Accuracy and kinematics consistency of marker-based scaling approaches on a lower limb model: a comparative study with imagery data
Pierre Puchaud, Christophe Sauret, Antoine Muller, Nicolas Bideau, Georges Dumont, Hélène Pillet, Charles Pontonnier

To cite this version:

HAL Id: hal-02546021
https://hal.archives-ouvertes.fr/hal-02546021
Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accuracy and kinematics consistency of marker-based scaling approaches on a lower limb model: a comparative study with imagery data

P. Puchauda,b,c 1, C. Sauretd 2, A. Mullera,e 3, N. Bideaub 4, G. Dumonta 5, H. Pilletd 6 and C. Pontonniera,c 7

aUniv Rennes, CNRS, Inria, IRISA - UMR, Rennes, France; bUniv Rennes, Inria, Rennes, France; cCentre de Recherche des CEcoles de St-Cyr Co€etquidan (CREC), Guer, France; dInstitut de BiomCecanique Humaine Georges Charpak, Arts et Métiers ParisTech, France; eInstitut de Recherche Robert-SauvCe en SantCe et en Sécurité du Travail (IRSST), Montréal, QC, Canada

ABSTRACT

Medical images are not typically included in protocol of motion laboratories. Thus, accurate scaling of musculoskeletal models from optoelectronic data are important for any biomechanical analysis. The aim of the current study was to identify a scaling method based on optoelectronic data, inspired from literature, which could offer the best trade-off between accurate geometrical parameters (segment lengths, orientation of joint axes, marker coordinates) and consistent inverse kinematics outputs (kinematic error, joint angles). The methods were applied on 26 subjects and assessed with medical imagery building EOS-based models, considered as a reference. The main contribution of this paper is to show that the marker-based scaling followed by an optimisation of orientation joint axes and markers local coordinates, gives the most consistent scaling and joint angles with EOS-based models. Thus, when a non-invasive mean with an optoelectronic system is considered, a marker-based scaling is preliminary needed to get accurate segment lengths and to optimise joint axes and marker local coordinates to reduce kinematic errors.

Abbreviations: AJC: Ankle joint centre; CKE: cumulative kinematic error; DoF: degree of freedom; EB: EOS-based; HB: height-based; HJC: hip joint centre; KJC: knee joint centre; MB: marker-based; MSM: musculoskeletal models; SPM: statistical parametric mapping; STA: soft tissue artifact; EB\textsubscript{a.m}*: EOS-based with optimised joint axes, and all model markers coordinates; MB\textsubscript{a.m}*: marker-based with optimised joint axes, and all model markers coordinates; MB\textsubscript{l.a.m}: marker-based with optimised segment lengths, joint axes, and selected model markers coordinates; ASIS: anterior superior iliac spine; PSIS: posterior superior iliac spine

1. Introduction

Accuracy of musculoskeletal analyses relies on multiple factors, in which the scaling of the musculoskeletal model (MSM) to the subject is of primary importance. The scaling is generally performed at multiple layers: muscle, inertial, and geometrical. The latter is fundamental to compute accurate joint angles and geometrical parameters (segment lengths, orientations of joint axes, and anatomical positions corresponding to marker local coordinates or muscle insertions) that are necessary to compute muscle paths and moment arms (van den Bogert et al. 2013). Therefore, a scaling method should provide accurate geometrical parameters to ensure a non-negative impact on the inverse kinematics outputs.

Models based on medical images are the current gold standard, they provide the most accurate geometrical parameters (Scheys et al. 2006; Blemker et al. 2007; Valente et al. 2014). In such methods, data from MRI (Kainz et al. 2016, 2017; Halonen et al. 2017), EOS© (Clément et al. 2015), or CT-scans (Bartels et al. 2015; Marra et al. 2015) was used to reconstruct 3D bone geometries through image segmentation manually (Valente et al. 2014) or semi-automatically (Scheys et al. 2005). Generally, imagery data acquisition and post-processing is time-consuming. It limits its use to small cohorts (Handsfield et al. 2014) and prevents any routine protocol. More recently, several authors proposed to use anthropometric similarities to find the closest model within a database of models extracted from MRIs and scaling it proportionally to the subject (Ding et al. 2019; Klemt et al. 2019).

Scaling methods based on optoelectronic data are used in many studies (Hamner and Delp, 2013;...
Dupré et al. (2018; Muller et al. 2019a) since they require less required time, knowledge and money.

Many computational methods were developed, including linear scaling (proportional scaling of the segment lengths based on the marker placements, Rasmussen et al. 2005), non-linear scaling (e.g., morphing, radial-basis functions, …, Lund et al. 2015; Zhang et al. 2016; Nolte et al. 2019), and optimisation-based scaling (van den Bogert et al. 1994; Reinbolt et al. 2005, 2007; Andersen et al. 2010b; Lund et al. 2015; Muller et al. 2015a) The optimisation-based scaling relies on dynamic trials according to Lund et al. 2015 and consists in minimising over a selected time interval the least-squares error between experimental markers and their positions on the predefined kinematic model while adjusting geometrical parameters. This approach tends to distribute the experimental (soft tissue artefacts (STA), marker errors, …) and model errors on the optimised geometrical parameters. Softwares such as OpenSim (Delp et al. 2007), AnyBody (Damsgaard et al. 2006) and CusToM (Muller et al. 2019b) use this geometrical scaling method. This optimisation ensures a low kinematic error (mean distance between experimental and model markers over all the frames of a given trial) after running inverse kinematics. However, the optimised geometrical parameters cannot be directly validated without medical images.

A few studies proposed direct validations of segment lengths scaled from optoelectronic data with medical images. For example, in Kainz et al. (2017) and Bartels et al. (2015), the Delp leg model (Delp et al. 1990) was linearly scaled with the Opensim software and segment lengths were compared to CT-scans and MRI extractions. The studies highlighted differences between linear scaling and medical imagery up to respectively 30 and 100 mm for the femur length. However, these studies only relied on one scaling approach and they did not investigate the geometrical scaling effects on joint angles.

Therefore, the aim of the current study was to identify a scaling method based on optoelectronic data offering the best trade-off between accurate geometrical parameters (segment lengths, orientation of joint axes, marker coordinates) and consistent inverse kinematics outputs (joint angles and kinematic error). For this purpose, 5 scaling methods were applied to a lower limb model on 26 subjects: two image-based scaling methods, one linear scaling methods, and two optimisation-based scaling methods. Kinematic errors and joint angles were evaluated on hip- and knee-joint functional movements and gait. The primary assumption of the study was that optimisation-based scaling methods should provide the best trade-off between geometrical parameters accuracy with respect to image-based methods and ensure the best inverse kinematics consistency by reducing the kinematic error.

2. Material and methods

2.1. Experimental data

Optoelectronic and biplanar radiographic data was collected from several studies, all of which received ethical approvals (Comité de Protection des Personnes, 2006-A00386-45, 2015-A01760-49, 2018-A00173-52). Twenty-six subjects (four females and twenty-two males, age: 24.3 ± 11.1 years old, height: 176.2 ± 7.6 cm, weight: 67.3 ± 9.4 kg, BMI: 21.6 ± 2.1 m/kg²) were equipped with a set of 30 reflective markers: 14 were placed on anatomical landmarks of the lower limbs and adapted from ISB recommendations (Wu et al. 2002); four technical clusters composed of four plate-mounted markers were strapped on both shanks and thighs (Figure 1). These clusters were only used in a solidification procedure to reconstruct incomplete trajectories of hidden markers (Söderkvist and Wedin 1993). They were not used for inverse kinematics since it has been shown to have a minor influence on computed joint angles (Kainz et al. 2016).
Subjects equipped with markers underwent EOS® biplanar radiographs (EOS® Imaging, Paris, France), allowing three-dimensional reconstruction of the pelvis, femurs, tibiae and fibulae following a validated protocol (Chaibi et al. 2012)—see Figure 3. This data was used to compute the reference models (image-based models) presented in section 2.2.3. Hip- and knee-joint functional movements in upright position were recorded for the right and left legs by a 12-cameras motion capture system (Vicon™ system; Nexus 2 software; Oxford Metrics, UK) at 100 Hz: flexion/extension of the knee; flexion/extension, abduction/adduction and internal and external rotation of the hip (Camomilla et al. 2006). Among the 26 subjects, 6 subjects additionally performed two gait cycles. Markers trajectories were smoothed with a five-frame central window moving average filter. Two passes were done in reverse direction to minimise the shifting effect. Gaps in trajectories were filled using a C2-spline interpolation (gaps shorter than 15 frames, i.e., 0.15 s) or using a solidification procedure based on the other markers of the same body segment (gaps longer than 15 frames).

2.2. Geometrical scaling

For each subject, five geometrical scaling methods issued from the literature were applied on a generic model resulting in five scaled models: two image-based models (raw and optimised) that were considered as a reference, one linear models and two optimised models. Figure 2 provides acronyms and a sum up of the scaling methods applied. Linear and optimised models were calibrated using algorithms implemented in CusToM (Muller et al. 2019b), an open-source Matlab toolbox dedicated to inverse dynamics based musculoskeletal simulation.

2.2.1. Generic model

A predefined 14 Degrees of Freedom (DoF) lower limbs kinematic model was used as a generic model for motion capture data and EOS data. It is adapted from a leg musculoskeletal model available in the AnyBody Managed Model Repository (Delp et al. 1990; Lund et al. 2018) and implemented in CusToM. The lower limbs model had 6 DoF between the ground frame and the pelvis reference frame, 3 rotational DoF at the hip joint centres (HJCs), and 1 rotational DoF (pure hinge joint) at the knee joint centres (KJCs) as in (Reinbolt et al. 2005; Andersen et al. 2010b). The kinematic model was composed of 5 segments (pelvis, both femurs and both shanks), with no foot—ending at the ankle joint centres (AJCs). ISB conventions (Wu et al. 2002) were followed for segment frame orientations. The Z-axis of the thigh was used as the knee joint axis. In this model, scalable geometrical parameters were the segment lengths, the orientations of joint axes, and the model marker positions. Depending on the type of scaling method
applied thereafter, all part of these parameters were scaled.

2.2.2. Linear scaling method
One linear-scaled models were computed from the generic model called marker-based linear scaling. Homothetic factors were computed from the ratio between the experimental lengths and the model lengths. The experimental segment lengths were estimated from experimental markers and the generic model segment lengths were estimated from model markers. Pelvis experimental and model lengths were computed with the right and left posterior superior iliac spines (RPSIS, LPSIS) and the right and left anterior superior iliac spines (RASIS, LASIS). Four lengths were computed: RASIS-to-LASIS, RPSIS-to-LPSIS, RASIS-to-RPSIS and LASIS-to-LPSIS. The mean of the fourth ratios between experimental and model lengths was used as the homothetic factor of the pelvis. Experimental lengths of the femurs were computed from HJCs (Harrington et al. 2007) and the middle of the medial and lateral epicondyles markers. For the shank, experimental markers placed on knee epicondyles and malleoli were used to estimate knee and ankle joint positions. It resulted in a Marker-Based model (MB) presented in figure 2.

2.2.3. Image-based scaling method
An image-based scaling method was applied with EOS data. An EOS-based model (EB) was built and

Figure 3. X-rays of a subject equipped with 30 markers and with four four-marker plates. X-rays were acquired with EOS. Reconstruction of bones (pelvis, femurs, tibiae and fibulae) is also shown. The subject is positioned in a 'shifted-feet' standing position to simplify bony structures recognition. This standing position has been previously validated (Chaibi et al. 2012).
Table 1. Markers local coordinates allowed to be optimised (Wu et al. 2002) with MB\textsubscript{l.a.m.} scaling. The seven markers are placed on the right and left sides. \(x, y, z\) coordinates are respectively antero-posterior, longitudinal and medio-lateral. With MB\textsubscript{a.m.} and EB\textsubscript{a.m.}, every coordinates are optimised. Marker clusters on thighs and shanks were not considered in geometrical scaling and inverse kinematics. The choice of the coordinates to optimise was based on the analysis of the biomechanical model ensuring a proper convergence of the algorithm.

<table>
<thead>
<tr>
<th>Palpated landmarks for marker placement</th>
<th>Body segment</th>
<th>Optimised (x)-coordinate</th>
<th>Optimised (y)-coordinate</th>
<th>Optimised (z)-coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior superior iliac spine</td>
<td>Pelvis</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Anterior superior iliac spine</td>
<td>Pelvis</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lateral femur epicondyyle</td>
<td>Thigh</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Medial femur epicondyyle</td>
<td>Thigh</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fibula head</td>
<td>Shank</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lateral malleolus</td>
<td>Shank</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Medial malleolus</td>
<td>Shank</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

considered as a reference for each subject (Melhem et al. 2016). The 3D reconstructions of the lower limb bones were extracted from the biplanar radiographs. Femurs, tibiae and fibulae were reconstructed based on a parametric model and on statistical inferences (Chaibi et al. 2012). Regions were then automatically segmented on the bones. The HJCs were identified with a least-squares sphere fitting on the femoral heads regions of the 3D mesh (Pillet et al. 2014). Spheres were least-squares fitted on medial and lateral posterior aspects of femoral condyles. The KJCs were defined as the mid-points between the two spheres centres and the knee joint axis by the line passing through them (Sauret et al. 2016). Finally, malleoli regions of the fibulae and the tibiae were selected on the parametric bone models. Their barycentres were used to create middle points which were considered as the AJCs.

Moreover, EOS enabled to place the markers in the segment frame directly from the reconstruction. Markers’ locations were computed by adjusting manually 14 mm diameter sphere models on the biplanar radiographs to match markers contours. The reproducibility of this procedure was previously determined at 0.35 mm (Sauret et al. 2016). HJCs locations were expressed in the pelvic coordinate system based on the external markers of the pelvis seen on the radiographs (Wu et al. 2002). Markers positions placed on femurs and tibiae were expressed in segments frames, following ISB recommendations.

2.2.4. Optimisation-based scaling methods
To obtain the three last models of the study, two kinds of optimisation-based scaling methods were applied. Firstly, the optimisation scaling method consisted in optimising homothetic factors of segments, knee joint axes orientations and model markers local coordinates (Table 1). It resulted in the computation of the optimised marker-based model denoted as MB\textsubscript{l.a.m.}, with optimised parameters denoted as subscripts: segment lengths \(l\), joint axes \(a\) and model markers \(m\).

Secondly, another optimisation-based scaling method was applied on MB and EB models. It consisted in only optimising joint axes orientations and every model markers local coordinates specified in Table 1. It resulted in the computation of the optimised marker-based model denoted as MB\textsubscript{a.m.} and EB\textsubscript{a.m.} with optimised parameters denoted as subscripts: joint axes \(a\) and every model markers local coordinates \(m\).

For all methods, hip- and knee-joint functional movements recorded as presented in section 2.1 were used as an input. According to Lund et al. (2015), dynamic trials are relevant for geometrical scaling, especially to study motions involving large joint amplitudes.

The MB\textsubscript{l.a.m.} method was performed using the MB model as initial guess (see section 2.2.2). The MB\textsubscript{a.m.} and EB\textsubscript{a.m.} methods used the MB and EB models as initial guesses respectively (see Section 2.2.3).

The optimisation-based scaling methods consisted in the following steps (Muller et al. 2015a): \(N_f\) frames equally spaced in time were extracted from hip- and knee-joint functional movements data. It was set to \(N_f = 100\) after prior experiments as a good trade-off between convergence and computation time. A first inverse kinematics step (Lu and Connor 1999) was performed over the selected frames (with MB or EB models) using an interior-point algorithm to get an initial guess of joint angles \(\mathbf{q}\). Then, a parameter optimisation step was performed to identify homothetic factors \(\mathbf{k}\), rotations \(\mathbf{z}\) of joint axes and variations of marker local coordinates \(\Delta \mathbf{p}\). All variables were normalised between \([-1,1]\) (Reinbolt et al. 2005). These parameters were optimised by minimising the cumulative kinematic error (CKE), denoted as \(\Phi\), in Equation 1. The CKE is the cumulative quadratic sum of the Euclidean distances between experimental markers positions \(\mathbf{X}_\text{exp,}\text{mod.}^m\) and model markers positions \(\Delta \mathbf{X}_\text{mod,}\text{mod.}^m\) over the \(N_f\) selected frames:
Joint angles of hip- and knee-joint functional movements and gait cycles were computed using inverse kinematics, also called multibody kinematic optimisation (Lu and O’Connor 1999; Begon et al. 2017), with markers mentioned in Table 1. They had a weight factor of 1. Resulting kinematic errors of functional movements were compared for the five models. As for the segment lengths, the same statistical tests were applied for kinematic errors. For gait cycles, joint angles of hips and knees obtained with all models were compared to EB\textsubscript{a.m.} results, considered as a reference. One-way ANOVA tests using statistical parametric mapping (SPM) (Pataky et al. 2015) over the duration of the gait trials were computed to compare each model condition as a repeated measure. In case of significant difference, two-tailed t-tests (\(p<0.05\)) between models and the reference \(EB\textsubscript{a.m.}\) were applied to identify when these differences occurred during the gait cycle.

3. Results

3.1. Geometrical parameters

Segment lengths are presented in Table 2. Distances with respect to the EB model are presented in Figure 4. Significant differences were found among models for each length (\(p<0.05\) and \(p<0.001\)). Indeed, for the right femur, the mean distances between MB and \(MB_{i,a.m.}\) models with the EB model were respectively, 4.0 ± 13.8 mm and 8.4 ± 12.5 mm. For the left femur, MB and \(MB_{i,a.m.}\) models exhibited mean distances of 0.88 ± 16.3 mm and 5.1 ± 13.3 mm.

Mean distance of inter-hip distance with the EB model ranged between −10.8 ± 19.9 mm (MB) and 4.0 ± 18.5 mm (\(MB_{i,a.m.}\)). Right and left shanks lengths exhibited errors similar to the femurs. Tukey’s HSD revealed that right femur and tibia lengths from \(MB_{i,a.m.}\) models were significantly different from the EB model. However, inter-hip distance from MB/\(MB_{a,m.}\) and \(MB_{i,a.m.}\) were not significantly different from the EB model.

Initial medio-lateral knee axes orientations were optimised in three models: \(MB_{i,a.m.}\), \(MB_{a,m.}\) and \(EB_{a,m.}\). Mean and standard deviation associated to successive X and Y rotations are presented in Table 3. Both orientation adjustments were about −2° to 2° Standard deviations of \(MB_{i,a.m.}\) models were higher than other models (3.22° to 4.06°).

In average, variations of markers local coordinates of \(MB_{i,a.m.}\), \(MB_{a,m.}\), \(EB_{a,m.}\) models were respectively of 5.6 ± 12.7 mm, 12.3 ± 9.8 mm, 6.3 ± 7.8 mm.
3.2. Kinematic errors

Overall, inverse kinematics on hip- and knee-joint functional movements resulted in different kinematic errors (Figure 5). MB models exhibited the largest kinematic errors (27.4 ± 3.7 mm). MB_{l,a,m} and MB_{a,m} models showed lower kinematic errors (11.0 ± 1.6 mm and 6.5 ± 1.2 mm). EB model showed higher kinematic errors than optimised models (8.9 ± 3.1 mm) but EB_{a,m} models showed the lowest kinematic error (5.4 ± 0.8 mm).

Friedman’s test revealed significant differences between the models. The kinematic errors of MB models were significantly higher than these of MB_{l,a,m}, MB_{a,m}, EB and EB_{a,m} models. Also, kinematic errors from EB_{a,m} models were significantly lower than MB_{l,a,m} and EB models. However, no significant difference was found for kinematic errors from MB_{a,m} models with respect to EB and EB_{a,m} models. Finally, MB_{a,m}, EB and EB_{a,m} models had similar kinematic errors.

3.3. Joint angles

Among the six subjects who performed two gait cycles each, significant differences in joint angles were identified between models, particularly at the hip joint (Figure 6). Right and left hip flexion angles computed with EB_{a,m} model were significantly different from these resulting from the MB, MB_{a,m}, and EB models. Also EB models were significantly different from EB_{a,m} models for right and left knee flexion. Differences between angles arose at different instants of the stride, depending on the considered joint.

4. Discussion

The primary assumption of the study was that optimisation-based scaling methods should provide the best trade-off between geometrical parameters accuracy with respect to image-based methods and ensure the best inverse kinematics consistency by reducing the kinematic error. To investigate this assumption, 5 scaling methods were applied to a lower limb model on 26 subjects with a 14-DoF generic kinematic model of the lower limbs. The EOS reconstructions of the cohort, considered as the image-based ground truth (Melhem et al. 2016), were a valuable opportunity to assess geometrical scaling methods based on optoelectronic data. The EOS-based models (EB and EB_{a,m}) have been considered as a reference for the geometrical parameters and only EB_{a,m} models were considered for the joint angles.

4.1. Geometrical parameters

Optimising lengths and markers concomitantly induce overfitting for geometrical parameters. Indeed, left and right femur lengths were best evaluated by the marker-based (MB) method which does not optimise segment lengths. However, several studies have claimed that optimising all geometrical parameters is better at estimating segment lengths (Reinbolt et al. 2005; Andersen et al. 2010b; Lund et al. 2015). They reported up to 80, 67.1, and 10 mm in segment lengths variations between optimisation-based and linear scaling approaches - see Table 4. However, none of these studies validated the optimised segment lengths directly.

The current study showed significantly lower differences between MB scaled femur lengths and the EB reference compared to the literature (Bartels et al. 2015; Kainz et al. 2017), which exhibited up to 100 mm differences with CT-scan results. It can be explained by the cohorts of the these studies which were partly pathological (osteoarthritis and cerebral palsy). In the current study, the 26 subjects were healthy and practiced regular physical activity.

Optimisation of joint axes was required because such anatomical aspects differ for every subject (Eckhoff et al. 2003). It led to changes in the orientations of knee joint axes below 5°. These low changes may indicate that the kinematic errors were mostly due to inadequate lengths.

Optimisation of model markers local coordinates was supposed to limit the effects of STA and of the uncertainty of marker placement, even if this last source of error was mitigated by the training of the experimenters (Della Croce et al. 2005). In the last paragraph of the section 3.1, the changes in marker
local coordinates after optimisation were consistent with respect to the literature because they had the same order of magnitude as the reported STA: 20 mm for the shank, 30 mm for the thigh and 9 mm for the pelvis (Leardini et al. 2005; Camomilla et al. 2017).

The choice of dynamic trials as an input of the optimisation procedures had an impact on the results, since they are supposed to be subject to STA through the body motion. Indeed, static trials would have given relevant results close to the static configuration but may have suffered from larger kinematics errors for bigger joint angle magnitudes of the motions to be analysed. Therefore, in this study, dynamic trials were preferred to static trials since the motions to be evaluated were gaits, involving large joint amplitudes.

4.2. Kinematic errors

Resulting kinematic errors of $MB_{a.m.}, MB_{a.m^*}, EB$ and $EB_{a.m^*}$ models were in accordance with literature results of optimisation-based approaches (Reinbolt...
et al. 2005, 2007; Andersen et al. 2010b; Lund et al. 2015; Muller et al. 2015a) - see Table 5. However, MB models exhibited larger kinematic errors than the literature. So, tuning only segment lengths is not enough to scale the model, mainly because of misplacements of experimental markers and STA.

On the contrary, the MB\(_{l,a,m}\) and MB\(_{a,m}\) methods were robust to the minimisation of kinematic errors over the 26 subjects, despite various sources of errors (Begon et al. 2017): measurement errors, segment lengths, DoF of the model. However, MB\(_{l,a,m}\) model misestimated segment lengths compared to MB and MB\(_{a,m}\) models which were closer to the EB\(_{a,m}\) reference models.

Therefore, the most appropriate method to be applied in marker-based geometrical scaling is an optimisation of marker local coordinates which enables a better location of markers and minimises STA effects. These results are in accordance with the Opensim scaling method (Reinbolt et al. 2005).

4.3. Joint angles

The MB\(_{a,m}\) and EB\(_{a,m}\) methods exhibited similar joint angles. This is of interest since in these models, the segments lengths were very similar and supposed to be accurate. It indicates that the optimisation of the marker local coordinates resulted in a similar effect on the joint angles computation for both methods, whereas MB\(_{l,a,m}\) led to different results. Low kinematic errors of MB\(_{a,m}\) and EB\(_{a,m}\) does not necessarily mean that joint angles were accurate or that STA were fully compensated (Bonnet et al. 2017). Kinematic accuracy can only really be assessed with intra-cortical pins (Andersen et al. 2010a) or biplanar fluoroscopic data (Gasparutto et al. 2015; Richard et al. 2017). However, the consistency between both results and the low kinematic error suggests that the primary assumption of the study, i.e., that

Figure 6. Hip, knee joint angle means over 12 gait trials performed by 6 subjects with a standard deviation cloud for each of the 5 models for one stride. Dark blue line represents the MB model. Light blue and green lines represent MB\(_{l,a,m}\) and MB\(_{a,m}\) models respectively. The EB and EB\(_{a,m}\) models are in orange and yellow. Shaded rectangles along the x-axis show incidences of significant differences between at least 2 model conditions (p < 0.05) after one-way ANOVA and SPM-Bonferroni correction. Vertical bars represent the timing of the gait events. CTO: Contra-lateral toe-off. CHS: Contra-lateral heel-strike. TO: Toe-off.

Table 4. Maximal length variations between scaling methods in the literature.

<table>
<thead>
<tr>
<th>Geometrical parameter</th>
<th>Maximal length variations reported</th>
<th>Reinbolt et al. 2005</th>
<th>Andersen et al. 2010b</th>
<th>Lund et al. 2015</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (mm)</td>
<td>Right hip location</td>
<td>67.1</td>
<td>10</td>
<td>80</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Table 5. Mean kinematic errors of scaled models after inverse kinematics.

<table>
<thead>
<tr>
<th>Study/methods</th>
<th>Mean kinematic errors (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinbolt et al. (2005)</td>
<td>7.8</td>
</tr>
<tr>
<td>Andersen et al. (2010b)</td>
<td>5.5</td>
</tr>
<tr>
<td>Muller et al. (2015a)</td>
<td>8.6</td>
</tr>
<tr>
<td>Lund et al. (2015)</td>
<td>4.5</td>
</tr>
<tr>
<td>Present study – MB(_{a,m})</td>
<td>10.8</td>
</tr>
<tr>
<td>Present study – MB(_{a,m})</td>
<td>6.5</td>
</tr>
<tr>
<td>Present study – EB</td>
<td>8.8</td>
</tr>
<tr>
<td>Present study – EB(_{a,m})</td>
<td>5.3</td>
</tr>
</tbody>
</table>
optimisation-based scaling methods should provide the best trade-off between geometrical parameters accuracy with respect to image-based methods and ensure the best inverse kinematics consistency, is not supported. It seems more relevant to use MB_{a,m'} instead of MB_{l,a,m} to scale the model in a musculoskeletal study.

4.4. Methodological limitations

The study has several limitations that should be noted. First of all, optimisation-based methods may lead to overfitting. It tends to spread the experimental and model errors on the optimised geometrical parameters, namely the segment lengths, the marker local coordinates and the joint axes. To ensure a good balance between correct segment lengths and low kinematic errors, well-chosen constraints and correct initial guesses are required. The optimisation-based methods are robust and guarantee to reduce kinematic errors but the results of the study show that it is preferable to exclude the segment lengths of the lower limbs from any optimisation-based scaling.

Computationally, a subject was scaled in less than 4 minutes for N_f = 100 frames (3.10 GHz laptop, 32 Go RAM). This computation time may be reduced by working on the choice and the number of frames to include in the optimisation (Muller et al. 2015b). The study was also limited by the way the scaling was defined: the homothetic factor was uniformly applied in all directions of a given segment. It has consequences on the scaling of large bones such as the pelvis. A solution may be to declare multiple scaling factors for each segment and optimise them separately (Rasmussen et al. 2005; Delp et al. 2007) with well-chosen markers weights in the optimisation (Trinler and Baker 2018). Non-linear functions could also be used to enhance the scaling properties before an optimisation as in MB_{a,m'}, as it has been done in Lund et al. (2015); Zhang et al. (2016); Nolte et al. (2019). Another enhancement may be to use a database of models extracted from MRIs and to get a closer initial guess, as proposed in (Ding et al. 2019; Klemt et al. 2019).

Feet scaling is another issue that was not handled in the current study. Feet data from the EOS biplanar images have to be considered for a future extended protocol.

Last, the knee model was limited to one rotational DoF and its validity is still discussed in the literature (Gasparutto et al. 2015; Clément et al. 2015): according to Kainz et al. 2016, knee models have an influence on computed joint angles. In the future, more complex models could be evaluated to confirm the use of MB_{a,m'} for scaling.

5. Conclusion

The current study aimed at identifying a scaling method based on optoelectronic data offering the best trade-off between accurate geometrical parameters (segment lengths, orientation of joint axes, marker coordinates) and consistent inverse kinematics outputs (joint angles and kinematic error). The primary assumption of the study was that optimisation-based scaling methods should provide the best trade-off between geometrical parameters accuracy with respect to image-based methods and ensure the best inverse kinematics consistency. It has not been supported by the results, since the optimised segment lengths obtained with MB_{l,a,m} were significantly different from the these obtained from the EOS reference measures, and led to an higher kinematic error. Finally, the marker-based scaling with optimised model marker coordinates and joint axes in MB_{a,m'} gave the most consistent scaling and joint angles with regard to these obtained from the EOS measures. This study is of interest since this scaling is the first step to be applied to a model in any musculoskeletal study. An interesting future work may be to investigate the effect of such scaling on the muscle paths and the moment arms of the model that are fundamental to run accurate musculoskeletal analyses.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The present study was partly funded by the chair of the enhanced soldier in the digital battlefield from the St-Cyr Foundation.

ORCID

P. Puchaud http://orcid.org/0000-0002-9335-630X
C. Sauret http://orcid.org/0000-0002-6196-2698
A. Muller http://orcid.org/0000-0003-6206-1429
N. Bideau http://orcid.org/0000-0001-5333-7991
G. Dumont http://orcid.org/0000-0002-0709-0921
H. Pillet http://orcid.org/0000-0002-0263-5910
C. Pontonnier http://orcid.org/0000-0003-1140-3772
References

