T. H. Welling, D. G. Heidt, M. J. Englesbe, J. C. Magee, R. S. Sung et al., Biliary complications following liver transplantation in the model for end-stage liver disease era: Effect of donor, recipient, and technical factors, Liver Transpl, vol.14, pp.73-80, 2008.

D. Seehofer, D. Eurich, W. Veltzke-schlieker, and P. Neuhaus, Biliary Complications After Liver Transplantation: Old Problems and New Challenges, Am. J. Transplant, vol.13, pp.253-265, 2013.

N. Akamatsu, Y. Sugawara, and D. Hashimoto, Biliary reconstruction, its complications and management of biliary complications after adult liver transplantation: a systematic review of the incidence, risk factors and outcome, Transpl. Int. Off. J. Eur. Soc. Organ Transplant, vol.24, pp.379-392, 2011.

C. Goumard, M. Cachanado, A. Herrero, G. Rousseau, F. Dondero et al.,

J. Y. Boleslawski, E. Mabrut, O. Salamé, T. Soubrane, O. Simon et al., Biliary reconstruction with or without an intraductal removable stent in liver transplantation: study protocol for a randomized controlled trial, Trials, vol.16, p.598, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01250152

L. Grande, A. Pérez-castilla, D. Matus, C. Rodriguez-montalvo, A. Rimola et al.,

J. C. Navasa, J. García-valdecasas, and . Visa, Routine use of the T tube in the biliary reconstruction of liver transplantation: is it worthwhile?, Transplant. Proc, vol.31, pp.2396-2397, 1999.

S. Weiss, S. Schmidt, F. Ulrich, A. Pascher, G. Schumacher et al., Biliary Reconstruction Using a Side-to-Side Choledochocholedochostomy With or Without T-Tube in Deceased Donor Liver Transplantation, Ann. Surg, vol.250, pp.766-771, 2009.

M. Wojcicki, P. Milkiewicz, and M. Silva, Biliary tract complications after liver transplantation: a review, Dig. Surg, vol.25, pp.245-257, 2008.

C. Riediger, M. W. Müller, C. W. Michalski, N. Hüser, T. Schuster et al., T-tube or no T-tube in reconstruction of the biliary tract during orthotopic liver transplantation -systematic review and meta-analysis, Liver Transpl, 2010.

M. Shimoda, S. Saab, M. Morrisey, R. M. Ghobrial, D. G. Farmer et al.,

R. A. Han, L. I. Bedford, P. Goldstein, and . Martin, A cost-effectiveness analysis of biliary anastomosis with or without T-tube after orthotopic liver transplantation, Am. J. Transplant, vol.1, pp.157-161, 2001.

O. Scatton, B. Meunier, D. Cherqui, O. Boillot, A. Sauvanet et al., Randomized trial of choledochocholedochostomy with or without a T tube in orthotopic liver transplantation, Ann. Surg, vol.233, pp.432-437, 2001.

G. C. Sotiropoulos, G. Sgourakis, A. Radtke, E. P. Molmenti, K. Goumas et al., Orthotopic Liver Transplantation: T-Tube or Not T-Tube? Systematic Review and Meta-Analysis of Results, Transplantation, vol.87, pp.1672-1680, 2009.

F. C. Paes-barbosa, P. C. Massarollo, W. M. Bernardo, F. G. Ferreira, F. K. Barbosa et al., Systematic review and meta-analysis of biliary reconstruction techniques in orthotopic deceased donor liver transplantation, J. Hepato-Biliary-Pancreat. Sci, vol.18, pp.525-536, 2010.

A. Amador, R. Charco, J. Martí, M. Navasa, A. Rimola et al.,

J. Laiz, J. Ferrer, C. Romero, C. Ginesta, J. Fondevila et al., Clinical trial on the cost-effectiveness of T-tube use in an established deceased donor liver transplantation program, Clin. Transplant, vol.21, pp.548-553, 2007.

E. Girard, O. Risse, J. Abba, M. Medici, V. Leroy et al., Internal biliary stenting in liver transplantation, Langenbecks Arch. Surg, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02064519

,

H. Tranchart, S. Zalinski, A. Sepulveda, M. Chirica, F. Prat et al., Removable intraductal stenting in duct-to-duct biliary reconstruction in liver transplantation, Transpl. Int, vol.25, pp.19-24, 2012.

M. W. Johnson, P. Thompson, A. Meehan, P. Odell, M. J. Salm et al.,

M. W. Zacks, R. Fried, J. H. Shrestha, and . Fair, Internal biliary stenting in orthotopic liver transplantation, Liver Transplant. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transplant. Soc, vol.6, pp.356-361, 2000.

J. S. Barkun, G. N. Tzimas, M. Cantarovich, P. P. Metrakos, M. Deschênes et al., Do biliary endoprostheses decrease biliary complications after liver transplantation?, Transplant. Proc, vol.35, pp.2435-2437, 2003.

S. Saab, Endoscopic Management of Biliary Leaks After T-Tube Removal in Liver Transplant Recipients: Nasobiliary Drainage Versus Biliary Stenting, Liver Transpl, vol.6, pp.627-632, 2000.

J. M. Gursimran-kochhar-ibrahim, A. Hanouneh, and M. A. Parsi, Biliary complications following liver transplantation, World J. Gastroenterol, vol.19, 2013.

B. Nemes, G. Gámán, and A. Doros, Biliary complications after liver transplantation, Expert Rev. Gastroenterol. Hepatol, vol.9, pp.447-466, 2015.

J. C. Middleton and A. J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, vol.21, pp.2335-2346, 2000.

J. L. Tokar, S. Banerjee, B. A. Barth, D. J. Desilets, V. Kaul et al., Drug-eluting/biodegradable stents, Gastrointest. Endosc, vol.74, pp.954-958, 2011.

J. Li, J. Zhu, T. He, W. Li, Y. Zhao et al., Prevention of intra-abdominal adhesion using electrospun PEG/PLGA nanofibrous membranes

. Eng and . Mater, Biol. Appl, vol.78, pp.988-997, 2017.

R. Rogacka, A. Chieffo, A. Latib, and A. Colombo, Bioabsorbable and biocompatible stents. Is a new revolution coming?, Minerva Cardioangiol, vol.56, pp.483-491, 2008.

M. Yaszemski, Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone, Biomaterials, vol.17, pp.175-185, 1996.

D. A. Brown, E. W. Lee, C. T. Loh, and S. T. Kee, A New Wave in Treatment of Vascular Occlusive Disease: Biodegradable Stents-Clinical Experience and Scientific Principles, vol.20, pp.315-324, 2009.

X. Xu, T. Liu, S. Liu, K. Zhang, Z. Shen et al., Feasibility of biodegradable PLGA common bile duct stents: an in vitro and in vivo study, J. Mater. Sci. Mater. Med, vol.20, pp.1167-1173, 2009.

X. Xu, T. Liu, S. Liu, K. Zhang, Z. Shen et al., Feasibility of biodegradable PLGA common bile duct stents: an in vitro and in vivo study, J. Mater. Sci. Mater. Med, vol.20, pp.1167-1173, 2009.

B. Meng, J. Wang, N. Zhu, Q. Meng, F. Cui et al., Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro, J. Mater. Sci. Mater. Med, vol.17, pp.611-617, 2006.

J. Laukkarinen, I. Nordback, J. Mikkonen, P. Kärkkäinen, and J. Sand, A novel biodegradable biliary stent in the endoscopic treatment of cystic-duct leakage after cholecystectomy, Gastrointest. Endosc, vol.65, pp.1063-1068, 2007.

H. Tashiro, T. Ogawa, T. Itamoto, Y. Ushitora, Y. Tanimoto et al., Synthetic bioabsorbable stent material for duct-to-duct biliary reconstruction, J. Surg. Res, vol.151, pp.85-88, 2009.

S. Tara, H. Kurobe, K. A. Rocco, M. W. Maxfield, C. A. Best et al.,

T. Breuer and . Shinoka, Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-?-caprolactone) prevents calcific deposition compared to smallpore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model, Atherosclerosis, vol.237, pp.684-691, 2014.

T. B. Wissing, V. Bonito, C. V. Bouten, and A. I. Smits, Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective, NPJ Regen. Med, vol.2, 2017.

,

L. C. Lins, F. Wianny, S. Livi, I. A. Hidalgo, C. Dehay et al.,

. Gérard, Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering, vol.17, pp.3172-3187, 2016.

J. Du, H. Chen, L. Qing, X. Yang, and X. Jia, Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration, Biomater. Sci, vol.6, pp.1299-1311, 2018.

B. Bhaskar, R. Owen, H. Bahmaee, Z. Wally, P. Rao et al., Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds, J. Biomed. Mater. Res. A, vol.106, pp.1334-1340, 2018.

A. Leroy, B. Nottelet, C. Bony, C. Pinese, B. Charlot et al., PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation, Biomater. Sci, vol.3, pp.617-626, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01369239

C. Pinese, A. Leroy, B. Nottelet, C. Gagnieu, J. Coudane et al., Rolled knitted scaffolds based on PLA-pluronic copolymers for anterior cruciate ligament reinforcement: A step by step conception: ROLLED KNITTED SCAFFOLDS, J. Biomed. Mater. Res. B Appl. Biomater, vol.105, pp.735-743, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02387436

Q. Breche, G. Chagnon, G. Machado, E. Girard, B. Nottelet et al., Mechanical behaviour???s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation, J. Mech. Behav. Biomed. Mater, vol.60, pp.288-300, 2016.

Q. Breche, G. Chagnon, G. Machado, B. Nottelet, X. Garric et al., A non-linear viscoelastic model to describe the mechanical behavior's evolution of biodegradable polymers during hydrolytic degradation, Polym. Degrad. Stab, vol.131, pp.145-156, 2016.

L. Jones, J. Moir, C. Brown, R. Williams, and J. French, The novel use of a biodegradable stent placed by percutaneous transhepatic cholangiography for the treatment of a hepaticojejunostomy biliary leak following an extended left hepatectomy and pancreaticoduodenectomy, Ann. R. Coll. Surg. Engl, vol.96, pp.1-3, 2014.

G. Mauri, C. Michelozzi, F. Melchiorre, D. Poretti, M. Tramarin et al.,

G. Solbiati, L. M. Cornalba, and . Sconfienza, Biodegradable biliary stent implantation in the treatment of benign bilioplastic-refractory biliary strictures: preliminary experience, Eur. Radiol, vol.23, pp.3304-3310, 2013.

A. Siiki, I. Rinta-kiikka, J. Sand, and J. Laukkarinen, Biodegradable biliary stent in the endoscopic treatment of cystic duct leak after cholecystectomy: the first case report and review of literature, J. Laparoendosc. Adv. Surg. Tech. A, vol.25, pp.419-422, 2015.

B. C. Thanoo, M. C. Sunny, and A. Jayakrishnan, Tantalum-loaded polyurethane microspheres for particulate embolization: preparation and properties, Biomaterials, vol.12, pp.525-528, 1991.

B. C. Thanoo and A. Jayakrishnan, Barium sulphate-loaded p(HEMA) microspheres as artificial emboli: preparation and properties, Biomaterials, vol.11, pp.477-481, 1990.

F. Luderer, I. Begerow, W. Schmidt, H. Martin, N. Grabow et al., Enhanced visualization of biodegradable polymeric vascular scaffolds by incorporation of gold, silver and magnetite nanoparticles, J. Biomater. Appl, vol.28, pp.219-231, 2013.

T. Lämsä, H. Jin, J. Mikkonen, J. Laukkarinen, J. Sand et al., Biocompatibility of a new bioabsorbable radiopaque stent material (BaSO4 containing poly-L,D-lactide) in the rat pancreas, vol.6, pp.301-305, 2006.

I. Nordback, S. Räty, J. Laukkarinen, S. Järvinen, A. Piironen et al., A novel radiopaque biodegradable stent for pancreatobiliary applications--the first human phase I trial in the pancreas, Pancreatol. Off. J. Int. Assoc. Pancreatol. IAP Al, vol.12, pp.264-271, 2012.

J. L. Pariente, L. Bordenave, R. Bareille, C. Ohayon-courtes, C. Baquey et al., In vitro cytocompatibility of radio-opacifiers used in ureteral endoprosthesis, Biomaterials, vol.20, pp.523-527, 1999.

Y. Wang, N. M. Van-den-akker, D. G. Molin, M. Gagliardi, C. Van-der-marel et al., A Nontoxic Additive to Introduce X-Ray Contrast into Poly(Lactic Acid). Implications for Transient Medical Implants Such as Bioresorbable Coronary Vascular Scaffolds, Adv. Healthc. Mater, vol.3, pp.290-299, 2014.

B. Nottelet, J. Coudane, and M. Vert, Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly (epsilon-caprolactone), Biomaterials, issue.27, pp.4948-4954, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00416779

C. Rode, A. Schmidt, R. Wyrwa, J. Weisser, K. Schmidt et al., Synthesis and processability into textile structures of radiopaque, biodegradable polyesters and poly(ester-urethanes): Radiopaque, biodegradable polyesters and poly(ester-urethanes), vol.63, pp.1732-1740, 2014.

K. Lei, Y. Chen, J. Wang, X. Peng, L. Yu et al., Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions, Acta Biomater, vol.55, pp.396-409, 2017.

R. Samuel, E. Girard, G. Chagnon, S. Dejean, D. Favier et al., Radiopaque poly(?-caprolactone) as additive for X-ray imaging of temporary implantable medical devices, RSC Adv, vol.5, pp.84125-84133, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01369275

A. Leroy, C. Pinese, C. Bony, X. Garric, D. Noël et al., Investigation on the properties of linear PLA-poloxamer and star PLA-poloxamine copolymers for temporary biomedical applications, Mater. Sci. Eng. C Mater. Biol. Appl, vol.33, pp.4133-4139, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00967461

S. E. Ichi, A. Zebda, J. Alcaraz, A. Laaroussi, F. Boucher et al., Bioelectrodes modified with chitosan for long-term energy supply from the body, Energy Environ. Sci, vol.8, pp.1017-1026, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01412089

C. Kilkenny, W. Browne, I. C. Cuthill, M. Emerson, and D. G. Altman, Animal Research: Reporting in vivo Experiments-The ARRIVE Guidelines, p.3

A. Kowalski, A. Duda, and S. Penczek, Polymerization of L , L -Lactide Initiated by Aluminum Isopropoxide Trimer or Tetramer, Macromolecules, vol.31, pp.2114-2122, 1998.

M. Huang, S. Li, and M. Vert, Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ?-caprolactone and dl-lactide, Polymer, vol.45, pp.8675-8681, 2004.

E. Girard, G. Chagnon, E. Gremen, M. Calvez, C. Masri et al., Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes, J. Mech. Behav. Biomed. Mater, vol.98, pp.291-300, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02275007

S. Hirano, E. Tanaka, T. Shichinohe, O. Suzuki, K. Hazama et al., Treatment strategy for hilar cholangiocarcinoma, with special reference to the limits of ductal resection in right-sided hepatectomies, J. Hepatobiliary. Pancreat. Surg, vol.14, pp.429-433, 2007.

M. Kasahara, H. Egawa, Y. Takada, F. Oike, S. Sakamoto et al.,

K. Shibata and . Tanaka, Biliary reconstruction in right lobe living-donor liver transplantation: Comparison of different techniques in 321 recipients, Ann. Surg, vol.243, pp.559-566, 2006.

E. Girard-1-;-3, *. Grégory, and C. , Alexis BROISAT, vol.2, issue.6

, Tahmer SHARKAWI, vol.4, issue.7

. Univ, C. Alpes, . Chu-grenoble-alpes, I. Grenoble, and F. Timc-imag, , p.38000

F. Grenoble,

, Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, vol.38000

F. Grenoble,

, Laboratoire d'anatomie des Alpes françaises (LADAF)

R. Biocliniques, U. Grenoble-alpes, and F. Grenoble,

, Département d'anatomopathologie et cytologie, Centre Hospitalier Grenoble-Alpes, vol.38000

F. Grenoble,

U. Icgm, . De-montpellier, . Cnrs, . Enscm, and F. 9. Montpellier, INSERM U1209/CNRS UMR 5309

G. Dr-edouard, T. Laboratoire, D. De-la, and M. ,

. Prof and . Benjamin,

A. Charles-flahault, 34093 Montpellier cedex 05, France. Tel: +33 (0)411759697. Email address: benjamin.nottelet@umontpellier.fr Content of supplementary data: S1-Synthetic procedures for PCL-TIB

S. Movie, Samples implanted in rats, CT imaging tri-dimensional visualization S4-Preliminary evaluation of blend cytocompatibility

S. Figure, Proliferation at 1, 3 and 7 days of L929 murine fibroblasts on the radiopaque PCL-TIB/PLA50-b-PEG-b-PLA50 (2,5 wt% iodine) blends compared to pure PLA50-b-PEG-b-PLA50 (0 wt% iodine) and TCPS (Tissue Culture

. Typically, PCL (35 mmol of CL unit, 4 g) was dissolved in anhydrous THF (400 mL) in a fournecked reactor equipped with a mechanical stirrer and kept at -50 °C under argon atmosphere

, A solution of LDA (0.5 eq./CL unit, 8.8 mL) was injected with a syringe through a septum and the mixture was kept at -50 °C under stirring for 30 min

, 6 g) was added, the mixture was kept under stirring for 30 min at a temperature raising from -50 °C to -30°C. The reaction was then stopped by addition of a saturated solution of NH4Cl (300 mL) and pH was adjusted to 7 with 1M HCl. The polymer was extracted with dichloromethane (3 × 150 mL). The combined organic phases were washed three times with distilled water (3 × 150 mL), dried on anhydrous MgSO4 and filtered. After partial solvent evaporation under reduced pressure, the polymer was recovered by two precipitations in cold methanol and dried overnight under vacuum. The polymer PCL-TIB11

H. Nmr, 300 MHz; CDCl3) : ? (ppm) = 8.3 and 7.4-7.6 (2H, CH), 4.0 (2H, CH2-O), 2.3 (2H, C(O)CH2), 1.6 (4H, C(O)CH2-CH2-CH2-CH2-CH2-O), 1.4 (2H, C(O)CH2-CH2-CH2-CH2-CH2-O). n ???? = 24 000 g.mol -1 , Ð =, vol.1