H. W. Hethcote, The Mathematics of Infection Diseases, SIAM Rev, vol.42, issue.4, pp.599-653, 2000.

R. M. Anderson, H. Heerterbeek, D. Klinkenberg, and T. D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic ? The Lancet, vol.395, pp.931-934, 2020.

N. M. Ferguson, Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team, pp.1-20, 2020.

S. Flaxman, S. Mishra, and A. Gandy, Estimating the number of infections and the impact of nonpharmaceutical interventions on COVID-19 in 11 european countries. Imperial College COVID-19 Response Team, pp.1-35, 2020.

A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, The Lancet Infectious Diseases, pp.1-7, 2020.

C. Fraser, S. Riley, R. M. Anderson, and N. M. Ferguson, Factors that make an infectious disease outbreak controllable, Proc. Nat. Acad. Sci. USA, vol.101, issue.16, pp.6146-6151, 2004.

M. Lipsitch, T. Cohen, and B. Cooper, Transmission dynamics and control of severe acute respiratory syndrome, Science, vol.300, pp.1966-1970, 2003.

R. Djidjou-demasse, Y. Michalakis, M. Choisy, M. T. Sofonea, and S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment. medRxiv, pp.1-20, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02533223

L. D. Domenico, G. Pullano, P. Coletti, N. Hens, and V. Colizza, Report#8: Expected impact of school closure and telework to mitigate COVID-19 epidemic in france, 2020.

P. Magal and G. Webb, Predicting the number of reported and unreported cases for the COVID-19 epidemic in south korea, italy, france and germany, 2020.

L. Roques, E. K. Klein, J. Papaix, and S. Soubeyrand, Mechanistic-statistical sir modelling for early estimation of the actual number of cases and mortality rate from COVID-19. medRxiv, pp.1-9, 2020.

X. Liu, G. Hewings, S. Wang, M. Qin, X. Xiang et al., Modelling the situation of COVID-19 and effects of different containment strategies in china with dynamic differential equations and parameters estimation. medRxiv, 2020.

L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong, Epidemic analysis of COVID-19 in china by dynamical modeling. medRxiv, pp.1-18, 2020.

Y. Zhang, C. You, and Z. Cai, Prediction of the COVID-19 outbreak based on a realistic stochastic model. medRxiv, pp.1-38, 2020.

W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London A, vol.115, issue.772, pp.700-721, 1927.

S. Benzoni-gavage, Dunod (Paris), 2ème éd, Calcul différentiel et équations différentielles. Mathématiques appliquées pour le Master (SMAI), 2014.

L. Perko, Differential Equations and Dynamical Systems, vol.7, 1993.

H. W. Hethcote, M. Zhien, and L. Shengbing, Effects of quarantine in six endemic models for infection diseases, Math. Biosciences, vol.180, pp.141-160, 2002.

M. Y. Li, H. L. Smith, and L. Wang, Global dynamics of an seir epidemic model with vertical transmission, SIAM J. Appl. Math, vol.62, issue.1, pp.58-69, 2001.

S. Sanche, Y. Ting-lin, and C. Xu, The novel coronavirus 2019-nCoV is highly contagious and more infectious than initially estimated. arXiv, pp.1-11, 2002.

J. Delfraissy, Avis du conseil scientifique Covid-19, Technical Report, vol.12, 2020.