorn, K. Hornik, and A. Zeileis, Unbiased Recursive Partitioning: A Conditional Inference Framework, J. Comput. Graph. Stat, vol.15, pp.651-674, 2006.

T. Hothorn and A. Zeileis, partykit: A Modular Toolkit for Recursive Partytioning in R, J. Mach. Learn. Res, vol.16, pp.3905-3909, 2015.

M. Kuhn, The caret Package, 2009.

G. B. Gloor and G. Reid, Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data, Can. J. Microbiol, vol.62, pp.692-703, 2016.

J. Oksanen, Community Ecology Package, 2019.

N. Blaser and . Rdist, Calculate Pairwise Distances, 2018.

A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their Applications, 1997.

A. Canty and B. D. Ripley, Bootstrap R (S-Plus) Functions, 2019.

L. Jost, Partitioning diversity into independent alpha and beta components, Ecology, vol.88, pp.2427-2439, 2007.

, Available under the Open Database Licence, OpenStreetMap contributors. Planet dump retrieved from, 2017.