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Platooning of Car-like Vehicles in Urban
Environments: An Observer-based Approach

Considering Actuator Dynamics and Time delays
Ahmed Khalifa, Olivier Kermorgant, Salvador Dominguez, and Philippe Martinet

Abstract—In this paper, a distributed observer-based approach
is proposed to control the longitudinal motion of car-like vehicle
platoon moving in an urban environment. To the best of our
knowledge, this is the first work presenting an observer-based
platoon controller that combines the advantages of high traffic
capacity and a minimum number of communication links. To
achieve a high traffic flow, a constant-spacing policy is used.
However, for that policy, to make platoon string stable, the leader
information must be broadcast to all the vehicles. Therefore, we
propose a control law in which the predecessor position informa-
tion is acquired by a sensor-based link while a communication-
based link is used to obtain the leader information. Then, an
observer is designed and integrated into the control law such
that the velocity information of the predecessor can be estimated
without the need to communicate with the preceding vehicle. For
navigation in urban environments, we present a third order pla-
toon model represented in the curvilinear coordinates. Conditions
for asymptotic stability and string stability are given considering
the vehicle actuator dynamics and the induced network/sensor
time delay. Finally, we provide both simulation and real-time
results to validate our approach feasibility and to corroborate
our theoretical findings.

Index Terms—platoon in urban environments, curvilinear co-
ordinates, observer-based longitudinal control, limited communi-
cation, high traffic flow.

I. INTRODUCTION

CAR SHARING system has attracted more attention re-
cently in order to overcome transportation problems.

However, cars redistribution among all stations is one of the
key issues of such a system. Vehicle platoons guided by
professional drivers are proposed in which a leading vehicle,
driven by a human, creates and maintains a platoon of vehicles,
then navigates inside a city, and finally, redistributes the
vehicles over the stations by disassembling the platoon.
This configuration appears as a necessary step towards the use
of autonomous vehicles. Indeed, it is now well accepted that
autonomous vehicles may follow a different commercial model
compared to classical, individual-owned cars. Such vehicles
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can (and should) be used by other people if the previous
users have arrived to their destination. Pushing this idea to
the limit corresponds to autonomous taxis, that can reach the
next customer without a driver. Our framework takes place in
an intermediary step, where cars are never fully autonomous:
when they are not driven manually (or monitored) by the
user, they are part of a platoon in order to be redistributed
within the city. Even in this phase, a human operator can take
responsibility and monitor the platoon. Urban environments
are specific in that the leading vehicle usually moves with
varying velocity and along a high curvature path. This makes
it difficult to rely on a velocity sensor such as a radar. We
have chosen to represent the motion with respect to a path
that the vehicle intends to follow, hence the curvilinear/path
coordinates are used instead [1]–[3]. Such description allows
focusing on the control along the path, and helps coping
with high radius of curvature and varying leader velocity.
Our proposed methodology to design a platoon control system
moving in an urban environment consists of two modules,
including longitudinal and lateral controllers. Each of them
has an Upper-Level Controller (ULC) and a Lower-Level
Controller (LLC). The longitudinal ULC provides the desired
vehicle linear acceleration which the car has to follow to
achieve the desired longitudinal states while the longitudinal
LLC generates the required engine throttle/brake to achieve
this desired acceleration. The lateral controller provides the
required steering angle to achieve the desired lateral states. In
this study, we are interested in designing the longitudinal ULC
in the path coordinates with the required transformation to the
Cartesian coordinates such that we can design the longitudinal
ULC in the path coordinates. The longitudinal platoon control
framework depends on four components which are Vehicle
Dynamics, Information Flow Topology (IFT), Spacing Policy
and Distributed Controller [4]. Different models are used in the
literature for the vehicle dynamics including linear and non-
linear models. Some studies directly use nonlinear models for
platoon control [5]–[7]. However, these models have difficulty
in analyzing system performance against different spacing
policies and communications typologies. Three linear models
are frequently used. First, a single integrator model is proposed
in [8] in which the vehicle speed is taken as the control input
but such a model is widely different from the real vehicle
dynamics. Second, authors in [9] present a double integrator
model that uses the acceleration as the control input but this
model ignores some features of vehicle dynamics which may
affect the system performance in real-time experiments. Third,
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Figure 1. Proposed functional block diagram of a platoon control system navigating in an urban environment.

a third order model is used that considers the input/output
behavior of the power-train (i.e., actuator dynamics) [10]. Few
studies in the literature have tackled the problem of platooning
in the path coordinates, for instance in [1], [11]–[14]. In these
studies, the authors assume a first/second order model for the
vehicle dynamics that has many defects. Therefore, in this
research, a third order longitudinal dynamic model is used and
its corresponding one in the path coordinates is presented such
that one can design a controller to achieve control objectives in
the path (operational) coordinates explicitly. For the distributed
control, three main control objectives are required. First, the
platoon is able to move in an urban environment. Such
an environment can be described by potentially high curva-
ture, varying leader velocity and small inter-vehicle distance,
allowing leader-to-follower communication. Second, achieve
position and velocity tracking for follower vehicles. Third,
guarantee the string stability that ensures that the error signals
will attenuate when propagating downstream the vehicle string
as the string instability may result in a rear-end collision. In
the literature, many platoon controllers are proposed. Adaptive
Cruise Control (ACC) is the simplest platoon controller which
aims at maintaining a safe distance with the front vehicle.
Recently, a distributed version of the platoon controller known
as Cooperative Adaptive Cruise Control (CACC) is proposed
in which the vehicles use a communication system to share
information with their neighbors to improve the whole system
functionalities and performance [15]. Six main approaches
in designing a platoon controller are proposed, including
Linear [16], Optimal [17], H∞-based [18], Sliding Mode [19],
Model predictive [20], [21], and Consensus-based controller
[10], [22]–[25]. However, none of these works consider the
control in the path coordinates. In our previous work [14],
[26], we develop a second-order consensus-based longitudinal
controller that considers the conditions of motion in an urban
environment (e.g., Curvatures, leader variable velocity, etc.)
Several spacing policies are proposed in the literature [27].
The constant distance spacing policy is used commonly due
to its capability to achieve very high traffic capacity. However,
to achieve string stability, more communication links are
required to transmit information of the leading vehicle to all
the vehicles in the platoon. The Information Flow Topology
describes the inter-vehicle communication topology that the
vehicles can use to gather information from its surrounding
vehicles. Various IFTs are developed including Predecessor
Following (PF), Predecessor-Leader Following (PLF), Bidi-
rectional (BD), etc. The PLF topology is commonly used in

the literature in which the leader communicates with all the
vehicles in broadcast, and every other vehicle also considers
information from its predecessor to compute the control action
[27]. However, for a low-cost onboard communication module
that may have limited bandwidth capabilities or for a robust
communication, high-speed two-channel communication is not
feasible or preferred. Therefore, in this study, the proposed
control law is designed depending on a hybrid PLF topology.
That is, the leader broadcasts its status to all the vehicles by a
communication-based link. For the inter-followers information
sharing, the inter-vehicle distance is measured by a distance
sensor, i.e., by a sensor-based link. For a faster convergence
of the platoon, platoon safety, and smooth acceleration of the
vehicles motion, and as a result fuel saving and passenger
comfort, it is necessary to use the predecessor velocity in the
control law. Therefore, we propose an observer-based control
technique. A consensus-based controller designed in the path
coordinates is the basis of the proposed control strategy and
its role is to achieve position and velocity consensus among
the platoon members taking into consideration the nature of
the motion in an urban environment. An observer is then
introduced in the loop to estimate the predecessor velocity.
In the literature, several observer-based consensus control
algorithms for multi-agent system and platoon system are
introduced in [28]–[30] and in [31] respectively. However,
these works use the observer to estimate the velocity of either
the ego vehicle (i.e., current in-platoon vehicle under control)
or the other vehicles based on the communication link among
the agents. In addition, they model the agent dynamics as a
double integrator that ignore some critical dynamics of the
vehicle, e.g. that of vehicle actuator. Moreover, they do not
consider the string stability constraint during the controller
design and analysis. In our study, the observer does not require
any communication link with other vehicles in the platoon
which add complexity in the design and analysis in order to
guarantee both asymptotic and string stability. The vehicle is
modeled as a third order system which considers the actuator
dynamics. The main contributions of this paper are given as
follows.
• A new third-order longitudinal platoon control framework

is proposed considering actuator dynamics and motion in
the path coordinates.

• A communication-less observer-based control algorithm
is designed such that we can get position and velocity
of the predecessor based on onboard distance sensor-
based link only without the need for the ego vehicle to
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Figure 2. Kinematic model of car-like vehicle.

communicate with the predecessor.
• Under the effect of both network/sensor delays and

actuator dynamics, conditions for asymptotic and string
stability are provided.

• The proposed approached is validated through realistic
simulation and real-time studies.

The paper is structured as follows. Section II formulates the
platooning problem given in an urban environment. In Section
III, the proposed observer-based control law is presented, and
both asymptotic and string stability are analyzed. Simulation
and experimental studies are given in Section IV. Section V
provides conclusions.

II. PROBLEM STATEMENT

A. Car-like Vehicle Kinematic Model

The kinematic model of the car-like vehicle can be simpli-
fied to that of a bicycle model [32], see Fig. 2, in which the
left and right wheels are combined into a pair of single wheels
at the center of the front and rear axles.

1) Cartesian Coordinates Model: Let {V }, Ov − xvyv ,
denotes the vehicle body-fixed reference frame with its x-axis
in the vehicle forward direction and its origin at the center of
the rear axle, Ov , see Fig. 2. The configuration of the vehi-
cle, with respect to the world-fixed inertial reference frame,
{G}, O − xy, is represented by the generalized coordinates
[x, y, θ]T ∈ R3, where its position is given by [x, y]T and its
orientation in the global frame is represented by θ. δ is the
steering angle in the body frame. The vehicle velocity is v in
the vehicle xv-direction and zero in the yv-direction because
the wheels cannot slip sideways. The front wheel is located
at distance L from the rear wheel along the orientation of
the vehicle. Based on these definitions and configuration, the
kinematic model is given by

ẋ = v cos(θ), (1a)
ẏ = v sin(θ), (1b)

θ̇ =
v

L
tan(δ). (1c)

2) Path Coordinates Model: As shown in Fig. 2, the
curvilinear coordinates can be represented by [s, r, ψ]T [3],
[33]. The tracked path, C, defined in the global frame, can be
represented as a function of its length s (curvilinear abscissa)
at the closest point M to Ov , the angular deviation, ψ = θ−θc,
of the vehicle with respect to the path, where θc is the path

heading at M (in red), and finally, the lateral deviation, r,
which is the signed orthogonal distance from the center of the
rear axle, Ov , to the closest point on the path, M . From the
geometry in Fig. 2, the kinematic model in the path coordinates
is given by [34]

ṡ = v
cos(ψ)

1− rκ(s)
, (2a)

ṙ = v sin(ψ), (2b)

ψ̇ = v

(
tan(δ)

L
− κ(s) cos(ψ)

1− rκ(s)

)
, (2c)

where κ(s) is the curvature of path at point M .

B. Car-like Vehicle Longitudinal Dynamic Model

Several factors determine the vehicle longitudinal dynamic
behavior including the engine, drive line, brake system, aero-
dynamics drag, tire friction, rolling distance, gravitational
force, etc [19]. For the vehicle model, we assume:

Assumption 1. The vehicle body is rigid and symmetric.

Assumption 2. The driving and braking inputs are integrated
into one control input.

Assumption 3. The impact of pitch and yaw motions is
neglected.

Assumption 4. The power-train dynamics are lumped to be
a first-order inertial transfer function.

Therefore, the longitudinal dynamic equation can be repre-
sented by

Mva+Dvv|v|+Gv = Fv,

τ Ḟv + Fv = Fv,des
(3)

where, τ is a parameter characterizes the actuator dynamics,
a = v̇ denotes the vehicle acceleration in the vehicle frame,
and Mv , Dv , Gv , and Fv are the vehicle inertia effect, aero-
dynamic drag, gravity effect, and input force, respectively.

Input-output linearization [35] is frequently used to elim-
inate the non-linearities in longitudinal dynamics for the
purpose of high-level control design. The inverse dynamics-
based control law is given by:

Fv,des = Mvµ+Dv|v|(2aτ + v) +Gv (4)

where µ is the new input signal after system linearization
which has to be designed. By applying this lower-level con-
troller, the third order dynamic model can be written in the
body coordinates as

τ ȧ+ a = µ. (5)

As we intend to express the controller in the path coordi-
nates (as shown in Fig. 2 ), the relation between the control
signals in the path and body coordinates, is recast (2a) as:

ṡ = Jv, (6)

where J is given by

J =
cos(ψ)

(1− rκ)
. (7)
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Figure 3. Platoon representation in the path coordinates.

Thus, the vehicle acceleration in the path coordinates, η, is
given by

η = Ja+ J̇v, (8)

where η = q̇ = s̈ and q = ṡ are the vehicle acceleration and
velocity in the path coordinates respectively. Consequently, if
the mapping from the control signal in the path coordinates,
u, to that in the body coordinates, µ, is given by

µ =
1

J

(
u− J̇v − 2τ J̇a− τ J̈v

)
, (9)

Note that from (7), J = 0 when ψ = ±π/2, ie the vehicle
orientation is exactly orthogonal to the path tangent at M .
While this situation is never encountered in practice, a lower
threshold on |J | can easily deal with this singularity. The
vehicle longitudinal dynamic model in the path coordinates
can be represented by:

ṡ = q, (10a)
q̇ = η, (10b)
τ η̇ + η = u. (10c)

C. Platoon Longitudinal Model

Consider N + 1 vehicles are required to move in a platoon,
as illustrated in Fig. 3, including a leading vehicle with index
0 and N following vehicles with index i; i = 1, 2, . . . , N .
The vehicles can share information by either sensor-based or
communication-based link. As it is shown in Fig. 3 , the
path is not defined beforehand but is built online from the
path of the leader vehicle. In practice, all followers receive
the position of the leader (typically at 10 Hz) and rebuild a
continuous path using splines. The vehicle dynamics in the
path coordinates can be given by

ṡi = qi, (11a)
q̇i = ηi, (11b)

τiη̇i + ηi = ui. (11c)

where the transformation between the two coordinates can be
done by (9).

For the string of vehicles, the inter-vehicle distance, di =
sj − si, is the actual curvilinear distance between vehicle i
and its predecessor j = i − 1, di0 = s0 − si, is the actual
curvilinear distance between vehicle i and leader, dr,i is the
desired inter-vehicle distance between vehicles i and j, and

Sensor-based Link

Communication-based Link

L [0]F [1]F [2]

Figure 4. Information flow topology: Hybrid PLF through communication
link between leader and followers and direct sensor-based measurements
between followers.

dr,i0 is the desired inter-vehicle distance between vehicles i
and 0. For high traffic capacity, the constant spacing policy
method is used.

D. Control Objectives

The platoon has to move in an urban environment and to
track a human-driven leader. The information is shared among
vehicles in the form of hybrid PLF topology, see Fig. 4, in
which each follower, i, can receive the position, velocity, and
acceleration of the leader, s0, q0 and η0 respectively, via a
communication based-link and position information of the pre-
decessor, si−1, via a sensor-based link. In this work we assume
the use of a LiDAR or a camera, which large field of view
allows both localization and perception of the predecessor
along the curve. On the opposite, it is not accurate enough to
estimate the velocity of the precedessor. The communication-
based and the sensor-based information may be affected by
time delay. Considering these conditions, ∀ i = 1, . . . , N ,
the following goals have to be achieved: first, estimation of
the preceding vehicle velocity; second, position and velocity
tracking; third, string stability.

III. CONTROL DESIGN

This section starts by presenting the proposed observer-
based control scheme. Then, the asymptotic platoon stability
and string stability analysis are conducted.

A. Observer-based Control Law

The information flow structure among the platoon can be
modeled by a directed graph (digraph) G = (V, E ,M) char-
acterized by the set of nodes V = 1, . . . , N and set of edges
E ⊆ V ×V . Each vehicle is a node whose dynamics are given
by (11). A graph topology is described by an adjacency matrix
M = [mij ]N×N , in which the element mij = 1 if vehicle i
can obtain information from vehicle j; otherwise, mij = 0.The
Laplacian matrix L = [lij ] ∈ RN×N associated with graph G
is given by lij = −mij if i 6= j, and lij =

∑N
k=1mik if i = j.

From Fig. 4 , in our case L yields:{
∀i ∈ [2, n] : li,i−1 = −1
∀i ∈ [1, n] : li,i = 1

(12)

For the Predecessor - Leader Following (PLF) information
flow topology, the elements of the adjacency matrix is given
as mij = 1 if j = i − 1, and mij = 0 otherwise. The basic
PLF-based control law is given by

ui(t) = gc,3η0 + (1− gc,3)ηi(t) + gc,2eq,i0(t− td)
+ gc,1es,i0(t− td) + go,1es,i(t− td) + go,2eq,i(t− td),

(13)
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where es,i0(t) = s0(t)−si(t)−dr,i0 is the ego-leader position
error, eq,i0(t) = q0(t)− qi(t) is the ego-leader velocity error,
es,i(t) = sj(t) − si(t) − dr,i is the ego-predecessor position
error, and eq,i(t) = qj(t)−qi(t) is the ego-predecessor velocity
error. Gc = [gc,1, gc,2, gc,3]T and Go = [go,1, go,2]T are
controller parameters to be designed.

The time required for data transmission (ego-leader),
sensor-to-controller delay (ego-predecessor), and controller-to-
actuator delay (neglected) are the sources for the time delays in
this system. These different sources of delays can be combined
and represented by a single delay. The wireless communication
delays has a larger effect on the whole time delay. However,
they are mainly affected by the number of vehicles inside the
platoon. In addition, it is known that the number of vehicles
in a platoon varies on a slow timescale, thus delays can be
considered as constant. If needed, online identification of time
delays and their dynamics can be performed as shown in [36].
Based on this discussion and for analysis purposes, we can
assume:

Assumption 5. td is the constant upper bound of the system
delays.

Remark 1. All the information required to apply this control
law (13) is available except the velocity of the predecessor
or the velocity error between the ego vehicle, i, and the
predecessor velocity, eq,i, which has to be estimated using
an observer.

For the observer design, let us define two states z1,i = es,i
that is known (i.e., measured by the sensor mounted on vehicle
i), and z2,i = eq,i which is unknown and we need to estimate.
The state equations that relates these two states are given by

ż1,i = z2,i,

ż2,i = ėq,i.
(14)

The state z2,i can be estimated using the following observer

˙̂z1,i = ẑ2,i + h1(z1,i − ẑ1,i),

˙̂z2,i = h2(z1,i − ẑ1,i),
(15)

where H = [h1, h2]T is the observer gain.
Exploiting the observer output in the control law (13), then

the ith observer-based control law is proposed as

(16)ui(t) = gc,3η0 + (1− gc,3)ηi(t) + gc,2eq,i0(t− td)
+ gc,1es,i0(t− td) + go,1ẑ1,i(t) + go,2ẑ2,i(t).

Let us define the error state vector of vehicle i as fi =
[f1,i, f2,i, f3,i]

T with f1,i = es,i0, f2,i = eq,i0, and f3,i =
eη,i0 = η0 − ηi. In order to remove higher-order dynamics,
the leading vehicle velocity is assumed to be constant. We will
see in the experimental section that our approach is robust to
this hypothesis. In this case, the ith closed-loop state space
model is given by

ḟi(t) = Affi(t) +Bf εi(t), (17)

where Af =

0 1 0
0 0 1
0 0 0

, Bf =

 0
0
1
τi

, and

(18)εi(t) = −gc,3eη,i0(t)− gc,2eq,i0(t− td)
− gc,1es,i0(t− td)− go,1ẑ1,i(t)− go,2ẑ2,i(t).

Consider that z1,i = es,i = es,i0 − es,j0 and ẑi = [ẑ1,i, ẑ2,i]
T ,

then (15) can be rewritten in concise form as

˙̂zi(t) = (Az −HCz)ẑi(t) +HCzf

(
fi(t− td)− fj(t− td)

)
,

(19)

where Az =

[
0 1
0 0

]
, Cz = [1, 0], and Czf = [1, 0, 0].

Defining Gc = KQ1, Go = KQ2, K = [k1, k2, k3],
Q1 ∈ R3×3 and Q2 ∈ R3×2, then (18) can be recast as

(20)εi(t) = −KQ1fi(t− td)−KQ2ẑi(t),

Let F = [fT1 , . . . , f
T
N ]T , Ẑ = [ẑT1 , . . . , ẑ

T
N ]T and E =

[ε1, . . . , εN ]T , after some algebraic manipulations, then the
system collective dynamics are given by

(21)
Ḟ (t) =

(
IN ⊗Af

)
F (t)−

(
IN ⊗BfKQ1

)
F (t− td)

−
(
IN ⊗BfKQ2

)
Ẑ(t),

˙̂
Z(t) =

(
IN ⊗ (Az −HCz)

)
Ẑ(t) +

(
L ⊗HCzf

)
F (t− td),

(22)
where, IN and ⊗ denotes (N × N) identity matrix and
Kronecker product respectively.

B. Asymptotic Stability

Asymptotic stability is a key condition for platoons, and
reflects the stability of the platoon as a system [4], [37] 1. Its
analysis typically depends on the considered IFT. In our case,
the proposed observer is fully part of the IFT. In the form of
time-delayed system, (21) and (22) can be recast as

Ẋ(t) = AoX(t) +AdX(t− td), (23)

where X(t) = [FT (t), ZT (t)]T ,

Ao =

[
IN ⊗Af −IN ⊗BfKQ2

O2N×3N IN ⊗ (Az −HCz)

]
, (24)

Ad =

[
−IN ⊗BfKQ1 O3N×2N

L ⊗HCzf O2N

]
, (25)

ON and ON1×N2 denote (N × N) and (N1 × N2) null
matrices respectively.

From Leibniz-Newton formula, we have

X(t− td) = X(t)−
∫ 0

−td
Ẋ(t+ ρ)dρ. (26)

Hence, substituting (26) into (23) we get

Ẋ(t) = AaX(t)−Am
∫ 0

−td
X(t+ρ)dρ−A2

d

∫ 0

−td
X(t+ρ−td)dρ

(27)

1asymptotic stability is referred as internal stability in [4]
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where Aa = Ao + Ad and Am = AdAo. The matrix Aa is
given by

Aa =

[
IN ⊗ (Af −BfKQ1) −IN ⊗BfKQ2

L ⊗HCzf IN ⊗ (Az −HCz)

]
, (28)

Proposition 1. Assuming Γ ∈ R2×3 satisfies:

(Az −HCz)Γ− Γ(Af −BfK) = −HCzf , (29)

then the matrix Aa defined in (28) is Hurwitz stable if the
following conditions are satisfied:

1) The gain matrices Q1 and Q2 must satisfy

Q1 +Q2Γ = I3 (30)

2) Constraints on the gain vector K as

k2 > τi
k1

k3
,∀ k1, k2, and k3 > 0. (31)

3)

λmax
{

ΓBfKQ2

}
< λmin

{
− (Az −HCz)

}
. (32)

Proof: For the PLF information flow topology, L is an
lower-triangular matrix and its eigenvalues are all equal to 1.
Therefore, for vehicle i, the matrix Aa can be represented as

Āa =

[
Af −BfKQ1 −BfKQ2

HCzf Az −HCz

]
. (33)

Exploiting the similarity transformation technique by multiply-

ing the left and right sides of the matrix Āa by Q̄ =

[
I 0
−Γ I

]
,

and Q̄−1 =

[
I 0
Γ I

]
, respectively, and by conditions (29) and

(30), one can obtain

Q̄ĀaQ̄
−1 =

[
Af −BfK −BfKQ2

0 Az −HCz + ΓBfKQ2

]
. (34)

Therefore, eig
{
Āa
}

= eig
{
Af −BfK

}
∪

eig
{
Az −HCz + ΓBfKQ2

}
, where eig{∗} denotes the

eigenvalues of matrix ∗. The matrix (Az−HCz + ΓBfKQ2)
is negative definite if conditions of Proposition 1 are satisfied.
The characteristic equation of the matrix Af − BfK can be
expressed as

det
(
SI3 − (Af −BfK)

)
= S3 +

k3

τi
S2 +

k2

τi
S +

k1

τi
. (35)

According to Routh–Hurwitz stability criterion [38], this poly-
nomial (35) is Hurwitz stable under condition (31). This
implies that all eigenvalues of Āa and consequently Aa have
negative real parts.

The conditions for the platoon asymptotic stability can be
established by the following theorem.

Theorem 1. Consider the cooperative control of a platoon
of connected car-like vehicles with dynamics defined in (2),
(3) - (9), and (11), with assumptions 1 - 5, and the observer-
based control algorithm proposed in (15) and (16) is applied
to it. Then, the system is asymptotically stable as long as the

2 3 4 5 6 7
N
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t d
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]
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γ
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0.14
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t d
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]

Figure 5. Influence of N (top), pc (middle) and γ (bottom) on the upper
bond td for the time delay. Unless varying, parameters are chosen as N =
3, pc = 0.3, γ = 5.

conditions (29) - (32) given in Proposition 1 are met and the
upper bound of time delay is given by

td <
‖Λ−Q‖∥∥PAmP−1ATmP + 1

2P + PA2
dP
−1(A2

d)
TP
∥∥ (36)

The proof depends mainly on the well-known Lyapunov-
Krasovskii theorem and is detailed in Appendix A.

Remark 2. To get a unique solution to Sylvester equation
(29), Γ, the matrices (Az − HCz) and (Af − BfK) have
to be designed such that there are no eigenvalues in common
between them.

Remark 3. Adding observer to the control loop increases the
complexity of the string stability analysis. Therefore, the next
corollary is proposed in order to reduce the required design
parameters and to simplify the observer-based control design
and its string stability analysis.

Remark 4. While (36) is highly non-linear and depends on
the dynamics of the system, a numerical example of time
delay upper bound is shown in Fig.5. As expected, the more
challenging the configuration (higher N, pc or γ) the smaller
td limitation.

Corollary 1. The proposed platoon observer-based control
system is asymptotically stable provided that condition (36) is
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satisfied and the design parameters are selected as

k1 = τip
3
c , (37a)

k2 = 3τip
2
c , (37b)

k3 = 3τipc, (37c)
h1 = 2po, (37d)

h2 = p2
o, (37e)

po = γpc,∀γ, pc, and po > 0, (37f)

γ ≥ 71

15
, (37g)

where the desired eigenvalues of controller part (Af −BfK)
are assigned at −pc, and that of the observer part, (Az −
HCz), are placed at −po. γ is a constant that determines the
distance between the poles of the controller and the observer.

Proof: By choosing K and H as given in conditions (37a)
- (37e), all the poles of (Af − BfK) and (Az − HCz) are
placed at −pc and −po respectively. Hence, one can choose the
eigenvalues to be different by satisfying (37g). Thus, according
to Remark 2, solution of (29), Γ, exists, and consequently,
condition (30) can be met.

Checking stability conditions of (35), and setting the value
of k1, k2, and k3, as given in (37a) - (37c), we can satisfy
condition (31).

Substitution (37a) - (37f) into (32), after some algebraic and
numeric manipulations, one can get a condition for γ as given
in (37g).

Remark 5. In practice, tuning the parameter γ can be done
by starting from the exposed lower bound and increase it as
long as the induced behavior does not get too sensitive to
measurement noise. The optimal value for γ thus depends on
the desired behavior.

C. String Stability

In addition to asymptotic stability, the platoon controller
has to guarantee string stability, including a leading vehicle
with index i = 0 and N following vehicles with index i =
1, 2, . . . , N . String stability prevents the error signals from
amplifying when propagating downstream the vehicle string,
which may lead to rear-end collision.

Definition 1. L2 String Stability means that the energy (repre-
sented by the L2 norm) of the position error of vehicle i, es,i,
is smaller than the energy of the position error of preceding
vehicle j = i − 1, es,j [39]. Since

∥∥∥Ḡ(S) = Ei(S)
Ej(S)

∥∥∥
∞

=

supes,j∈L2

‖es,i‖
2

‖es,j‖
2

, the string stability is guaranteed if∥∥Ḡ(s)
∥∥
∞ < 1. (38)

For notation and analysis simplicity, let us define ei(t) =
sj(t) − si(t) − dr,i, ėi(t) = qj(t) − qi(t), ei0(t) = s0(t) −
si(t)− dr,i0, ėi0(t) = q0(t)− qi(t), and ëi(t) = ηj(t)− ηi(t).

Assumption 6. All the vehicles have equal dynamics, i.e.,
τi = τ ∀i = 1, 2, . . . , N .

Theorem 2. Consider the platoon system presented in Theo-
rem 1, with assumptions 1 - 6, and the observer-based control
algorithm proposed in (16) and its parameterization given in
Corollary 1. Then, the platoon is string stable as long as the
Corollary 1 conditions are satisfied, the time delay td is upper
bounded by a functional of the observer parameters, and the
choice of factor γ and pole pc is constrained by

ρ ≥ 11

2

√
pc. (39)

The proof is given in Appendix B. In particular, the upper
bound for td is given in (68) and (70). This implies that given
an estimation of the time delay, suitable observer and control
poles can be chosen in order to keep the overall loop stable
and string-stable.

After studying of the asymptotic and string stability, the rest
of this paper tackles the validation of our theoretical results.

IV. RESULTS AND DISCUSSIONS

In this section, we present both simulation and real-time
experiments.

A. Study Setup

To emulate a realistic setup, the proposed control strategy
is tested by implementing the car-like vehicles platoon in a
vehicular mobility simulator called ICARS that is developed
under the well-known Robot Operating System (ROS). ICARS
has features such as real vehicle dynamics and models (engine,
transmission, braking systems, etc.), both low and high level
measurement units with noises, low level communication
module between different parts of the vehicle and the on-board
computer, real maps of an urban environment with different
road conditions (curvature, bumps, etc.), vehicle communi-
cation modules, fully compatible with embedded computer
architecture to test real platoon experiments, and Human-
Machine Interface to send high-level commands to the vehicle
in either simulation or real-time.

We consider a platoon composed of N follower vehicles
(of type Robotized Renault ZOE-Q90 LIFE) plus a manually
driven leader (of type Renault FLUENCE electric). The pa-
rameters of the vehicles are given in Table I. Furthermore,
the parameter τ is estimated by experimental tests. For that
a real-time input-output data is recorded and the low-level
model of the vehicle, (5), is estimated by using the MATLAB
Identification Toolbox. The platoon is tested in the Ecole
Centrale de Nantes (ECN) campus as an example of urban
environment (road with curvatures, bumps, humans, etc.). The
maps of ECN are shared offline among the vehicles. As the
leader moves from its starting position to the destination
points, its path is constructed online and sent by the radio
communication module to the followers as the reference path.
The radio system receives the vehicle information in the
platoon one by one. Thus, a synchronization algorithm is
developed in the ICARS framework to receive and synchronize
the information from the radio module.

The lateral controller presented in [32] produces the steering
angle of the vehicle to guide the cars to follow the reference
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Table I
PHYSICAL VEHICLES PARAMETERS

Parameter
Vehicle FLUENCE ZOE

Mass 1605 kg 1428 kg
Width 1.545 m 1.945 m
Height 1.462 m 1.562 m
Length 4.748 m 4.084 m

Wheelbase 1.140 m 0.657 m
distance between axes 2.701 m 2.588 m

distance between wheels 1.545 m 1.511 m
Wheel radius 0.29 m 0.29 m

Inertia momentum 45.0 kgm2 28.0 kgm2

τ − 0.2

path of the leader (by minimizing both the lateral and angular
deviations, ri and ψi, respectively).

The longitudinal controller runs at a rate of 100 Hz. Control
parameters are selected to guarantee the asymptotic stability
and string stability given in Theorem 1, Corollary 1 and
Theorem 2. Table II presented the control parameters. In
addition, by using this setting of parameters, the theoretical
upper bound of time delay, satisfying the conditions provided
in (36), (68) and (70), is 44.9235 ms. For safety and comfort-
ability, the vehicle velocity and acceleration are constrained
to certain levels as given in Table II. Simulation and real-time

Table II
CONTROLLER PARAMETERS FOR SIMULATION AND EXPERIMENTS

Parameter Value Parameter Value
ui ∈ [−6, 1]m/s2 vi ∈ [0, 8]m/s
dr,i 10 m γ 6
pc 1 Λ 10000I5N
Q 0.0001I5N

experiments are demonstrated in the video attached to this
article 2.

B. Simulation Study

In order to illustrate the string stability and the estimation
errors well, a three ZOE follower vehicles (i.e., N = 3) are
used in a prior simulation studies.

Results of the lateral motion are illustrated in Fig. 6a.
The reference and actual paths of the leader and followers
respectively are shown in Fig. 6a. Fig. 6b presents the time
history of lateral deviation of the followers with respect to the
reference path generated form the leader. During the platoon
initialization, it is noted higher deviations, due to the time
taken by the followers to join the platoon and converge to
the leader path, which is gradually attenuated. The deviations
increase when the leader and followers move through a curved
segmented of the road. These figures enlighten the tracking
capabilities of the lateral controller.

Figures 6c − 6f show the longitudinal motion results. As
shown in Fig. 6c, the leader moves with variable velocity
depending on the path conditions (manually by a human

2https://box.ec-nantes.fr:443/index.php/s/wtBB3E4YRabnpTN
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(f) z̃2,i = eq,ij − ẑ2,i
Figure 6. Platoon simulation results. L: leader actual path, and Fi: follower
i actual path. The followers track the path perfectly

driver) which reflects the nature of navigation in urban en-
vironments. The vehicles start from distances different from
the desired inter-vehicle distance and reach the consensus
where the curvilinear position and velocity tracking errors
converge. At certain places in the path (e.g., road curvature),
the position and velocity errors become higher. These are
desired to allow the followers to adapt their velocity based
on the road conditions independently from the leader velocity.
History of the observer estimation error, z̃2,i = eq,ij − ẑ2,i,
is given Fig. 6f which shows convergence of the estimated
predecessor velocity.

To quantify our results, the Root Mean Squared Error
(RMSE) of the tracking and estimation errors, calculated after
the passing of an initialization period, are given in Table III
which are in the acceptable ranges. Furthermore, this table
shows that the position tracking errors are attenuated as the
RMSE of es,i+1 < es,i, which enlightens the string stability
of the platoon.

C. Experimental Results

We have two real following vehicles of type ZOE, so N = 2
in the real-time experiments, see Fig. 7. Each vehicle has
an intelligent sensing module including a set of navigation
sensors and localization algorithms to determine the vehicle
actual status, e.g., position, velocity, acceleration, heading,
etc. In addition, each of them is equipped with a radio
module (ARM-N8-SIGFOX with 868 Mhz 1/2 wave antenna),

https://box.ec-nantes.fr:443/index.php/s/wtBB3E4YRabnpTN
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Table III
RMSE OF TRACKING AND ESTIMATION ERRORS IN SIMULATION.

RMSE
Follower i 1 2 3 4 5

es,i[m] 0.267 0.114 0.029 0.023 0.019

eq,i[m/s] 0.119 0.063 0.048 0.039 0.033

z̃2,i[m/s] - 0.063 0.048 0.039 0.033

ri[m] 0.132 0.108 0.110 0.111 0.105

Figure 7. Platoon prototype in the Ecole Centrale de Nantes campus.

an IMU (XSENS MTI-100), a GPS-RTK (PROFLEX-800), a
laser ranger (Velodyne VLP-16), and an Onboard Computer
(Doliath 1000 - Intel Core i5-3610ME 2.10GHz). The software
architecture is developed under ROS Kinetic on Ubuntu 16.04
LTS-64 bits. Expected communication is performed at 10 Hz
in order to cope with packet loss. On each vehicle, the received
data is processed by an embedded Kalman Filter in order to
estimate the state of its precedessors (including the leading
vehicle) at a higher rate.

A study similar to that done in simulation is implemented
experimentally. Figures 8a, 8b show the experimental results
of path tracking and lateral deviations which illustrate the
tracking capabilities of the lateral controller.

Figures 8c − 8f present the longitudinal motion results in
real-time. The vehicles start from distances different from the
desired inter-vehicle distance and reach the consensus where
the curvilinear position tracking, velocity tracking and front
vehicle velocity estimation errors converge considering the
road conditions. The experimental results ensure the capability
of the proposed approach of creating and maintaining the
platoon in case of a manually driven leader (see Fig. 8c). Table
IV gives the RMSE of the tracking and estimation errors which
are larger than that obtained in the simulation study but they
are still in the acceptable ranges. Moreover, it indicates that
the position tracking errors are attenuated as the RMSE of
es,2 < es,1, which validates the string stability of the platoon
in real-time.

V. CONCLUSION

A successful application of an observer-based longitudinal
controller for car-like vehicles platoon navigating in an urban
environment is presented. Platoon kinematic and dynamic
models are introduced in both curvilinear and Cartesian co-
ordinates with a framework that allows designing the control
law in the curvilinear coordinates considering the actuator
dynamics. An observer-based control law is proposed to
achieve both vehicles consensus and string stability. This
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Figure 8. Platoon experimental results.

Table IV
RMSE OF TRACKING ERRORS IN REAL-TIME

RMSE
Follower i 1 2

es,i[m] 0.5623 0.4876

eq,i[m/s] 0.2360 0.1317

z̃2,i[m/s] - 0.1317

ri[m] 0.1488 0.1339

ψi[rad] 0.0300 0.0179

control scheme requires a minimum number of communication
links meanwhile it can achieve a high traffic capacity by uti-
lization of information from sensor-based and communication-
based links. The missing predecessor velocity information is
estimated by an observer. Compared to configurations where
the predecessor velocity can be directly measured, the main
limit is that the inter-vehicle distance should be increase in
order to account for increased time delays and convergence
of the observer. Conditions for platoon asymptotic stability
and string stability are provided considering time delay. Both
simulation and real-time studies are conducted to enlighten the
efficiency of the proposed approach.
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APPENDIX

A. Proof of Theorem 1

Lemma 1. (Lyapunov-Krasovskii Stability Theorem [40]). Let
φ(δ) ∈ C[a, b] → Rn be the set of continuous functions
mapping the interval [a, b] to Rn, then the uniform norm of φ
is defined as

‖φ‖c = max
a≤δ≤b

∥∥φ(δ)
∥∥ .

Given a system of the form

˙̄x(t) = g(t, x̄(t)), t ≥ t0,
x̄(t0 + δ) = φ(δ),∀δ ∈ [−β, 0],

(40)

where β > 0 is the delay and φ ∈ C[−β, 0] → Rn is the
function of initial conditions. Then, the following result holds:
Suppose that the function g : R × C[−β, 0] → Rn maps R×
(bounded sets in C[−β, 0]) into bounded sets of Rn. Let σ1, σ2,
σ3 : R+ → R+ be continuous nondecreasing functions with
σ1(δ) > 0 and σ2(δ) > 0 for δ > 0 and σ1(0) = σ2(0) = 0.
Assume further there exists a continuous differential function
V : R× C[−β, 0]→ Rn such that

σ1(
∥∥φ(0)

∥∥) ≤ V (t, φ) ≤ σ2(‖φ‖c), (41)

and its derivative along (40) is non-positive in the sense that

V̇ (t, φ) ≤ −σ3(
∥∥φ(0)

∥∥), (42)

then the trivial solution of (40) is uniformly stable. Moreover,
if σ3(δ) > 0 for δ > 0, then it is uniformly asymptotically
stable. In addition, if limδ→∞ σ1(δ) = +∞, then it is globally
uniformly asymptotically stable.

Let P ∈ R5N×5N with P = PT > 0 and Λ ∈ R5N×5N

with Λ > 0 are appropriately chosen matrices, and consider
the following Lyapunov–Krasovskii function for the system in
(27)

V (t) = X(t)TPX(t) +

∫ t

t−td
X(ξ)TΛX(ξ)dξ. (43)

According to the hypotheses of Lemma 1, let us define the
following continuous nondecreasing and positive functions as

σ1(X(t)) = X(t)TPX(t),

σ2(X(t− td)) = X(t)TPX(t) +

∫ t

t−td
X(ξ)TΛX(ξ)dξ.

(44)
From definitions in (43) and (44), condition (41) is satisfied.
Differentiating the function in (43) yields

V̇ (t) = Ẋ(t)TPX(t)+X(t)TPẊ(t)+
(
X(ξ)TΛX(ξ)ξ̇

)∣∣∣∣∣∣
ξ=t

ξ=t−td

.

(45)

Substituting (27) into (45), after some algebraic manipulations,
we have

(46)

V̇ (t) = X(t)T (PAa +ATa P )X(t)

+X(t)TΛX(t)−X(t− td)TΛX(t− td)

− 2X(t)TPAm

∫ 0

−td
x(t+ ρ)dρ

− 2X(t)TPA2
d

∫ 0

−td
x(t+ ρ− td)dρ.

From Proposition 1, the matrix Aa is Hurwitz stable, and hence
from Lyapunov theorem, we have

PAa +ATa P = −Q, (47)

where Q = QT > 0.

Lemma 2. [41]. For any positive definite matrix W with
suitable dimensions, it holds

2aT c ≤ aTWa+ cTW−1c. (48)

According to Lemma 2, choosing a = −XTPAm, c =
x(t+ρ),W = P−1, and integrating both side of the inequality,
we have

(49)

2X(t)TPAm

∫ 0

−td
x(t+ ρ)dρ

≤ tdX(t)TPAmP
−1ATmPX(t)

+

∫ 0

−td
X(t+ ρ)TPX(t+ ρ)dρ.

Similarly, one can obtain

(50)

2X(t)TPA2
d

∫ 0

−td
x(t+ ρ− td)dρ

≤ tdX(t)TPA2
dP
−1(A2

d)
TPX(t)

+

∫ 0

−td
X(t+ ρ− td)TPX(t+ ρ− td)dρ.

Lemma 3. [42]. Let g : C ⊆ R → R be a convex mapping
defined on the interval C of real numbers, then the following
inequality holds

1

b− a

∫ b

a

g(x̄)dx̄ ≤ g(a) + g(b)

2
, (51)

where a, b ∈ C and a < b.

Exploiting Lemma 3 for the integral expressions in (49) and
(50), it yields

(52)

2X(t)TPAm

∫ 0

−td
x(t+ ρ)dρ

< tdX(t)TPAmP
−1ATmPX(t)

+
td
2

(
X(t)TPX(t) +X(t− td)TPX(t− td)

)
,
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and

2X(t)TPA2
d

∫ 0

−td
x(t+ ρ− td)dρ

≤ tdX(t)TPA2
dP
−1(A2

d)
TPX(t) +

+
td
2

(
X(t−td)TPX(t−td)+X(t−2td)

TPX(t−2td)
)
.

(53)

Substituting (47), (52) and (53) into (46), after some algebraic
manipulations, we have

(54)

V̇ < X(t)T
(
−Q+ Λ− tdPAmP−1ATmP −

td
2
P

− tdPA2
dP
−1(A2

d)
TP
)
X(t)

+X(t− td)T
(
−Λ− tdP

)
X(t− td)

+X(t− 2td)
T
(
− td

2
P
)
X(t− 2td).

Suppose ζ = [X(t), X(t− td), X(t−2td)]
T , then (54) can be

recast in a compact form as

V̇ = ζT∆ζ, (55)

where ∆ = blkdiag{∆1,∆2,∆3}, with ∆1 = −Q + Λ −
tdPAmP

−1ATmP − td
2 P − tdPA2

dP
−1(A2

d)
TP , ∆2 = −Λ−

tdP and ∆3 = td
2 P .

According to Lemma 1 and condition (42), to guarantee the
uniform stability, we have to prove that ∆ < 0. Exploiting that
Λ > 0 and P > 0, then ∆2 < 0 and ∆3 < 0. Consequently,
∆ < 0 if ∆1 < 0, i.e., by satisfying condition (36).

Now, according to Lemma 1, given the selected form of
σ1(X(t)) in (44), the delayed closed-loop system (23) is also
globally asymptotically stable. �

B. Proof of Theorem 2

Let us start with
...
e i(t) = η̇j(t)− η̇i(t). (56)

Substituting (11) and (16) into (56), considering the rela-
tions ei = ei0−ej0 and ėi = ėi0−ėj0, and after some algebraic
manipulations, we get

τ
...
e i(t) = −gc,3ëi(t)− gc,2ėi(t− td)− gc,1ei(t− td)

− go,1ẑ1,i(t)− go,2ẑ2,i(t) + go,1ẑ1,j(t) + go,2ẑ2,j(t).

(57)

The observer model given (19) can be represented in the
form of transfer functions as Ḡz1(S) =

Ẑ1,i(S)
Ej(S) and Ḡz2(S) =

Ẑ2,i(S)
Ej(S) .

Expressing (57) in the S-domain, one can obtain

Ḡ(S) =
go,1Ḡz1 + go,2Ḡz2

τS3 + gc,3S
2 + gc,2Se

−tdS + gc,1e
−tdS

+go,1Ḡz1 + go,2Ḡz2

. (58)

Since
∥∥Ḡ(S)

∥∥
∞ = supw>0

√∣∣Ḡ(jw)
∣∣2 = supw>0

√
Ḡn(w)
Ḡd(w)

,
string stability criterion (38) is equivalent to

Ḡd(ω)− Ḡn(ω) > 0, ∀ω > 0. (59)

Exploiting the definitions of Gc and Go along with (37a) -
(37f), after certain algebraic manipulations, (59) is recast as

(60)

Ḡd(ω)− Ḡn(ω) = a2
10ω

10 +
(
a8,1 cos(tdω) + a8,2

)
ω8

+ a7 sin(tdω)ω7

+
(
a6,1 cos(tdω) + a6,2

)
ω6

+ a5 sin(tdω)ω5

+
(
a4,1 cos(tdω) + a4,2

)
ω4

+ a3 sin(tdω)ω3

+
(
a2,1 cos(tdω) + a2,2

)
ω2 + a0,

where coefficients a(.) are functions of γ and pc.
The following facts can be used to complete the analysis:

− sin(ā) ≥ −ā,∀ā > 0, (61a)
− cos(ā) ≥ −1, (61b)

ā sin(φ̄) + b̄ cos(φ̄) ≥ −
√
ā2 + b̄2, (61c)

√
1 + c̄ u 1 +

1

2
c̄,∀c̄� 1. (61d)

After some algebraic and numeric manipulations, under con-
dition (39), we find

a0 > 0 (62a)
a3, a4,1, a6,1, a7, a8,1 < 0 (62b)

By using (61c), we obtain

(63)
a5 sin(tdω)ω5 +

(
a2,1 cos(tdω) + a2,2

)
ω2

≥ −ω2
√

(a5ω3)2 + a2
2,1 + a2,2ω

2.

Exploiting the study presented in [43] which stated that the
key region of string stability is at the region of low frequencies
at which the spacing errors have most of their energy, then at
low frequencies, we can use the fact (61d) to simplify the
square root in (63) as

√
(a5ω3)2 + a2

2,1 u a2,1(
a25ω

6

2a22,1
+ 1).

Thus, (63) can be rewritten as

(64)
a5 sin(tdω)ω5 +

(
a2,1 cos(tdω) + a2,2

)
ω2 '

− a2
5

2a2,1
ω8 + (a2,2 − a2,1)ω2.

Satisfying condition (39), it follows

(a2,2 − a2,1)ω2 > 0. (65)

Exploiting the fact (61a) along with (62b), we obtain

a7 sin(tdω)ω7 ≥ −|a7| tdω8. (66)

Gathering the terms of ω8 from (64), (66) and (60), along
with (61b) and (62b), and satisfying condition (39), we get

(67)

(
a8,1 cos(tdω) + a8,2 −

a2
5

2a2,1
−|a7| td

)
ω8

≥
(
−
∣∣a8,1

∣∣+ a8,2 −
a2

5

2a2,1
−|a7| td

)
ω8.
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Hence, for
(
−
∣∣a8,1

∣∣+ a8,2 − a25
2a2,1

−|a7| td
)
> 0, along with

(39), we set the condition

td <
−
∣∣a8,1

∣∣+ a8,2 − a25
2a2,1

|a7|
. (68)

Exploiting the facts (61a) and (61b), it follows

− a3 sin(tdω)ω3 ≥ −|a3| tdω4(
a4,1 cos(tdω) + a4,2

)
ω4 ≥

(
−
∣∣a4,1

∣∣+ a4,2

)
ω4.

(69)

Collecting the terms of ω4 in (69), we get the new coef-
ficient of ω4 which is a4,2 − a4,1 −|a3| td that is positive if

td <
a4,2 −

∣∣a4,1

∣∣
|a3|

. (70)

Meanwhile the condition (39) satisfies that (a4,2−
∣∣a4,1

∣∣) > 0
that ensures the positiveness of td upper bound.

Utilizing the fact (61b) with (62b), under condition (39), it
follows(
a6,1 cos(tdω) + a6,2

)
ω6 ≥

(
−
∣∣a6,1

∣∣+ a6,2

)
ω6 > 0. (71)

Checking (59), (60), (62a), (64), (65), (67), (69) and (71),
then the string stability criteria (59) is guaranteed. �
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