Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing
Octavio Graniel, Igor Iatsunskyi, Emerson Coy, Christophe Humbert, Grégory Barbillon, Thierry Michel, David Maurin, Sébastien Balme, Philippe Miele, Mikhael Bechelany

To cite this version:

HAL Id: hal-02537077
https://hal.archives-ouvertes.fr/hal-02537077
Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing

Octavio Graniel¹, Igor Iatsunskyi², Emerson Coy², Christophe Humbert³, Grégory Barbillon⁴, Michel Thierry⁵, David Maurin⁵, Sébastien Balme¹, Philippe Miele¹,⁶, and Mikhael Bechelany*¹

¹Institut Européen des Membranes (IEM), UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
²NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614, Poznan, Poland
³Univ. Paris Sud, Université Paris Saclay, Laboratoire de Chimie Physique, CNRS, Bâtiment 201 P2, 91405 Orsay, France
⁴EPF-Ecole d’Ingénieurs, 3 bis rue Lakanal, 92330 Sceaux, France
⁵Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
⁶Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France

* Corresponding author: mikhael.bechelany@umontpellier.fr

Abstract
Au-covered hollow urchin-like ZnO nanostructures were prepared with controlled size by combining nanosphere lithography (NSL), atomic layer deposition (ALD), electrodeposition, and electron beam (e-beam) evaporation. The optimal Au film thickness was determined by measuring the surface-enhanced Raman scattering (SERS) intensities of the substrates. Furthermore, the sensing performances of these hybrid nanostructures have been investigated by using chemical and biological molecules: thiophenol and adenine, respectively. Limits of detection (LOD) of 10^{-8} M and 10^{-6} M were found for the detection of thiophenol and adenine, respectively. Additionally, the excellent uniformity and batch-to-batch reproducibility of the substrates make them excellent candidates for reliable SERS sensing and biosensing.

Highlights:
• Fabrication of Au-covered ZnO urchin-like structures for SERS sensing via high throughput methods
• SERS signal is homogenous throughout the substrate and reproducible by testing different batches
• The hybrid nanostructures offer promising prospects for the detection of adenine

Keywords: surface-enhanced Raman scattering, SERS substrates, atomic layer deposition, urchin-like ZnO, ZnO/Au heterostructure
Graphical abstract:

1. Introduction

Surface-enhanced Raman scattering (SERS) has emerged as one of the most powerful analytical techniques that offer single-molecule detection [1]. Its outstanding sensitivity and non-destructive character have found many applications in many fields such as chemistry [2], medicine [3], biology [4], and environmental sciences [5]. SERS substrates are mainly fabricated with noble metals (Ag, Au, Cu) due to their strong interaction with electromagnetic waves and the excitation of the localized surface plasmon resonance (LSPR) that can be tuned in the UV-Vis-NIR region [6,7]. These noble metals are usually combined with nanostructures such as nanospheres [8], nanowires [9], nanogaps [10], nanotrees [11], and nanorods [12] that provide roughened metal surfaces and plasmonically active “hotspots” that enhance the Raman signal by several orders of magnitude [13]. Additionally, thanks to their inherent SERS activity [14], semiconductors have been used to fabricate metal/semiconductor hybrid nanostructures that exhibit both electromagnetic enhancement and charge-transfer effects [12]. Furthermore, these highly-efficient SERS hybrids present additional properties that make them attractive for applications such as photocatalysis [15], water splitting [16], and solar energy conversion [17]. As a semiconductor material with a wide direct bandgap (3.37 eV), biocompatibility [18], and promising optoelectronic properties [19,20], ZnO has been employed for the construction of high-surface-area SERS substrates with a wide range of tunable morphologies [21].

However, the fabrication of reproducible and stable SERS substrates remains a major challenge [22]. Therefore, much attention has been paid to find facile, repeatable, and high-throughput fabrication methods for large-area nanostructured substrates. Among these methods, nanosphere lithography (NSL) has proven to be a reproducible and inexpensive technique that offers well-ordered arrays of nanostructures with wafer-scale throughput [23,24]. Thus, NSL has been used in combination with other techniques to fabricate different types of SERS substrates such as silver film over nanosphere (AgFON) [25], gold semishells [26], nanoring cavities [27], nanopyramids [28], and optrodes [29]. Recently, high-surface-area urchin-like structures decorated with Ag have been successfully used as SERS substrates [30–32]. Nevertheless, even though Ag is preferred over Au due to its higher SERS activity, Ag is prone to oxidation in air or water environments [33]. Consequently, decreasing its SERS enhancement factor (EF) as a result of changes in its chemical and plasmonic properties [34].

Herein, we report on a high-surface-area reproducible SERS substrate consisting of Au-covered ZnO urchin-like hollow structures for the detection of thiophenol. This substrate was fabricated by using
scalable techniques that include NSL, atomic layer deposition (ALD) [35], electrodeposition, and electron beam (e-beam) evaporation. NSL was used to obtain a template of well-organized spheres that were later covered with a seed layer of ZnO deposited by ALD. Afterward, ZnO nanowires (NWs) were grown via a hydrothermal method to obtain the urchin-like structures, which were finally subjected to e-beam evaporation of Au. Furthermore, we investigated the SERS performances of these hybrid nanostructures by detecting a small chemical molecule (thiophenol) and then a biomolecule (adenine).

2. Material and methods

2.1 Materials

Polystyrene (PS) spheres (aqueous dispersion, 10 % w/w) with a diameter of ~500 nm and sodium dodecyl sulfate (SDS, CAS: 151-21-3, purity > 99%) were purchased from Sigma-Aldrich and used as received. Zinc chloride (CAS: 7646-85-7, purity > 98%) and potassium chloride (CAS: 7447-40-7, purity > 99.0%) were purchased from Fluka. Thiophenol (CAS: 108-98-5, purity > 99%) was purchased from Alfa Aesar. Diethylzinc (DEZ, CAS: 557-20-0, purity > 95%) was purchased from Strem Chemicals. Indium tin oxide (ITO) deposited on quartz was purchased from Präzisions Glas & Optik.

2.2 Fabrication of urchin-like ZnO structures covered by Au

First, ITO substrates (1 x 2 cm²) were cleaned by sonication for 15 min in acetone, ethanol, and isopropanol sequentially and finally dried under air. After, the PS spheres were deposited on the ITO substrates using a previously reported method with slight modifications [36]. Briefly, a 1:2 solution of PS spheres and anhydrous ethanol was added dropwise with a micropipette onto the surface of a tilted glass slide (previously treated with oxygen plasma) that was resting on the wall of a Petri dish filled with deionized (DI) water. Afterwards, 5 µL of an SDS solution (10 wt. %) were added to the water surface to change the surface tension and pack together the PS spheres. The self-assembled PS spheres were then transferred to the ITO substrate (previously exposed to a 4 W, 254 nm UV lamp for 15 min to render it hydrophilic) by carefully introducing the substrate into the Petri dish and removing it from the solution at an angle of 45°. Once dry, the substrates were heated in an oven at 100 °C for 30 min to promote the adhesion of the PS spheres to the substrate. Next, the size of the spheres was reduced to produce a non-close-packed arrangement by reactive ion etching in O₂ plasma (0.6 mbar, 50W). The size of the PS spheres was controlled by adjusting the oxygen plasma exposure time.

Afterward, a 20-nm thick ZnO layer was deposited on the PS spheres-covered substrates by ALD in a home-made system. The ZnO films were grown at 80°C using diethyl zinc (DEZ) and DI water as precursors in a typical cycle described as follows: 0.2 s pulse of DEZ, 40 s exposure, and 60 s purge with argon, followed by 2 s pulse of H₂O, 40 s exposure, and 60 s purge with argon.

Subsequently, electrodeposition of ZnO was performed using a previously reported procedure [37]. A three-electrode configuration was used with the ITO/PS spheres/ZnO ensemble as a working electrode, a Pt plate as the counter electrode, and Ag/AgCl as the reference electrode. An aqueous
solution of 0.05 mM ZnCl$_2$ (zinc precursor) and 0.1 M KCl (supporting electrolyte) was used as the electrolyte and was continuously bubbled with O$_2$ during the whole electrodeposition process. The electrodeposition was carried out at 80°C with a constant electric potential of -1 V during 15 min in a VersaSTAT 3 potentiostat. Once the electrodeposition was completed, the PS spheres were burned off in air at 600°C for 2 h. Finally, an Au layer (10, 30 and 50 nm) was deposited by a 350 UNIVEX e-beam evaporation system (10 kV, 1x106 mbar) on top of the substrates. The deposition thickness of Au was monitored using a quartz crystal monitor (deposition rate = 3 Å/s).

2.3 Substrate preparation for SERS measurements

To evaluate the enhancing capabilities of the substrates, thiophenol was selected as the test molecule. The substrates were immersed in a freshly prepared ethanolic solution with different concentrations (10$^{-3}$ M – 10$^{-8}$ M) of thiophenol for 18 h. After, the substrates were washed with copious amounts of anhydrous ethanol and dried in air under ambient conditions. For adenine detection, the substrates were immersed in different concentrations of adenine in DI water for 30 min. The substrates were then removed from the adenine solution and rinsed thoroughly with DI water and dried in air under ambient conditions.

2.4 Structural, SERS and extinction characterizations

The morphology of the as-prepared Au-covered urchin-like ZnO samples was characterized by a Hitachi S4800 scanning electron microscope (SEM). In addition, samples were prepared for Transmission electron (TEM) experiments by performing angular cuts using Focus Ion Beam (FIB) JEOL JIB-4000 using a gallium source working at 10 kV, with 60°, 40° and 30° incident angle geometries over a large area (50 µm). In this way, several particles were cut at different axis and geometry. TEM experiments were performed in an HR-TEM JEOL ARM-200F, working at 200kV, equipped with an energy-dispersive X-ray (EDX) detector. Samples were cut by FIB and then were sonicated in ethanol after ion milling and drop cast on commercially available Cu grids and vacuum dried overnight in a desiccator. X-Ray diffraction (XRD) was performed with a PANalytical X'pert-PRO diffractometer equipped with an X’celerator detector using Ni-filtered Cu Kα radiation. The XRD spectra were measured in the 20 angular region between 20° and 70° with a scan speed of 2° min$^{-1}$ and a step rate of roughly 0.02°/s. SERS measurements were performed with a Renishaw Invia Raman microscope with laser beams at 633 nm and 785 nm. The beam was focused with a 100 x objective lens with a N.A. = 0.9 in a backscattering geometry. The samples were irradiated with laser powers of 0.48 mW (633 nm) and 0.55 mW (785 nm) with acquisition times between 1 s and 10 s. For comparison, all the collected spectra were normalized by laser power and acquisition time. The average SERS intensities reported and relative standard deviations (RSD) were calculated with 25 SERS spectra. Moreover, a LabRam spectrophotometer is employed for the Raman measurements in solution (non-SERS reference) by using the same excitation wavelength and a macro-objective with a focal length of 40 mm (N.A. = 0.18). In addition, extinction spectra of samples were recorded in normal transmission mode with a Cary-5000 spectrophotometer from Agilent.
3. Results and discussion

The overall process for the fabrication of the Au-covered hollow urchin-like ZnO structures is depicted schematically in Fig. 1. Among the different approaches to fabricate ordered arrays of PS spheres, the direct assembly at the air-water interface has been demonstrated to be a simple and low-cost method that offers high-quality monolayers over large areas. Fig. 2a shows a SEM micrograph of a large area monolayer of PS spheres with a high degree of order. In order to produce a non-closed-packed monolayer, the PS spheres are exposed to oxygen plasma (Fig. 2b). This treatment allows controlling the size of the urchins and space between them. After reducing the size of the PS spheres, a thin 20-nm ZnO layer was deposited by ALD as a seed layer to promote the growth of ZnO NWs (Fig. 2b). Owing to its high conformality and homogeneity, the ALD method promotes the uniform generation of ZnO NWs on the surface of the PS spheres, unlike pure hydrothermal methods or sputtering were the thickness control of the seed layer becomes a challenge [38]. In addition, the ALD layer anchors the PS spheres to the ITO substrate and renders their surface electrically conductive for the electrodeposition process. Fig. 2c shows the morphology of the urchin-like ZnO structures. Thanks to the homogenous ALD seed layer, the electrodeposited ZnO NWs are evenly distributed on the surface of the PS spheres. The size and length of the ZnO NWs of the urchin-like structures deposited by electrodeposition can be tuned by changing the electrochemical conditions (i.e., zinc precursor concentration and charge density) [39]. Finally, the urchins are homogenously covered by an Au film deposited via e-beam evaporation with thicknesses of 10, 30, and 50 nm, respectively. Fig. 2d shows the as-synthesized Au-covered urchin-like structures with a gold layer thickness of 30 nm (10 nm and 50 nm are shown on Fig. S1).
Figure 2. SEM micrographs of (a) an array of well-organized PS spheres, (b) PS spheres after being subjected to an oxygen plasma treatment, (c) ordered hollow urchin-like ZnO structures, and (d) urchin-like ZnO structures covered by a 30 nm-thick Au layer deposited by e-gun evaporation (scale bar = 1 µm). The insets show higher magnifications of the corresponding SEM images (scale bar = 500 nm).

The morphology and crystallinity of the urchin-like structures were studied by TEM. Fig. 3a clearly shows the Au film that covers the top of the urchin-like structures and the 20 nm ZnO seed film deposited by ALD. Notably, the TEM images display a cavity with a reduced contrast and a shell with a uniform dark gray color (Fig. S2), clearly showing the hollow character of the structures. The high-resolution (HR) TEM image from Fig. 3b shows the lattice fringes that correspond to ZnO and Au. Likewise, the FFT of the HRTEM image shows the (002) plane of ZnO. Additionally, to further confirm that the PS core of the urchin structures is removed after annealing, an EDX mapping was performed. Fig. 3c shows a scanning TEM (STEM) image of a single urchin structure and Fig. 3d shows the corresponding EDX elemental mapping of Fig. 3c. Fig. 3d shows that Zn and O are located in the core of the urchin, while Au is covering the outer shell of the structure.
Figure 3. a) TEM image of an Au-covered ZnO urchin-like structure and b) high-resolution image of the selected area in image a). The inset in b) shows the FFT operation of the image. c) STEM and (d-g) EDX elemental mapping images of an Au-covered hollow ZnO urchin-like structure. Blue, red, and green illustrate Zn, O, and Au, respectively.

XRD measurements were carried out to study the crystallinity of the samples. The XRD patterns of ITO, urchin-like ZnO, and Au-covered urchin-like ZnO structures are displayed in Fig. S3. The diffraction peaks at 31.8°, 34.4°, and 36.4° can be assigned to the hexagonal wurtzite planes of (100), (002), and (101) of ZnO [40,41], while the peaks at 38.2°, 44.5°, and 64.6° can be assigned to the face-centered-cubic (fcc) planes of (111), (200), and (220) of Au [42,43]. These results show the crystalline nature of the samples and the successful fabrication of a ZnO/Au composite. The remaining peaks correspond to the ITO film deposited on quartz that is used as a substrate [44].

3.1 SERS performances for chemical sensing

The SERS activity of the substrates was optimized by depositing different Au thicknesses. Fig. 4 shows the SERS spectra of thiophenol molecules grafted on the ZnO urchin-like structures covered with 10,
30, and 50 nm of gold for the two excitation wavelengths used here. Thiophenol was selected due to its ability to form self-assembled monolayers (SAMs) via S-Au bonds [45] and the absence of characteristic vibrational modes of thiophenol molecules \((10^{-3} \text{ M})\) are well-observed (see refs [46-48]) like those at 999 \(\text{cm}^{-1}\) corresponding to the ring out-of-plane deformation and the C-H out-of-plane bending (noted, respectively: \(\gamma\)-o-d and \(\gamma(CH))\), 1022 \(\text{cm}^{-1}\) corresponding to the C-C symmetric stretching and the ring in-plane deformation (noted, respectively: \(\nu(CC)\) and \(\nu_i\)), 1072 \(\text{cm}^{-1}\) corresponding to the C-C symmetric stretching and C-S stretching (noted, respectively: \(\nu(CC)\) and \(\nu(CS))\), and at 1572 \(\text{cm}^{-1}\) the C-C symmetric stretching (noted: \(\nu(CC)\)). For comparison, we studied the peak intensity at 999 \(\text{cm}^{-1}\). It is noticeable that the Raman peaks intensities become larger as we increase the Au layer thickness for the two excitation wavelengths. This is in accordance with literature reports where it is shown that the thickness of the metallic layer plays an important role on the overall SERS enhancement [49–51]. For our complete study, we chose the 30-nm thickness with the excitation wavelength of 785 nm in order to obtain a good compromise between the SERS signal enhancement and a low overall cost of production of these SERS substrates. Fig. 5a shows the thiophenol spectra obtained from different structures for the purpose of comparison. When ZnO nanowires covered with Au (30 nm) of a size comparable from those on the ZnO urchin-like structures are used, the characteristic Raman peaks of thiophenol can barely be distinguished. Similarly, for the bare Au film (30 nm), the thiophenol peaks can be hardly identified. This result shows that the urchin-like structures present the highest SERS activity from these three types of substrate configurations.

Figure 4
SERS spectra of thiophenol \((10^{-3} \text{ M})\) from different Au film thicknesses (10, 30, and 50 nm) for the two excitation wavelengths used in our experiments: (a) 633 nm and (b) 785 nm.
Figure 5. (a) SERS spectra of thiophenol (10^{-3} M) from a 30-nm Au film, a 30-nm Au ZnO NWs, and a 30-nm Au covered urchin-like ZnO, which present an offset to improve the data visualization. (b) SERS spectra of the 30 nm Au-covered ZnO urchins with different thiophenol concentrations. The spectra are not background-corrected, and recorded at the excitation wavelength of 785 nm.

Given the complex 3D morphology of the urchins, it is difficult to know the exact number of molecules that are excited in the SERS measurements [52,53]. For this reason, the EF for the 30 nm Au-covered ZnO urchins SERS substrates was calculated by using the formula: EF = \frac{I_{\text{SERS}}}{I_{\text{ref}}} [10] were \(I_{\text{ref}} \) represents the Raman intensity of a thiophenol solution in ethanol (1 M; see fig. S4 in SI) and \(I_{\text{SERS}} \) represents the Raman intensity of the SERS measurements. Thus, the highest EF value for the Raman peak at 1572 cm\(^{-1}\) was 5.3 \times 10^2 (Table 1). From the extinction spectra (see figure 6), we observed that the excitation wavelengths of 633 nm and 785 nm are, respectively, more and more close to maximum of one resonance when the gold thickness increases that can significantly improve the enhancement factor. Moreover, it is known that EF is proportional to the extinction intensities (\(Q_e \)) [50,54], i.e. EF \sim Q_e(\lambda_{\text{exc}}) \times Q_e(\lambda_{\text{Raman}}). We observed that the EF values (see Table 1) follow qualitatively the same trend than those observed from the extinction spectra. These EF values can be attributed to the combination of different effects such as efficient light trapping [31] and the generation of hotspots from almost-touching NWs from adjacent urchins [55]. Additionally, the size of the gaps between the Au-covered urchin-like structures is in the same range as the excitation wavelength, which could contribute to the enhancement of localized electromagnetic fields and effective absorption of light by the LSPR [10,32]. SERS measurements with a range of molecular concentrations from 10^{-5} M – 10^{-8} M were performed in order to assess the limit of detection (LOD) of the substrates. Fig. 5b shows the Raman spectra of the substrates grafted with different thiophenol concentrations. The intensities of the Raman peaks remain strong up to a concentration of 10^{-7} M and then fall considerably for the concentration of 10^{-8} M where only the peak at 999 cm\(^{-1}\) remains visible. This LOD is comparable with values reported in the literature for thiophenol and similar Au-based structures [47,50].
Table 1. Calculated enhancement factors (EF) for four Raman peaks (1 mM of thiophenol) at the excitation wavelength of 785 nm for ZnO urchin-like structures covered with a 30-nm Au film.

<table>
<thead>
<tr>
<th>Raman shift (cm⁻¹)</th>
<th>999</th>
<th>1022</th>
<th>1072</th>
<th>1572</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{SERS}</td>
<td>15066</td>
<td>12199</td>
<td>16926</td>
<td>9539</td>
</tr>
<tr>
<td>I_{Raman}</td>
<td>79</td>
<td>32</td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>EF</td>
<td>1.9 × 10²</td>
<td>3.8 × 10²</td>
<td>3.1 × 10²</td>
<td>5.3 × 10²</td>
</tr>
</tbody>
</table>

3.2 Uniformity and substrate-to-substrate reproducibility of SERS signal

To demonstrate the large-area uniformity of the Au-covered hollow urchin-like structures, we constructed a Raman intensity map of the 999 cm⁻¹ peak over a 20 × 20 µm² area with a step size of 1 µm (Fig. 7a). The 400-point map shows an almost continuous bright-colored area with a few darker spots where the intensity is lower, which demonstrates the reasonable uniformity of the substrate.

Figure 7. (a) Raman map image of the 999 cm⁻¹ peak from a randomly selected area (20 x 20 µm²) on the Au-covered hollow urchin-like structures at the 785-nm excitation wavelength. (b) Intensity distribution of the 999 cm⁻¹ peak of three different samples with an average RSD value < 10%.
Additionally, the substrate-to-substrate reproducibility was investigated by measuring the intensity of the 999 cm\(^{-1}\) peak from three different batches. Fig. 7b shows the intensity distribution for three different samples. The average RSD value was found to be < 10%, which indicates a good reproducibility of the SERS substrates and shows their excellent performance.

3.2 SERS performances for biological sensing

Finally, to demonstrate the biosensing capability of these substrates, we chose the biomolecule adenine which can be used in the detection of DNA or RNA analytes [10,27]. Fig. 8 shows SERS spectra of Adenine at three different concentrations using the urchin-like ZnO structures covered with 30 nm of Au, and recorded at the excitation wavelength of 785 nm. The characteristic purine stretch at 736 cm\(^{-1}\) is noticeable up to a concentration of 1 µM and the spectra show a low signal-to-noise ratio, which is beneficial for future biosensing applications and is comparable to results published in the literature [10,27].

![Figure 8. SERS spectra for different concentrations of adenine with a LOD of 1 µM.](image)

4. Conclusion

In summary, high-surface-area Au-covered hollow ZnO urchin-like structures were prepared by combining NSL, ALD, electrodeposition, and e-beam evaporation. These high-throughput methods are readily scalable and allow the precise control of the size of the urchins and the interparticle distance. The amplification of the SERS signal for thiophenol was investigated by depositing different thicknesses of Au, and the 30-nm thickness was selected for its good compromise between the enhancement of the SERS intensity and the low cost of production. The LOD of the selected substrates was tested by detecting thiophenol down to 10\(^{-8}\) M. Additionally, the batch-to-batch repeatability was demonstrated and an average RSD < 10% was obtained. Finally, adenine was detected up to a concentration of 10\(^{-6}\) M in order to demonstrate the biosensing capability of our substrate. These results suggest that the Au-covered hollow urchin-like ZnO structures are viable candidates for ultrasensitive and reproducible SERS sensing and biosensing.
Acknowledgements

O.G. would like to thank CONACYT, México for funding. I.I. acknowledges the financial support from the National Science Centre of Poland by the SONATA 11 project UMO-2016/21/D/ST3/00962. We thank Sophie Tingry for use and assistance with the potentiostat used in this study. This work was supported by the European Union’s Horizon 2020 research and innovation program ‘CanBioSe’ (grant agreement no. 778157).

References

L. Yang, Y. Yang, Y. Ma, S. Li, Y. Wei, Z. Huang, N. Long, Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application, Nanomaterials. 7 (2017) 398. doi:10.3390/nano7110398.

