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Abstract. The purpose of this article is to show the basic characteristics of the so-called 
pantographic metamaterial. Here we underline how the microstructure provides some exotic 
properties and, in principle, implies the second gradient nature of this type of metamaterial. 
Thanks to the development of additive manufacturing technology (especially in the field of 
metallurgy) we are now able to produce real samples and carry out experimental 
measurements to validate the proposed models. In this article we show some new 
experimental tests, obtained by considering pantographic structures printed in stainless steel. 
Numerical simulations are briefly shown to show the validity of the theoretical model 
developed to describe the pantographic metamaterial. 
Keywords: pantographic metamaterials, second gradient theory, multi-scale models, 
homogenization 

1. Introduction
It has been shown that, if the microstructure is complex enough, the resulting homogenized
continuous model cannot be always framed in classic continuum mechanics [1-5]. Of
particular interest in this family is the so-called pantographic material [6-9].

In this article we want to show how the basic deformation properties of pantographic 
structures depend only on their geometry, allowing us to talk about a new class of 
metamaterials. Clearly, the range of measured forces will depend on the material that 
constitutes the structure, but the constituent equations remain the same and we only need to 
modify the parameters to adapt them to the experimental measures. This peculiarity is typical 
of metamaterials and can be obtained through a procedure of homogenization, as described 
in [10-12].  



Fig. 1. A inox printed pantographic structure (a) and some particulars: the two families of 
fibers (b) interconnect in correspondence of some pivots (c).  

We thank Prof. F. Hild and Dr. X. Pinelli for image (c) 

It has been shown by Germain [13-14], Mindlin et al. [15-17], Toupin [18] and 
Sedov [19] how the presence of a microstructure can be described from a macroscopic point 
of view by introducing a second gradient (or strain gradient, as it was first called) term in the 
energy of the microstructured material.The pantographic structure to which we will refer 
corresponds to a real rectangular sample printed in 3D (see Fig. 1) consisting of a planar grid 
formed by two families of continuous fibers that intersect orthogonally and connect to each 
other in nodes that we call pivots (pivots do not interrupt the continuity of the fibers). Each 
fibre belonging to one of the two arrays is connected by the pivots to the fibres belonging to 
the other array. The real pivots are cylinders, whose torsion is a priori not negligible. 

2. Second gradient homogenized model
In [8] it has been shown how to obtain a macroscopic second gradient continuum model by
means of a process of homogenization (which specifically consists in performing a procedure
of identification of the energy of macro-deformation, i.e. a macroscopic Lagrangian density
(line or surface) of energy of deformation, in terms of the constituent parameters that appear
in the postulated expressions of the energies of micro-deformation) of a postulated micro-
model. If we assume a 2D continuum whose reference configuration is given by a rectangular
domain Ω = [0, 𝐿𝐿1] × [0, 𝐿𝐿2] ⊂ ℝ2 (for example, in Fig. 1 𝐿𝐿1 and 𝐿𝐿2 represent the lengths of
the sides of the ideal rectangle containing the pantographic structure) and assuming planar
motion, the current configuration of Ω is described by the planar macro-placement.
𝝌𝝌:Ω⟶ ℝ2.

In [8] it is proven that the continuum energy of a pantographic structure can be written 
as 
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𝛽𝛽  and no sum over repeated α is intended;
the 𝛾𝛾 exponent characterizes the torsional deformation of the pivot and is determined by the 
particular material used to print the pantographic structure considered. This expression allows 
to properly describe the deformation features of pantographic structures. In fact, it contains 
terms accounting for elongation and bending deformations, which are weighted by the 



rigidities 𝕂𝕂𝑒𝑒 and 𝕂𝕂𝑏𝑏, and for the macroscopic shear deformation (at a microscopic level the 
shear deformation is related to the torsion of the interconnecting pivots), with stiffness 𝕂𝕂𝑝𝑝. 
The variational formulation allows to derive all the mechanical properties by means of 
minimization of the energy. In [20] first experimental evidences and numerical simulations 
have been presented. The pantographic structures there considered were polyamide printed 
structures. Here we present results relative to metallic printed structures. The central point of 
this work is to show how the mechanical properties of this particular structure do not depend 
on the material itself (clearly the parameters 𝕂𝕂𝑖𝑖 to be used in the model depend on it, but they 
define only the range limits of the forces involved), but only on the geometry of the system: in 
this sense the pantographic structures constitute a class of metamaterials. The homogenization 
procedure defined in [8] is so well founded that the second gradient macro-model can be used 
to produce results, through numerical simulations compared to experimental data, even in the 
case of pantographic structures where the distance between the pivots (theoretically, the 
smaller this distance, the more the structure can be assimilated to a continuous) is quite large. 
Consider, for example, the different structures shown in Fig. 2, all of which can be described 
using energy in Eq. (1), even for the case (a), an example of a wide-knit pantographic 
structure. This aspect of the homogenization procedure for pantographic metamaterial is 
currently being studied. 

Fig. 2. A wide-knit pantographic structure (a) and two structures with a thicker mesh (b,c) 

The simplest experimental test that can be performed on pantographic structures is 
known as the BIAS extension test [20] (it is specifically called the BIAS extension and not 
just the extension, because it is performed in a biased direction with respect to the direction of 
the fibers).  

This particular test is performed by tightening the short sides of the pantograph structure 
to observe the effects of the second gradient. In fact, as we can see in Fig. 3, if the short sides 
are not blocked, then, in theory, we should measure a zero strain energy, because of the truss 
effect: up to the point where all the fibers become parallel the extension energy is zero (or 
negligible). If the short sides are not tightened, the bending energy (second gradient, as it can 
be seen in Eq. (1) where the second gradients of the placement appear only in the bending 
term) is also cancelled out. Therefore, this test was designed in the field of pantographic 



structures specifically to observe the second gradient effect. Some experimental results are 
presented and compared with numerical simulations in the next section. 

Fig. 3. Examples of BIAS extension tests without clamping (a) and with clamping of the short 
sides (b). In case (b) the bending of the fibres is theoretically described by a second gradient 

term in the deformation energy 

3 Comparison between experimental measurements and numerical simulations 
In this section we present the experimental measurements for two (theoretically) identical 
steel molded samples, namely "Sample A" and "Sample B". There is a fundamental difference 
between the two samples: the second, sample B, suffered a fracture in the first stage of 
deformation and therefore the total amount of force exerted in the BIAS test is lower than that 
obtained for sample A (see Fig. 4). The samples are molded in 316L stainless steel. Both 
specimens have a rectangular shape with dimensions of 30 𝑚𝑚𝑚𝑚 × 90 𝑚𝑚𝑚𝑚. 

Fig. 4. Force-displacement plots for two steel (theoretically) identical pantographic structures. 
One of the two (right plot, the pantographic structure we referred to as Sample B) has joined 

the fracture in a very early stage of deformation, probably for some random differences 
produced during the stage of manufacturing 

First of all, we want to underline that the general shape of the force-displacement curve 
is the same in the case of Samples A and B and it is only necessary to change the scale of 
values. But if it is simply understandable in the case of two samples printed in the same 
material, it is surprising to find a very similar curve also in the case of samples printed in 
polyamide [9] or aluminum [21] (again, the only thing that changes is the range of the force in 
question). The behavior measured in the BIAS experiments also shows that the tolerance to 
damage to pantographic structures is noteworthy. This aspect is included in the force-
displacement diagrams in Fig. 4. The force-displacement diagram for pantographic fabrics 
usually shows a peak at the end of the stiffening phase. After the peak, the structure 



undergoes a sequential rupture of its sub-components, typically the cutting of the pivots, 
resulting in avalanche softening. The gradual softening leading to failure suggests that the 
topology of the structure and the deformability properties of its members are such that, when 
a breakage of the subcomponent occurs, the load can be redistributed into an attenuating agent 
that prevents simultaneous catastrophic failures. In fact, this tolerance to damage is also 
shown by the pantographic structure when the failure of its sub-components occurs before the 
peak load.  

Fig. 5. Qualitative comparison between experimental data (Sample B) and numerical 
simulations for different values of the 𝛾𝛾 exponent: 𝛾𝛾 = 1.2 (red dashed),  

𝛾𝛾 = 1.3 (green dotted) and 𝛾𝛾 = 1.4 (blue). A more accurate analysis can be conducted to 
obtain results closer to the experimental data 

Figure 5 shows the comparison between numerical simulations of the force-
displacement graph and the experimental data. The numerical simulations are obtained for 
different values of the 𝛾𝛾 exponent. Further, more accurate analyses can be carried out to 
obtain simulations more in line with the data. For example, it must be considered that the 
constituent parameters of objects obtained by additive manufacturing are not the same as the 
original material (Young's modulus of pantographic structures printed in 316L stainless steel 
is clearly lower than that of metal [22]). For this reason, it would be appropriate to carry out 
precise studies to identify the real constituent parameters in order to obtain more adherent 
simulations. 

Figure 6 shows the comparison between the deformed shapes of specimen B obtained 
by numerical simulations and the experimental measurements (for Sample A, it is actually not 
possible to make similar comparisons in case of early rupture, but see [21] for a proposed 
approach in this direction). The numerical simulation, in which we minimize the continuous 
energy derived in Eq. (1), was performed for different values of the imposed displacement. 
We first identified the parameters 𝕂𝕂𝑒𝑒, 𝕂𝕂𝑏𝑏, and 𝕂𝕂𝑝𝑝 with a procedure similar to that described 
in [23-25] and in a second phase we compared the calculated force-displacement curve and 
the deformed shapes of the pantographic structure with the experimental data to obtain a 
better estimate of the constituent parameters. 



Fig. 6. Comparison between experiments performed on Sample A and numerical simulations 
for different values of imposed displacement: (a) 1 mm; (b) 22 mm; (c) 26 mm; (d) 35 mm.  

In (d) one can see that the structure has already undergone the failure stage. In color scale the 
total deformation energy is plotted 

4 Conclusion 
In this article we presented an example of a new class of metamaterials, the pantographic 
structures. The BIAS extension test carried out on two stainless steel molded samples has 
been studied from both an experimental and a numerical point of view. 

An interesting perspective of this work consists in the study and analysis of damage in 
pantographic structures, in order to obtain estimates of experimental data such as those shown 
in Fig. 7. This type of study has already been started and useful references can be found 
in [26-34]. 

Fig. 7. Emerging of fracture in Sample B. In (b) it is already visible the arising of fracture: a 
whole fiber has lost the connections (pivots) with the fibers of the other family 

A possible generalization of the pantographic structure presented in this work is the 
study of pantographic structures embedded in soft matrices. Useful results in this framework 
can be found in [35-38] and [39] for engineering relevant composites. 

Numerical tools are increasingly important in the study of metamaterials. A powerful 
numerical method for solving minimum problems, such as the one described qualitatively in 



this article, is represented by isogeometric analysis. Results relevant to the study of 
pantographic structures can be found in [40-45]. 
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