J. H. Fendler, Self-Assembled Nanostructured Materials, Chem. Mater, vol.8, pp.1616-1624, 1996.

J. H. Fendler, Chemical Self-Assembly for Electronic Applications, Chem. Mater, vol.13, pp.3196-3210, 2001.

D. M. Vriezema, M. Comellas-aragonès, J. A. Elemans, J. J. Cornelissen, A. E. Rowan et al., Self-Assembled Nanoreactors, Chem. Rev, vol.105, pp.1445-1490, 2005.

M. A. Boles, M. Engel, and D. V. Talapin, Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials, Chem. Rev, vol.116, pp.11220-11289, 2016.

C. Lu and Z. Tang, Advanced Inorganic Nanoarchitectures from Oriented Self-Assembly, Adv. Mater, vol.28, pp.1096-1108, 2016.

L. Wang, L. Xu, H. Kuang, C. Xu, and N. A. Kotov, Dynamic Nanoparticle Assemblies, Acc. Chem. Res, vol.45, pp.1916-1926, 2012.

,. B-sohn, J. Choi, S. I. Yoo, S. Yun, W. Zin et al., Directed Self-Assembly of Two Kinds of Nanoparticles Utilizing Monolayer Films of Diblock Copolymer Micelles, J. Am. Chem. Soc, vol.125, pp.6368-6369, 2003.

Z. Shen, M. Yamada, and M. Miyake, Control of Stripelike and Hexagonal Self-Assembly of Gold Nanoparticles by the Tuning of Interactions between Triphenylene Ligands, J. Am. Chem. Soc, vol.129, pp.14271-14280, 2007.

M. Kanehara, E. Kodzuka, and T. Teranishi, Self-Assembly of Small Gold Nanoparticles through Interligand Interaction, J. Am. Chem. Soc, vol.128, pp.13084-13094, 2006.

G. Rousseau, C. Lavenn, L. Cardenas, S. Loridant, Y. Wang et al., One-Pot Synthesis of Sub-3 Nm Gold Nanoparticle Networks Connected by Thio-Based Multidentate Fullerene Adducts, Chem. Commun, vol.51, pp.6730-6733, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134152

F. Leng, I. C. Gerber, P. Lecante, A. Bentaleb, A. Muñoz et al., Hexakis [60]Fullerene Adduct-Mediated Covalent Assembly of Ruthenium Nanoparticles and Their Catalytic Properties, Chem. Eur. J, vol.23, pp.13379-13386, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617280

A. Abbas, R. Kattumenu, L. Tian, and S. Singamaneni, Molecular Linker-Mediated Self-Assembly of Gold Nanoparticles: Understanding and Controlling the Dynamics, Langmuir, vol.29, pp.56-64, 2013.

R. J. Meyer, Q. Zhang, A. Kryczka, C. Gomez, and R. Todorovic, Perturbation of Reactivity with Geometry: How Far Can We Go?, ACS Catal, vol.8, pp.566-570, 2018.

M. R. Axet, O. Dechy-cabaret, J. Durand, M. Gouygou, and P. Serp, Coordination Chemistry on Carbon Surfaces, Coord. Chem. Rev, vol.308, pp.236-345, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01927690

M. R. Axet, J. Durand, M. Gouygou, and P. Serp, Advances in Organometallic Chemistry, vol.71, pp.53-174, 2019.

P. Serp, Comprehensive Inorganic Chemistry II

J. Reedijk, K. Poeppelmeier, and . Eds, , vol.7, pp.323-369, 2013.

S. Campisi, C. E. Chan-thaw, and A. Villa, Understanding Heteroatom-Mediated Metal-Support Interactions in Functionalized Carbons: A Perspective Review, Appl. Sci, vol.8, p.1159, 2018.

P. Chen, L. M. Chew, A. Kostka, M. Muhler, and W. Xia, The Structural and Electronic Promoting Effect of Nitrogen-Doped Carbon Nanotubes on Supported Pd Nanoparticles for Selective Olefin Hydrogenation, Catal. Sci. Technol, vol.3, 1964.

H. Schwertfeger, A. A. Fokin, and P. R. Schreiner, Diamonds Are a Chemist's Best Friend: Diamondoid Chemistry Beyond Adamantane, Angew. Chem. Int. Ed, vol.47, pp.1022-1036, 2008.

M. A. Gunawan, J. Hierso, D. Poinsot, A. A. Fokin, N. A. Fokina et al., Diamondoids: Functionalization and Subsequent Applications of Perfectly Defined Molecular Cage Hydrocarbons, New J. Chem, vol.38, pp.28-41, 2014.

H. Nasrallah and J. Hierso, Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts, Chem. Mater, vol.31, pp.619-642, 2019.

G. A. Olah, P. Ramaiah, C. B. Rao, G. Sandford, R. Golam et al., Electrophilic Reactions at Single Bonds. 25. Nitration of Adamantane and Diamantane with Nitronium Tetrafluoroborate, J. Am. Chem. Soc, vol.115, pp.7246-7249, 1993.

O. Moncea, M. A. Gunawan, D. Poinsot, H. Cattey, J. Becker et al., Defying Stereotypes with Nanodiamonds: Stable Primary Diamondoid Phosphines, J. Org. Chem, vol.81, pp.8759-8769, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399442

W. L. Yang, J. D. Fabbri, T. M. Willey, J. R. Lee, J. E. Dahl et al., Monochromatic Electron Photoemission from Diamondoid Monolayers, Science, vol.316, pp.1460-1462, 2007.

M. A. Gunawan, O. Moncea, D. Poinsot, M. Keskes, B. Domenichini et al., Nanodiamond-Palladium Core-Shell Organohybrid Synthesis: A Mild Vapor-Phase Procedure Enabling Nanolayering Metal onto Functionalized Sp3-Carbon

, Adv. Funct. Mater, vol.28, p.1705786, 2018.

O. Moncea, J. Casanova-chafer, D. Poinsot, L. Ochmann, C. D. Mboyi et al., Diamondoid Nanostructures as Sp3-Carbon-Based Gas Sensors, Angew. Chem. Int. Ed, vol.58, pp.9933-9938, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02176778

G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set, Comput. Mater. Sci, vol.6, pp.15-50, 1996.

G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, vol.47, pp.558-561, 1993.

G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

G. Kresse and J. Hafner, Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium, Phys. Rev. B, vol.49, pp.14251-14269, 1994.

P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, J. Appl. Crystallogr, vol.44, pp.1272-1276, 2011.

W. Tang, E. Sanville, and G. Henkelman, A Grid-Based Bader Analysis Algorithm without Lattice Bias, J. Phys.: Condens. Matter, vol.21, pp.84204-84205, 2009.

I. Del-rosal, L. Truflandier, R. Poteau, and I. C. Gerber, A Density Functional Theory Study of Spectroscopic and Thermodynamic Properties of Surfacic Hydrides on Ru (0001) Model Surface: the Influence of the Coordination Modes and the Coverage, J. Phys. Chem. C, vol.115, pp.2169-2178, 2011.

G. Henkelman, B. P. Uberuaga, and H. Jonsson, A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths, J. Chem. Phys, vol.113, pp.9901-9904, 2000.

G. Henkelman and H. Jonsson, Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points, J. Chem. Phys, vol.113, pp.9978-9985, 2000.

D. Sheppard, R. Terrell, and G. Henkelman, Optimization Methods for Finding Minimum Energy Paths, J. Chem. Phys, vol.128, pp.134106-134107, 2008.

M. C. Davis and D. A. Nissan, Preparation of Diamines of Adamantane and Diamantane from the Diazides, Synth. Commun, vol.36, pp.2113-2119, 2006.

G. A. Senchyk, A. B. Lysenko, H. Krautscheid, and K. V. Domasevitch, Fluoride Molecular Scissors": A Rational Construction of New Mo(Vi) Oxofluorido/1,2,4-Triazole Mofs, Inorg. Chem. Commun, vol.14, pp.1365-1368, 2011.

H. F. Reinhardt, Biadamantane and Some of Its Derivatives, J. Org. Chem, vol.27, pp.3258-3261, 1962.

X. Zhu, B. Shao, D. A. Vanden-bout, and K. N. Plunkett, Directing the Conformation of Oligo(Phenylenevinylene) Polychromophores with Rigid, Nonconjugatable Morphons, Macromolecules, vol.49, pp.3838-3844, 2016.

N. A. Fokina, B. A. Tkachenko, A. Merz, M. Serafin, J. E. Dahl et al., Hydroxy Derivatives of Diamantane, Triamantane, and [121]Tetramantane: Selective Preparation of Bis-Apical Derivatives, Eur. J. Org. Chem, pp.4738-4745, 2007.

L. Vodi?ka, J. Jank?, and J. Burkhard, Synthesis of Diamantanedicarboxylic Acids with the Carboxy Groups Bonded at Tertiary Carbon Atoms, Collect. Czech. Chem. Commun, vol.48, pp.1162-1172, 1983.

I. Robinson, S. Zacchini, L. D. Tung, S. Maenosono, and N. T. Thanh, Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters, Chem. Mater, vol.21, pp.3021-3026, 2009.

T. Morris and T. Zubkov, Steric Effects of Carboxylic Capping Ligands on the Growth of the Cdse Quantum Dots. Colloid Surf. A, vol.443, pp.439-449, 2014.

C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy et al., Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics, J. Am. Chem. Soc, vol.123, pp.7584-7593, 2001.

R. Gonzalez-gomez, L. Cusinato, C. Bijani, Y. Coppel, P. Lecante et al., Carboxylic Acid-Capped Ruthenium Nanoparticles: Experimental and Theoretical Case Study with Ethanoic Acid, Nanoscale, vol.11, pp.9392-9409, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02131929

L. M. Martínez-prieto, I. Cano, A. Márquez, E. A. Baquero, S. Tricard et al., Zwitterionic Amidinates as Effective Ligands for Platinum Nanoparticle Hydrogenation Catalysts, Chem. Sci, vol.8, pp.2931-2941, 2017.

L. M. Martínez-prieto and B. Chaudret, Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination, Acc. Chem. Res, vol.51, pp.376-384, 2018.

C. Taglang, L. M. Martínez-prieto, I. Del-rosal, L. Maron, R. Poteau et al., Enantiospecific C-H Activation Using Ruthenium Nanocatalysts, Angew. Chem. Int. Ed, vol.54, pp.10474-10477, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01920824

M. Tristany, B. Chaudret, P. Dieudonné, Y. Guari, P. Lecante et al., Synthesis of Ruthenium Nanoparticles Stabilized by Heavily Fluorinated Compounds, Adv. Funct. Mater, vol.16, 2006.

S. Tricard, O. Said-aizpuru, D. Bouzouita, S. Usmani, A. Gillet et al., Chemical Tuning of Coulomb Blockade at Room-Temperature in Ultra-Small Platinum Nanoparticle Self-Assemblies. Mater, vol.4, pp.487-492, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552606

D. J. Morgan, Resolving Ruthenium: XPS Studies of Common Ruthenium Materials, vol.47, pp.1072-1079, 2015.

G. Salas, C. C. Santini, K. Philippot, V. Collière, B. Chaudret et al., Influence of Amines on the Size Control of in Situ Synthesized Ruthenium Nanoparticles in Imidazolium Ionic Liquids, Dalton Trans, vol.40, pp.4660-4668, 2011.

M. H. Wood, R. J. Welbourn, T. Charlton, A. Zarbakhsh, M. T. Casford et al., Hexadecylamine Adsorption at the Iron Oxide-Oil Interface, Langmuir, vol.29, pp.13735-13742, 2013.

B. F. Machado, M. Oubenali, M. Rosa-axet, T. Trang-nguyen, M. Tunckol et al., Understanding the Surface Chemistry of Carbon Nanotubes: Toward a Rational Design of Ru Nanocatalysts, J. Catal, vol.309, pp.185-198, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01969547

K. Osakada, A. Grohmann, and A. Yamamoto, New Ruthenium Carboxylate Complexes Having a 1-5-.Eta.5-Cyclooctadienyl Ligand, Organometallics, vol.9, pp.2092-2096, 1990.

K. A. Smart, M. Grellier, Y. Coppel, L. Vendier, S. A. Mason et al., Nature of Si-H Interactions in a Series of Ruthenium Silazane Complexes Using Multinuclear Solid-State Nmr and Neutron Diffraction, Inorg. Chem, vol.53, pp.1156-1165, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00992447

K. A. Smart, M. Grellier, L. Vendier, S. A. Mason, S. C. Capelli et al., Step-by-Step Introduction of Silazane Moieties at Ruthenium: Different Extents of Ru-H-Si Bond Activation, Inorg. Chem, vol.52, pp.2654-2661, 2013.

J. C. Jopes, J. L. Damasceno, P. F. Oliveira, A. P. Guedes, D. C. Tavares et al., Ruthenium(Ii) Complexes Containing Anti-Inflammatory Drugs as Ligands: Synthesis, Characterization and in Vitro Cytotoxicity Activities on Cancer Cell Lines, J. Braz. Chem. Soc, vol.26, pp.1838-1847, 2015.

G. Jia, A. L. Rheingold, B. S. Haggerty, and D. W. Meek, Synthesis and Characterization of Ruthenium Acetate Complexes Containing Triphosphines, Inorg. Chem, vol.31, pp.900-904, 1992.

P. Uznanski, J. Zakrzewska, F. Favier, S. Kazmierski, and E. Bryszewska, Synthesis and Characterization of Silver Nanoparticles from (Bis)Alkylamine Silver Carboxylate Precursors, J. Nanopart. Res, vol.19, pp.121-121, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01497734

H. E. Toma and S. Nikolaou, Self-Assembly of a Supramolecular Cyclic Polymer Containing Pyrazine Bridged Trinuclear ?-Oxo-Ruthenium-Acetate Clusters, J. Chem. Res, pp.326-327, 2000.

H. E. Toma, A. D. Alexiou, and S. Dovidauskas, Extended Electronic Interactions in a Triangular ?-Oxotriruthenium Acetate Cluster Containing Nitric Oxide, Eur. J. Inorg. Chem, pp.3010-3017, 2002.

C. M. Kepert, G. B. Deacon, L. Spiccia, G. D. Fallon, B. W. Skelton et al., A Facile and Benign Synthesis of Binuclear Ruthenium(I) "Sawhorse" Complexes, J. Chem. Soc, pp.2867-2873, 2000.

S. Wang and W. Sim, Au Nanoparticles Encapsulated in Ru Carbonyl Carboxylate Shells, Langmuir, vol.22, pp.7861-7866, 2006.

A. J. Gibson, R. H. Temperton, K. Handrup, M. Weston, L. C. Mayor et al., Charge Transfer from an Adsorbed Ruthenium-Based Photosensitizer through an Ultra-Thin Aluminium Oxide Layer and into a Metallic Substrate, J. Chem. Phys, p.234708, 2014.

C. S. Kellner and A. T. Bell, Infrared Studies of Carbon Monoxide Hydrogenation over Alumina-Supported Ruthenium, J. Catal, vol.71, pp.296-307, 1981.

N. Dimakis, N. E. Navarro, T. Mion, and E. S. Smotkin, Carbon Monoxide Adsorption Coverage Study on Platinum and Ruthenium Surfaces, J. Phys. Chem. C, vol.118, pp.11711-11722, 2014.

H. Pfnür, D. Menzel, F. M. Hoffmann, A. Ortega, and A. M. Bradshaw, High Resolution Vibrational Spectroscopy of Co on Ru(001): The Importance of Lateral Interactions, Surf. Sci, vol.93, pp.431-452, 1980.

D. E. Starr and H. Bluhm, Co Adsorption and Dissociation on Ru(0001) at Elevated Pressures, Surf. Sci, vol.608, pp.241-248, 2013.

L. M. Martínez-prieto, C. Urbaneja, P. Palma, J. Cámpora, K. Philippot et al., A Betaine Adduct of N-Heterocyclic Carbene and Carbodiimide, an Efficient Ligand to Produce Ultra-Small Ruthenium Nanoparticles, Chem. Commun, vol.51, pp.4647-4650, 2015.

D. González-gálvez, P. Nolis, K. Philippot, B. Chaudret, and P. W. Van-leeuwen, Phosphine-Stabilized Ruthenium Nanoparticles: The Effect of the Nature of the Ligand in Catalysis, ACS Catal, vol.2, pp.317-321, 2012.

L. Chen, Y. Zhu, H. Zheng, C. Zhang, B. Zhang et al., Aqueous-Phase Hydrodeoxygenation of Carboxylic Acids to Alcohols or Alkanes over Supported Ru Catalysts, J. Mol. Cat. A, vol.351, pp.217-227, 2011.

J. Shangguan, M. V. Olarte, and Y. Chin, Mechanistic Insights on Co and Cc Bond Activation and Hydrogen Insertion During Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium, J. Catal, vol.340, pp.107-121, 2016.

L. Cusinato, L. M. Martínez-prieto, B. Chaudret, I. Del-rosal, and R. Poteau, Theoretical Characterization of the Surface Composition of Ruthenium Nanoparticles in Equilibrium with Syngas, Nanoscale, vol.8, pp.10974-10992, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01960027

A. J. Mccue and J. A. Anderson, Recent Advances in Selective Acetylene Hydrogenation Using Palladium Containing Catalysts. Front, Chem. Sci. Eng, vol.9, pp.142-153, 2015.

T. López, J. Hernandez-ventura, M. Asomoza, A. Campero, and R. Gómez, Support Effect on Cu-Ru/SiO 2 Sol-Gel Catalysts, Mater. Lett, vol.41, pp.309-316, 1999.

M. Dhiman, B. Chalke, and V. Polshettiwar, Efficient Synthesis of Monodisperse Metal (Rh, Ru, Pd) Nanoparticles Supported on Fibrous Nanosilica (Kcc-1) for Catalysis, ACS Sustain. Chem. Eng, vol.3, pp.3224-3230, 2015.

C. Li, Z. Shao, M. Pang, C. T. Williams, X. Zhang et al., Carbon Nanotubes Supported Mono-and Bimetallic Pt and Ru Catalysts for Selective Hydrogenation of Phenylacetylene, Ind. Eng. Chem. Res, vol.51, pp.4934-4941, 2012.

L. Rakers, L. M. Martínez-prieto, A. M. López-vinasco, K. Philippot, P. W. Van-leeuwen et al., Ruthenium Nanoparticles Ligated by Cholesterol-Derived Nhcs and Their Application in the Hydrogenation of Arenes, Chem. Commun, vol.54, pp.7070-7073, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01954372

J. Ruzicka, D. P. Anderson, S. Gaw, and V. B. Golovko, Platinum-Ruthenium Nanoparticles: Active and Selective Catalysts for Hydrogenation of Phenylacetylene, Aust. J. Chem, vol.65, pp.1420-1425, 2012.

M. Niu, Y. Wang, W. Li, J. Jiang, and Z. Jin, Highly Efficient and Recyclable Ruthenium Nanoparticle Catalyst for Semihydrogenation of Alkynes, Catal. Commun, vol.38, pp.77-81, 2013.

S. Noël, D. Bourbiaux, N. Tabary, A. Ponchel, B. Martel et al., Acid-Tolerant Cyclodextrin-Based Ruthenium Nanoparticles for the Hydrogenation of Unsaturated Compounds in Water, Catal. Sci. Technol, vol.7, pp.5982-5992, 2017.

A. Maximov, A. Zolotukhina, L. Kulikov, Y. Kardasheva, and E. Karakhanov, Ruthenium Catalysts Based on Mesoporous Aromatic Frameworks for the Hydrogenation of Arenes, React. Kinet., Mech. Cat, vol.117, pp.729-743, 2016.

M. H. Prechtl, M. Scariot, J. D. Scholten, G. Machado, S. R. Teixeira et al., Nanoscale Ru(0) Particles: Arene Hydrogenation Catalysts in Imidazolium Ionic Liquids, Inorg. Chem, vol.47, pp.8995-9001, 2008.

A. Nowicki, V. Le-boulaire, and A. Roucoux, Nanoheterogeneous Catalytic Hydrogenation of Arenes: Evaluation of the Surfactant-Stabilized Aqueous Ruthenium(0) Colloidal Suspension, Adv. Synth. Catal, vol.349, pp.2326-2330, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00404215

L. M. Rossi and G. Machado, Ruthenium Nanoparticles Prepared from Ruthenium Dioxide Precursor: Highly Active Catalyst for Hydrogenation of Arenes under Mild Conditions, J. Mol. Cat. A, vol.298, pp.69-73, 2009.

M. Zahmakiran and S. Özkar, Intrazeolite Ruthenium(0) Nanoclusters: A Superb Catalyst for the Hydrogenation of Benzene and the Hydrolysis of Sodium Borohydride, Langmuir, vol.24, pp.7065-7067, 2008.

G. Salas, P. S. Campbell, C. C. Santini, K. Philippot, M. F. Costa-gomes et al., Ligand Effect on the Catalytic Activity of Ruthenium Nanoparticles in Ionic Liquids, Dalton Trans, vol.41, pp.13919-13926, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00754961

M. J. Tschan, .. Diebolt, O. Van-leeuwen, and P. W. , Ruthenium Metal Nanoparticles in Hydrogenation: Influence of Phosphorus-Ligands, Top. Catal, vol.57, pp.1054-1065, 2014.

X. Cui, A. Surkus, K. Junge, C. Topf, J. Radnik et al., Highly Selective Hydrogenation of Arenes Using Nanostructured Ruthenium Catalysts Modified with a Carbon-Nitrogen Matrix, Nat. Commun, vol.7, pp.11326-11326, 2016.

I. C. Gerber and P. Serp, A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts, Chem. Rev, vol.120, pp.1250-1349, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02366334

T. Susi, T. Pichler, P. Ayala, and . X-ray, Photoelectron Spectroscopy of Graphitic Carbon Nanomaterials Doped with Heteroatoms, Beilstein J. Nanotechnol, vol.6, pp.177-192, 2015.