D. A. Kozhevnikova, E. A. Taranov, A. V. Lebedinsky, E. A. Bonch-osmolovskaya, and T. G. Sokolova, Hydrogenogenic and Sulfidogenic Growth of Thermococcus Archaea on Carbon Monoxide and Formate, Mikrobiologiia, vol.85, pp.381-392, 2016.

Y. J. Kim, H. S. Lee, E. S. Kim, S. S. Bae, J. K. Lim et al., Formate-driven growth coupled with H 2 production, Nature, vol.467, pp.352-355, 2010.

J. K. Lim, F. Mayer, S. G. Kang, and V. Muller, Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon, Proceedings of the National Academy of Sciences, vol.111, pp.11497-11502, 2014.

G. J. Schut, G. L. Lipscomb, D. M. Nguyen, R. M. Kelly, and M. W. Adams, Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus, Front. Microbiol, vol.7, p.29, 2016.

T. G. Sokolova, C. Jeanthon, N. A. Kostrikina, N. A. Chernyh, A. V. Lebedinsky et al., The first evidence of anaerobic CO oxidation coupled with H 2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent, Extremophiles, vol.8, pp.317-323, 2004.

P. Oger, T. G. Sokolova, D. A. Kozhevnikova, N. A. Chernyh, D. H. Bartlett et al., Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide, J. Bacteriol, vol.193, pp.7019-7020, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00682014

M. Kim, A. R. Choi, S. H. Lee, H. Jung, S. S. Bae et al., A novel CO-responsive transcriptional regulator and enhanced H 2 production by an engineered Thermococcus onnurineus NA1 strain, Appl. Environ. Microbiol, vol.81, pp.1708-1714, 2015.

M. Inoue, I. Nakamoto, K. Omae, T. Oguro, H. Ogata et al., Structural and Phylogenetic Diversity of Anaerobic Carbon-Monoxide Dehydrogenases, Front. Microbiol, vol.9, p.3353, 2018.

Y. Kung and C. L. Drennan, A role for nickel-iron cofactors in biological carbon monoxide and carbon dioxide utilization, Curr. Opin. Chem. Biol, vol.15, pp.276-283, 2011.

P. A. Lindahl, Implications of a Carboxylate-Bound C-Cluster Structure of Carbon Monoxide Dehydrogenase, Angewandte Chemie International Edition, vol.47, pp.4054-4056, 2008.

H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber, and O. Meyer, Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster, Science, vol.293, pp.1281-1285, 2001.

E. C. Wittenborn, M. Merrouch, C. Ueda, L. Fradale, C. Léger et al., Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917213

R. L. Kerby, P. W. Ludden, and G. P. Roberts, In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ, J. Bacteriol, vol.179, pp.2259-2266, 1997.

J. Jeoung and H. Dobbek, Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase, Science, vol.318, pp.1461-1464, 2007.

L. Domnik, M. Merrouch, S. Goetzl, J. Jeoung, C. Léger et al., CODH-IV: A High-Efficiency CO-Scavenging CO Dehydrogenase with Resistance to O 2, Angew. Chem. Int. Ed Engl, vol.56, pp.15466-15469, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01696167

M. Rousset, Z. Dermoun, M. Chippaux, and J. P. Bélaich, Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans, Mol. Microbiol, vol.5, pp.1735-1740, 1991.

F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda et al., Experimental approaches to kinetics of gas diffusion in hydrogenase, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.11188-11193, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336010

J. Hadj-saïd, M. Pandelia, C. Léger, V. Fourmond, and S. Dementin, The Carbon Monoxide Dehydrogenase from Desulfovibrio vulgaris, Biochim. Biophys. Acta, vol.1847, pp.1574-1583, 2015.

C. Fu, W. P. Donovan, O. Shikapwashya-hasser, X. Ye, and R. H. Cole, Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase, PLoS One, vol.9, p.115318, 2014.

M. Merrouch, J. Hadj-saïd, L. Domnik, H. Dobbek, C. Léger et al., O 2 Inhibition of Ni-Containing CO Dehydrogenase Is Partly Reversible, Chemistry, vol.21, pp.18934-18938, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432205

C. Léger, S. Dementin, P. Bertrand, M. Rousset, and B. Guigliarelli, Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry, J. Am. Chem. Soc, vol.126, pp.12162-12172, 2004.

V. Fourmond, QSoas: A Versatile Software for Data Analysis, Anal. Chem, vol.88, pp.5050-5052, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414965

M. Merrouch, J. Hadj-saïd, C. Léger, S. Dementin, and V. Fourmond, Reliable estimation of the kinetic parameters of redox enzymes by taking into account mass transport towards rotating electrodes in protein film voltammetry experiments, Electrochim. Acta, vol.245, pp.1059-1064, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614234

U. Mueller, N. Darowski, M. R. Fuchs, R. Förster, M. Hellmig et al., Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin, J. Synchrotron Radiat, vol.19, pp.442-449, 2012.

M. Krug, M. S. Weiss, U. Heinemann, and U. Mueller, XDSAPP: a graphical user interface for the convenient processing of diffraction data usingXDS, Journal of Applied Crystallography, vol.45, pp.568-572, 2012.

P. Adams, P. Afonine, N. Echols, J. Headd, R. Grosse-kunstleve et al., New tools for structure refinement in PHENIX, Acta Crystallographica Section A Foundations of Crystallography, vol.66, pp.15-15, 2010.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, pp.2126-2132, 2004.

L. Pravda, D. Sehnal, D. Tou?ek, V. Navrátilová, V. Bazgier et al., MOLEonline: a web-based tool for analyzing channels, tunnels and pores, Nucleic Acids Res, vol.46, pp.368-373, 2018.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera--a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

E. C. Wittenborn, S. E. Cohen, M. Merrouch, C. Léger, V. Fourmond et al., Structural insight into metallocofactor maturation in carbon monoxide dehydrogenase, J. Biol. Chem, vol.294, pp.13017-13026, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02188452

M. Barrio, M. Sensi, C. Orain, C. Baffert, S. Dementin et al., Electrochemical Investigations of Hydrogenases and Other Enzymes That Produce and Use Solar Fuels, Acc. Chem. Res, vol.51, pp.769-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01745738

V. Fourmond, E. S. Wiedner, W. J. Shaw, and C. Léger, Understanding and Design of Bidirectional and Reversible Catalysts of Multielectron, Multistep Reactions, J. Am. Chem. Soc, vol.141, pp.11269-11285, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02179792

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al., Electrochemical Measurements of the Kinetics of Inhibition of Two FeFe Hydrogenases by O 2 Demonstrate That the Reaction Is Partly Reversible, J. Am. Chem. Soc, vol.137, pp.12580-12587, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211469

C. Léger and P. Bertrand, Direct electrochemistry of redox enzymes as a tool for mechanistic studies, Chem. Rev, vol.108, pp.2379-2438, 2008.

M. Benvenuti, Étude de la biodiversité des CO déshydrogénases à Nickel, 2019.

J. Jeoung, T. Giese, M. Grünwald, and H. Dobbek, Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases, J. Mol. Biol, vol.396, pp.1165-1179, 2010.

M. Merrouch, M. Benvenuti, M. Lorenzi, C. Léger, V. Fourmond et al., Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases, J. Biol. Inorg. Chem, vol.23, pp.613-620, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01816335

T. Inoue, T. Yoshida, K. Wada, T. Daifuku, K. Fukuyama et al., A simple, large-scale overexpression method of deriving carbon monoxide dehydrogenase II from thermophilic bacterium Carboxydothermus hydrogenoformans, Biosci. Biotechnol. Biochem, vol.75, pp.1392-1394, 2011.

S. A. Ensign, Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide, Biochemistry, vol.34, pp.5372-5378, 1995.

A. Parkin, J. Seravalli, K. A. Vincent, S. W. Ragsdale, and F. A. Armstrong, Rapid and efficient electrocatalytic CO 2 /CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode, J. Am. Chem. Soc, vol.129, pp.10328-10329, 2007.

O. Lazarus, T. W. Woolerton, A. Parkin, M. J. Lukey, E. Reisner et al., Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets, J. Am. Chem. Soc, vol.131, pp.14154-14155, 2009.

J. Hadj-saïd and L. Co-déshydrogénase-de-desulfovibrio-vulgaris, , 2015.

V. C. Wang, M. Can, E. Pierce, S. W. Ragsdale, and F. A. Armstrong, A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase, J. Am. Chem. Soc, vol.135, pp.2198-2206, 2013.