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Abstract

We develop a two-dimensional high-order numerical scheme that exactly preserves and captures the moving steady
states of the shallow water equations with topography or Manning friction. The high-order accuracy relies on a
suitable polynomial reconstruction, while the well-balancedness property is based on the first-order scheme from
[52, 53], extended to two space dimensions. To get both properties, we use a convex combination between the high-
order scheme and the first-order well-balanced scheme. By adequately choosing the convex combination parameter
following a very simple steady state detector, we ensure that the resulting scheme is both high-order accurate and
well-balanced. The method is then supplemented with a MOOD procedure to eliminate the spurious oscillations
coming from the high-order polynomial reconstruction and to guarantee the physical admissibility of the solution.
Numerical experiments show that the scheme indeed possesses the claimed properties. The simulation of the 2011
Tōhoku tsunami, on real data, further confirms the relevance of this technique.

Keywords: shallow water equations, Manning friction, high-order schemes, Godunov-type schemes,
well-balanced schemes, moving steady states
2010 MSC: 65M08, 65M12

1. Introduction

This work is concerned with the numerical approximation of the shallow water equations, given in two space
dimensions by: 

∂th+∇ · q = 0,

∂tq +∇ ·
(
q ⊗ q

h
+

1

2
gh2I

)
= −gh∇Z − kq∥q∥h−η,

(1.1)

where x and y are the space variables, t is the time variable, h ≥ 0 is the water height, q = (qx, qy)
⊺ is the

water discharge, with the ⊺ symbol indicating the transposition operation, and g > 0 is the gravity constant. The
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homogeneous system is supplemented with two source terms. The topography source term is given by:

St = −gh∇Z, (1.2)

where Z(x) is the fixed topography function. In addition, the nonlinear Manning friction source term (see for
instance [33]) is given by:

Sf = −kq∥q∥h−η, (1.3)

where k ≥ 0 is the Manning friction coefficient and η = 7⧸3. Other friction models exist in the hydraulic engineering
literature, see for instance [27], Chapter 5. Examples include the Darcy-Weisbach or Chézy friction laws, presented
in [33], which take the same form as (1.3), but with η = 2 and a different value of k. Therefore, they also fall
within the scope of this study. However, most hydraulic engineering models are only made to represent flows in
one dimension, see for instance [16, 66, 32, 54]. Even though these models have roughly the same shape as (1.3),
we do not consider them here since they are less generic.

To shorten the notation, we rewrite (1.1) under the form

∂tW + ∂xF (W ) + ∂yG(W ) =

(
0

St(W ) + Sf (W )

)
, (1.4)

where the conserved variables W and the physical fluxes F (W ) and G(W ) are given by:

W =

 h

qx

qy

 ; F (W ) =



qx

q2x
h

+
1

2
gh2

qxqy
h


; G(W ) =



qy

qxqy
h

q2y
h

+
1

2
gh2


. (1.5)

The admissible states space of the 2D shallow water equations is the following convex set:

Ω =
{
W = (h, q)⊺ ∈ R3, h ≥ 0

}
, (1.6)

which accounts for dry areas when h = 0. In addition, we define the water velocity u such that q = hu. In dry
areas, i.e. when h vanishes, we assume that both u and Sf vanish.

In the context of numerical simulations, the preservation of the steady states of the shallow water equations,
obtained by taking a vanishing time derivative in (1.1), is of prime importance. An example of these stationary
solutions is the well-known lake at rest steady state, which is nothing but a steady solution with a vanishing
discharge: {

q = 0,

h+ Z = cst .
(1.7)

This steady state and its numerical preservation have been the object of much work in the last 25 years, we refer
for instance to the non-exhaustive lists [47, 46, 3, 15, 10] in one space dimension and [4, 37, 67, 31] in two space
dimensions. The general 2D steady states with nonzero discharge, called moving steady states, are constrained
with a vanishing discharge divergence, and their study is quite complex. In this manuscript, we only consider

2



moving steady states in one space dimension.
With notation adapted from (1.1), the 1D shallow water equations read

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2
)

= −gh∂xZ − kq|q|h−η.
(1.8)

The 1D moving steady states, obtained by canceling the time derivatives in (1.8), are governed by:
q = q0,

∂x

(
q20
h

+
1

2
gh2
)

= −gh∂xZ − kq|q|h−η,
(1.9)

where q0, which can be nonzero, represents the discharge of the steady solution, which is constant in space and
time.

Considering a vanishing friction, i.e. setting k = 0 in (1.9), we recover the moving steady states with topog-
raphy, governed by: 

q = q0,

∂x

(
q20
h

+
1

2
gh2
)

= −gh∂xZ.
(1.10)

If we additionally consider smooth data, the moving topography-only steady states turn out to be governed by
the following algebraic relation, which is nothing but a statement of Bernoulli’s principle:

q20
2
∂x

(
1

h2

)
+ g∂x(h+ Z) = 0. (1.11)

The numerical preservation of these steady states has also been the object of much work in the last two decades,
see for instance [42, 20, 8, 52].

On a flat topography, but with a nonzero friction, we get the friction-only steady states, given by
q = q0,

∂x

(
q20
h

+
1

2
gh2
)

= −kq|q|h−η.
(1.12)

Similarly to the topography-only case, the smoothness assumption allows (1.12) to be rewritten under an algebraic
form, as follows:

− q20
η − 1

∂xh
η−1 +

g

η + 2
∂xh

η+2 + kq0|q0| = 0. (1.13)

These steady states are highly nonlinear, and exact preservation is a challenging task, see for instance [7, 53] and
references therein. Note that, for the case of both source terms, the steady states (1.9) cannot be rewritten under
an algebraic form. In addition, complex steady states also appear when studying shallow water-like systems,
see for instance [18, 34, 39] where the authors respectively deal with moving beds, temperature transport in the
Ripa model, and non-hydrostatic terms. Another area of interest regarding complex steady states is the study of
the Euler equations, see for instance [23, 5, 24, 6, 62, 61] and references therein, but this list is far from being
exhaustive.
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In [52, 53], the authors develop a robust numerical scheme able to exactly preserve and capture the smooth
steady states associated with the topography and the friction source terms. In addition, this scheme was proven
to be entropy-satisfying in [12]. We now aim at providing a high-order extension in two space dimensions, while
retaining the robustness property, i.e. the preservation of the water height non-negativity, and the essential well-
balancedness property. First steps have been undertaken in [11], where a well-balanced second-order MUSCL
extension is proposed. Note that other work has been devoted to the development of high-order schemes which
preserve the lake at rest (see for instance [17, 29]) or the moving steady states (see for instance [56, 22, 65, 21]).

In order to derive high-order reconstruction techniques, a particular attention must be paid to the preservation
of the steady states. This point is easily solved when only considering the preservation of the lake at rest steady
state (1.7). Indeed, it is sufficient to propose a reconstruction of the free surface, since the reconstructed water
height is then obtained by solving a linear equation. The situation turns out to be very different as soon as moving
steady states are considered, since we now have to deal with Bernoulli’s relation (1.11). For instance, in recent
works [26, 50, 41], a direct reconstruction of this Bernoulli relation is suggested. From such a reconstruction,
the water height is now solution of a nonlinear equation to be solved at each interface. This is an efficient
technique but computationally costly. Here, our goal is to propose a method which only requires one evaluation
of the Bernoulli relation per interface, so that we never have to solve such a nonlinear equation. This discussion
highlights the computational gain, and thus the efficiency, of the designed method. Moreover, the friction source
term is left mostly untreated in the high-order well-balanced literature. It turns out that our method is also able
to capture friction steady states without having to solve a nonlinear equation. Therefore, our goal is to propose
a well-balanced high-order strategy, valid for both friction and topography source terms, that does not rely on
solving nonlinear equations, and that is applicable to the shallow water equations for two-dimensional geometries.

The paper is organized as follows. First, in section 2, after recalling the 1D well-balanced scheme following
[52, 53], we design the 2D well-balanced scheme. Then, in section 3, we discuss the high-order polynomial
reconstruction and how to apply it to the numerical scheme. Afterwards, we detail a well-balancedness correction
in section 4, designed so that the resulting scheme is both well-balanced and high-order accurate. Section 5 then
presents the MOOD techniques we used to ensure the non-negativity preservation and the elimination of the
spurious oscillations caused by the high-order reconstruction. Finally, section 6 is dedicated to the numerical
experiments, designed to test the properties of the scheme, namely its well-balancedness, its high-order accuracy
and its robustness. The simulation of the 2011 Tōhoku tsunami, on real data, shows good agreement between
the numerical results and the physical measurements.

2. A well-balanced scheme in two space dimensions

In this section, we build a two-dimensional (2D) scheme by adapting the one-dimensional (1D) well-balanced
scheme from [52, 53]. We recall the 1D scheme in section 2.1 for the sake of completeness, and we provide a 2D
extension in section 2.2.

2.1. Reminder of the 1D well-balanced scheme

This section is devoted to recalling from [52, 53] the well-balanced scheme for the 1D shallow water equations
with the source terms of topography and friction (1.8). The notation we use in this section is derived in a
straightforward way from (1.4) – (1.5). The scheme has been constructed in [52, 53]; we sketch the resulting
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scheme here for the sake of completeness. First, we write the scheme as a Godunov-scheme in section 2.1.1, and
we then state a semi-implicit version of the scheme in section 2.1.2.

2.1.1. The 1D scheme as a Godunov-type scheme

Let us first recall the expression of the scheme as a Godunov-type scheme. Let ∆x be the uniform space step.
We discretize the space domain R in cells (xi− 1

2
, xi+ 1

2
), of volume ∆x and of center xi. We consider a piecewise

constant approximate solution of (1.8) at time t = tn, denoted by Wn
i := (hni , q

n
i )

⊺ in each cell. Let the time step
∆t satisfy the following CFL condition:

∆t ≤ ∆x

2Λ
, where Λ = max

i∈Z
(|λLi+ 1

2
|, λRi+ 1

2
), (2.1)

with λL and λR some characteristic velocities, defined as follows between two states WL = (hL, qL)
⊺ and WR =

(hR, qR)
⊺ (see for instance [63]):

λL = min
(
−|uL| −

√
ghL, −|uR| −

√
ghR, −ελ

)
≤ −ελ,

λR = max
(
|uL|+

√
ghL, |uR|+

√
ghR, ελ

)
≥ −ελ,

(2.2)

where ελ is a positive constant that is taken equal to 10−10 in the numerical simulations. Then, the updated
approximation at time tn+1 = tn +∆t reads:

Wn+1
i =Wn

i − ∆t

∆x

(
λLi+ 1

2

(
WL,∗

i+ 1
2

−Wn
i

)
− λRi− 1

2

(
WR,∗

i− 1
2

−Wn
i

))
. (2.3)

To complete the determination of the scheme, one has to give the values of the so-called intermediate states WL,∗
i+ 1

2

and WR,∗
i− 1

2

.
Between two states WL and WR, we define the intermediate heights and discharges as W ∗

L = (h∗L, q
∗
L)

⊺ and
W ∗

R = (h∗R, q
∗
R)

⊺ by imposing the three properties the scheme has to satisfy:
• consistency with (1.8);
• well-balancedness;
• non-negativity preservation.

The scheme is based on the intermediate states from the well-known HLL scheme [48], whose intermediate states
(hHLL, qHLL)

⊺ are given by

(λR − λL)hHLL = λRhR − λLhL − [q],

(λR − λL)qHLL = λRqR − λLqL −
[
q2

h
+

1

2
gh2
]
.

with [X] = XR − XL the jump of any quantity X. The intermediate states of the well-balanced scheme then
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read, with X+ = max(X, 0), by:

q∗ = qHLL +
S∆x

λR − λL
,

h∗L = min

((
hHLL − λRS∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL − λLS∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
,

(2.4)

where we have set
α =

−q2
hLhR

+
g

2
(hL + hR) , (2.5)

with q the harmonic mean of qL and qR:

q =


2|qL||qR|
|qL|+ |qR|

sgn(qL + qR) if qL ̸= 0 and qR ̸= 0,

0 otherwise.
(2.6)

In addition, the expressions (2.4) depend on a parameter S, which is an approximation of the source term.
This parameter S is taken as S = St + Sf , with the approximate topography source term given by:

St∆x : = St(hL, hR, ZL, ZR,∆x)∆x

=



gh2R
2

if qR = hL = 0 and hR + ZR ≤ ZL,

−gh
2
L

2
if qL = hR = 0 and hL + ZL ≤ ZR,

−g[Z]hL + hR
2

if hL = 0 or hR = 0,

−2g[Z]
hLhR
hL + hR

+
g

2

[h]
3
c

hL + hR
if hL ̸= 0 and hR ̸= 0,

(2.7)

and the approximate friction source term defined by:

Sf := Sf (hL, hR, qL, qR) = −kq|q|h−η, (2.8)

with
h−η =

[h2]

2

η + 2

[hη+2]
− sgn q

k∆x
[h]c

(
− 1

hLhR
+
hL + hR

2

[hη−1]

η − 1

η + 2

[hη+2]

)
. (2.9)

In (2.7) and (2.9), we have introduced [h]c a cut-off of the jump [h], required to ensure the consistency property,
and given by:

[h]c =

{
hR − hL if |hR − hL| ≤ C∆x,

sgn(hR − hL)C∆x otherwise,
(2.10)

with C a positive constant that does not depend on ∆x. This expression of S allows us to clarify the definition
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of well-balancedness as the preservation of steady states between WL and WR, which are defined by
[q] = 0,[
q2

h
+

1

2
gh2
]
= S.

(2.11)

We also consider the following non-smooth lake at rest solutions:{
q0 = hR = 0,

hL + ZL ≤ ZR,
or

{
q0 = hL = 0,

hR + ZR ≤ ZL.
(2.12)

Equipped with the two parameters St and Sf , we have fully determined the intermediate states (2.4) for
hL ≥ 0 and hR ≥ 0. We thus recall the following result from [52, 53], that describes the properties verified by the
full one-dimensional scheme.

Theorem 1 ([52, 53]). Let Wn
i ∈ Ω for all i ∈ Z, with Ω the admissible states space, given by (1.6). Assume

that, for all i ∈ Z, the intermediate states WL,∗
i+ 1

2

and WR,∗
i+ 1

2

satisfy

WL,∗
i+ 1

2

=

(
h∗L
(
Wn

i ,W
n
i+1

)
q∗
(
Wn

i ,W
n
i+1

)) and WR,∗
i+ 1

2

=

(
h∗R
(
Wn

i ,W
n
i+1

)
q∗
(
Wn

i ,W
n
i+1

)) ,
where h∗L, h∗R and q∗ are defined by (2.4). Then the Godunov-type scheme given by (2.3), under the CFL restriction
(2.1), satisfies the following properties:

1. consistency with the shallow water equations with topography and friction (1.8);

2. robustness: ∀i ∈ Z,Wn+1
i ∈ Ω;

3. well-balancedness: if (Wn
i )i∈Z defines a steady state according to (2.11), then ∀i ∈ Z,Wn+1

i =Wn
i .

2.1.2. Semi-implicitation of the scheme

The scheme (2.3) – (2.4) is robust, as stated by theorem 1. However, oscillations due to the stiffness of the
source terms occur when simulating transitions between dry and wet areas. To address this issue, we partially
follow [53] and introduce an implicit treatment of the friction source term. Let us emphasize that this implicit
treatment does not involve numerically solving nonlinear equation.

Remark 1. In [53], both source terms of topography and friction receive an implicit treatment. However, because
of the new definition (2.7) of St, such a treatment is not possible anymore for the topography source term. Thus,
the three-step scheme from [53] becomes a two-step scheme in the present paper.

We begin by rewriting the scheme (2.3) – (2.4) to exhibit the numerical flux function and the numerical source
terms, as follows (see [48] for instance):(

hn+1
i

qn+1
i

)
=

(
hni
qni

)
− ∆t

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
+∆t

(
0

(St)ni + (Sf )ni

)
,

where Fn
i+ 1

2

is an approximation of the physical flux at the interface xi+ 1
2
, and (St)ni and (Sf )ni are, respectively,

approximations of the topography and the friction source terms within the cell (xi− 1
2
, xi+ 1

2
). The numerical
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flux Fn
i+ 1

2

is defined by:

Fn
i+ 1

2
:= F

(
Wn

i ,W
n
i+1

)
=

1

2

(
F (Wn

i ) + F (Wn
i+1)

)
+
λL
i+ 1

2

2

(
WL,∗

i+ 1
2

−Wn
i

)
+
λR
i+ 1

2

2

(
WR,∗

i+ 1
2

−Wn
i+1

)
. (2.13)

In addition, the numerical source terms are defined as follows:

(St)ni =
(St)n

i− 1
2

+ (St)n
i+ 1

2

2
and (Sf )ni =

(Sf )n
i− 1

2

+ (Sf )n
i+ 1

2

2
, (2.14)

where (St)n
i+ 1

2

and (Sf )n
i+ 1

2

are given with clear notation by:

(St)ni+ 1
2
= St(hni , h

n
i+1, q

n
i , q

n
i+1, Zi, Zi+1,∆x),

(Sf )ni+ 1
2
= Sf (hni , h

n
i+1, q

n
i , q

n
i+1),

with the functions St and Sf given by (2.7) and (2.8).
We now introduce a semi-implicit strategy, based on a splitting method (see [15, 63] for more details), which

involves an explicit treatment of the hyperbolic part and of the topography source term, and an implicit treatment
of the friction source term. Two computational steps are therefore necessary. The first step is devoted to the
explicit treatment of the flux and the topography source term, namely:(

h
n+ 1

2
i

q
n+ 1

2
i

)
=

(
hni
qni

)
− ∆t

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
+∆t

(
0

(St)ni

)
. (2.15)

The second step concerns the friction contribution, and we get:
hn+1
i = h

n+ 1
2

i ,

qn+1
i =

(hη)n+1
i q

n+ 1
2

i

(hη)n+1
i + k∆t |qn+

1
2

i |
,

(2.16)

where (hη)n+1
i is a consistent average of hn+1

i−1 , hn+1
i and hn+1

i+1 designed to recover the well-balancedness property.
More details on the process followed to obtain a relevant average (hη)n+1

i are present in [53]. The quantity (hη)n+1
i

is defined by:

(hη)n+1
i =

2kµ
n+ 1

2
i ∆x

kµn
i ∆x

(
βn+1
i− 1

2

+ βn+1
i+ 1

2

)
−
(
γn+1
i− 1

2

+ γn+1
i+ 1

2

) + k∆tµ
n+ 1

2
i qni , (2.17)

with µn
i = sgn(qni ) and µn+ 1

2
i = sgn(q

n+ 1
2

i ), and where βn+1
i+ 1

2

and γn+1
i+ 1

2

are given by:

βn+1
i+ 1

2

=
η + 2

2

(
hn+1
i+1

)2 − (hn+1
i

)2(
hn+1
i+1

)η+2 −
(
hn+1
i

)η+2 ,

γn+1
i+ 1

2

=
1

hn+1
i+1

− 1

hn+1
i

+ βn+1
i+ 1

2

(
hn+1
i+1

)η−1 −
(
hn+1
i

)η−1

η − 1
.

Equipped with this two-step scheme, we can state the following result.
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Theorem 2. The two-step scheme (2.15) – (2.16) is consistent with the shallow water equations (1.8), robust,
and well-balanced.

A similar result has been proven in [53] for the three-step scheme used in that paper. The proof of this
result for the current two-step scheme uses the same ingredients, and we do not present it here for the sake of
conciseness.

2.2. A two-dimensional extension

We now propose a two-dimensional extension on a Cartesian grid of the scheme presented in the previous
subsection, in order to approximate solutions of (1.1). First, we introduce the notation we use regarding the
discretization of the space domain R2. Then, we present the 2D scheme as a convex combination of 1D schemes.

2.2.1. Space discretization

The discretization of the space domain R2 consists in a Cartesian mesh of uniform cells, defined by:

ci,j =

(
xi,j −

∆x

2
, xi,j +

∆x

2

)
×
(
yi,j −

∆y

2
, yi,j +

∆y

2

)
, (2.18)

where (xi,j , yi,j) is the cell center of ci,j . We denote by |ci,j | = ∆x∆y the area of the cell ci,j . The piecewise
constant approximate solution, within the cell ci,j and at time tn, is denoted by Wn

i,j .

2.2.2. Construction of the a 2D scheme

We build the two-dimensional extension as a convex combination of one-dimensional schemes. The reader is
referred for instance to [57, 10, 14, 13], where such a convex combination is presented for an unstructured mesh.
In our particular case of a Cartesian mesh, the first step of the two-step scheme reads as follows:

W
n+ 1

2
i,j =

1

4

(
W

n+ 1
2

i+ 1
2 ,j

+W
n+ 1

2

i− 1
2 ,j

+W
n+ 1

2

i,j+ 1
2

+W
n+ 1

2

i,j− 1
2

)
, (2.19)

with the notation

W
n+ 1

2

i− 1
2 ,j

=Wn
i,j −

4∆t

∆x

(
F
(
Wn

i,j ,W
n
i,j

)
−F

(
Wn

i,j ,W
n
i−1,j

) )
+ 2∆t

(
0, (St

x)
n
i− 1

2 ,j
, 0
)⊺
,

W
n+ 1

2

i+ 1
2 ,j

=Wn
i,j −

4∆t

∆x

(
F
(
Wn

i,j ,W
n
i+1,j

)
−F

(
Wn

i,j ,W
n
i,j

) )
+ 2∆t

(
0, (St

x)
n
i+ 1

2 ,j
, 0
)⊺
,

W
n+ 1

2

i,j− 1
2

=Wn
i,j −

4∆t

∆y

(
G
(
Wn

i,j ,W
n
i,j

)
− G

(
Wn

i,j ,W
n
i,j−1

) )
+ 2∆t

(
0, 0, (St

y)
n
i,j− 1

2

)⊺
,

W
n+ 1

2

i,j+ 1
2

=Wn
i,j −

4∆t

∆y

(
G
(
Wn

i,j ,W
n
i,j+1

)
− G

(
Wn

i,j ,W
n
i,j

) )
+ 2∆t

(
0, 0, (St

y)
n
i,j+ 1

2

)⊺
,

(2.20)

where (St
x)

n
i+ 1

2 ,j
and (St

y)
n
i,j+ 1

2

are defined by:

(St
x)

n
i+ 1

2 ,j
= St

(
hni,j , h

n
i+1,j , (qx)

n
i,j , (qx)

n
i+1,j , Zi,j , Zi+1,j ,∆x

)
,

(St
y)

n
i,j+ 1

2
= St

(
hni,j , h

n
i,j+1, (qy)

n
i,j , (qy)

n
i,j+1 , Zi,j , Zi,j+1,∆y

)
,

with St defined by (2.7). Note that (2.20) represents a collection of four one-dimensional schemes, and that (2.19)
is nothing but a convex combination of these schemes.
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In (2.20), the numerical flux function F is the 1D function in the x-direction defined in (2.13) and the numerical
flux in the y-direction, G, derives from F by using classical rotational invariance properties (see for instance [40]).
The equation (2.19) can be rewritten using (2.20) under the following classical form:

W
n+ 1

2
i,j =Wn

i,j −
∆t

∆x

(
F
(
Wn

i,j ,W
n
i+1,j

)
−F

(
Wn

i−1,j ,W
n
i,j

))
− ∆t

∆y

(
G
(
Wn

i,j ,W
n
i,j+1

)
− G

(
Wn

i,j−1,W
n
i,j

))
+∆t

(
0

(St)ni,j

)
,

(2.21)

together with

(St)ni,j =
1

2

(St
x)

n
i− 1

2 ,j
+ (St

x)
n
i+ 1

2 ,j

(St
y)

n
i,j− 1

2

+ (St
y)

n
i,j+ 1

2

 .

The time step is chosen to satisfy the following CFL condition:

∆t =
δ

2Λ
, (2.22)

where δ = min(∆x,∆y) and Λ stands for the maximum of all characteristic velocities at each interface.
To build the second step of the scheme, we address the implicitation of the friction contribution. Similarly to

the 1D case, we solve the following initial value problem:

{
h′ = 0,

q′ = −k q∥q∥h−η,
with initial data

h(0) = h
n+ 1

2
i,j ,

q(0) = q
n+ 1

2
i,j .

This initial value problem again admits an analytic solution, given for t ∈ [0,∆t] by:
h(t) = h(0),

q(t) =
h(0)η q(0)

h(0)η + k t ∥q(0)∥ .
(2.23)

We slightly modify the expression of the discharge given by (2.23) to recover the well-balancedness property, and,
the updated state reads, with q = (qx, qy)

⊺:

hn+1
i,j = h

n+ 1
2

i,j ,

(qx)
n+1
i,j =

(hηx)
n+1
i,j (qx)

n+ 1
2

i,j

(hηx)
n+1
i,j + k∆t

∥∥∥qn+ 1
2

i,j

∥∥∥ ,
(qy)

n+1
i,j =

(hηy)
n+1
i,j (qy)

n+ 1
2

i,j

(hηy)
n+1
i,j + k∆t

∥∥∥qn+ 1
2

i,j

∥∥∥ ,
(2.24)

with (hηx)
n+1
i,j and (hηy)

n+1
i,j given by (2.17) in the x- and y-direction, respectively.

The 2D scheme is now complete. To state its properties, we require the following definition.

10



Definition. The vector (Wn
i,j)(i,j)∈Z2 is said to define a steady state in the x-direction if:

• ∀(i, j) ∈ Z2, Wn
i,j+1 =Wn

i,j ;

• ∀(i, j) ∈ Z2, (qy)ni,j = 0;

• ∀(i, j) ∈ Z2, the pairs (hni,j , (qx)
n
i,j , Zi,j)

⊺ and (hni+1,j , (qx)
n
i+1,j , Zi+1,j)

⊺ satisfy (2.11) or (2.12).

Similarly, (Wn
i,j)(i,j)∈Z2 is said to define a steady state in the y-direction if:

• ∀(i, j) ∈ Z2, Wn
i+1,j =Wn

i,j ;

• ∀(i, j) ∈ Z2, (qx)ni,j = 0;

• ∀(i, j) ∈ Z2, the pairs (hni,j , (qy)
n
i,j , Zi,j)

⊺ and (hni,j+1, (qy)
n
i,j+1, Zi,j+1)

⊺ satisfy (2.11) or (2.12).

The following result is then satisfied by the 2D scheme:

Theorem 3. Under the CFL condition (2.22), the two-dimensional two-step scheme (2.21) – (2.24) is robust and
well-balanced in the x- and y-directions:

1. Robustness: if Wn
i,j ∈ Ω for all (i, j) ∈ Z2, then Wn+1

i,j ∈ Ω for all (i, j) ∈ Z2.

2. Well-balancedness in the x- and y-directions: if (Wn
i,j)(i,j)∈Z2 defines a steady state in the x- or the y-

direction, then for all (i, j) ∈ Z2, Wn+1
i,j =Wn

i,j.

Proof. The proof of this theorem revolves rewriting the first step (2.21) of the 2D scheme under the form of a
convex combination of 1D schemes, given by (2.19) and (2.20). Then, each 1D scheme defined by (2.20) enjoys
the same properties as the truly 1D scheme (2.15). In addition, these properties are satisfied by the convex
combination (2.19). Therefore, the robustness of the two-step scheme is immediate, since the 1D schemes are
robust.

In order to establish the well-balancedness, assume that (Wn
i,j)(i,j)∈Z2 defines a steady state in the x-direction.

Therefore, the sum of the vertical fluxes in (2.21) and the y contribution of the topography vanishes. Thus, the
first step of the scheme turns out to be the 1D first step following the x-direction. Then, the y contribution of
the friction source term vanishes, leaving only the x contribution, which is the same as in the 1D case. Therefore,
theorem 2 applies, and Wn+1

i,j =Wn
i,j for all (i, j) ∈ Z2. A similar chain of arguments can be applied to prove the

preservation of the steady states in the y-direction.

Remark 2. Note that the lake at rest steady state (1.7) is a particular case of the steady states defined in the x-
and y-directions. Indeed, taking a steady state in the x-direction with qx = 0 yields the lake at rest. Similarly,
the lake at rest is obtained by taking a steady state in the y-direction with qy = 0. Therefore, from theorem 3,
any two-dimensional lake at rest steady state given by (1.7) or by (2.12) is exactly preserved by the 2D scheme.

Remark 3. The scheme we have built preserves the 1D moving steady states, in addition to the 2D steady states
at rest. The case of the fully 2D steady states, where the discharge is divergence-free instead of being merely
constant, is a much more arduous task, and lies outside the scope of this manuscript.
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3. High-order strategy

Equipped with the first-order 2D scheme built in the previous section, we now build a high-order 2D scheme.
First, we focus on the reconstruction strategy used to obtain reconstructed variables. Next, we present the
high-order scheme that takes advantage of these reconstructed variables.

From now on and until the end of the paper, the degree of the polynomial reconstruction is denoted by d ≥ 0.
Moreover, for the sake of simplicity, we denote the reconstructed variables by φ ∈ {h, qx, qy, h+ Z}. Note that a
polynomial reconstruction of degree d provides a scheme of order (d+ 1).

3.1. Obtaining reconstructed variables

We begin by presenting the polynomial reconstruction strategy, introduced in [28, 35] (see also [36, 29] for
more details). In the aforementioned papers, a reconstruction of the variable φ within the cell ci,j is provided.
In the remainder of this subsection, we apply this polynomial reconstruction procedure to our specific case of a
uniform Cartesian mesh. The reconstructed variables are thus defined as follows:

φ̂i,j(x, y; d) = φi,j +
∑

|α|∈J1,dK

Rα
i,j

(
(x− xi,j)

α1(y − yi,j)
α2 −Mα

i,j

)
, (3.1)

where α = (α1, α2) ∈ N2 is a multi-index, |α| = α1 + α2 is its length, and (Rα
i,j)|α|∈J1,dK are the polynomial

coefficients.
The quantity Mα

i,j is introduced in (3.1) to ensure that the following conservation property holds for the
polynomial φ̂i,j(x, y; d):

1

|ci,j |

∫
ci,j

φ̂i,j(x, y; d) dx dy = φi,j .

Thus, we define Mα
i,j as follows:

Mα
i,j =

1

|ci,j |

∫
ci,j

(x− xi,j)
α1(y − yi,j)

α2 dx dy.

Using the definition (2.18) of the cell ci,j , we exactly compute the above integral, to get:

Mα =
1 + (−1)α1

2(α1 + 1)

(
∆x

2

)α1 1 + (−1)α2

2(α2 + 1)

(
∆y

2

)α2

,

where we have dropped the subscript for the sake of clarity, since Mα
i,j does not actually depend on the cell ci,j

in the uniform Cartesian situation.
Let Σd

i,j be the stencil made of cells neighboring ci,j for a reconstruction of degree d. The stencil only depends
on the degree of the polynomial reconstruction, and its construction will be detailed later on. The weights are
chosen so as to minimize, in a least squares sense, the error between the average of the polynomial and the
approximate solution on the cells of Σd

i,j . The polynomial coefficients Rα
i,j are therefore determined to minimize

the following quadratic functional (see [28]):

Ei,j(Ri,j) =
∑

l∈Σd
i,j

(
1

|cl|

∫
cl

φ̂i,j(x, y; d) dx dy − φl

)2

, (3.2)
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where Ri,j = (Rα
i,j)|α|∈J1,dK. After [28] (see also [60] for more details), we rewrite below the minimization problem

(3.2) as a linear system, whose solution minimizes Ei,j .
After integrating (3.1) over the cell cl ∈ Σd

i,j and performing straightforward computations, we obtain

1

|cl|

∫
cl

φ̂i,j(x, y; d) dx dy = φi,j+

∑
|α|∈J1,dK

Rα
i,j

(
1

|cl|

(∫ xl−xi,j+∆x/2

xl−xi,j−∆x/2

χα1
i,j dχi,j

)(∫ yl−yi,j+∆y/2

yl−yi,j−∆y/2

υα2
i,j dυi,j

)
−Mα

)
,

(3.3)

where (xl, yl) is the center of the cell cl, and where we have introduced the change of variables (χi,j , υi,j) =

(x − xi,j , y − yi,j). Note that there exist (σl
x, σ

l
y) ∈ Z2 such that xl − xi,j = σl

x∆x and yl − yi,j = σl
y∆y. The

pair of integers (σl
x, σ

l
y) represent the position of the cell cl relatively to the position of ci,j , as shown in figure 1.

Note that (σl
x, σ

l
y) does not depend on the absolute position of the cell ci,j , since our Cartesian mesh is uniform

and the stencil size is the same for each cell.

ci,j

cl

Figure 1: Relative position of the cell cl with respect to ci,j . In this example, σl
x = 2 and σl

y = −1.

Using σl
x and σl

y in (3.3), we get:

1

∆x

∫ xl−xi,j+∆x/2

xl−xi,j−∆x/2

χα1
i,j dχi,j =

(
2σl

x + 1
)α1+1 −

(
2σl

x − 1
)α1+1

2(α1 + 1)

(
∆x

2

)α1

,

1

∆y

∫ yl−yi,j+∆y/2

yl−yi,j−∆y/2

υα2
i,j dυi,j =

(
2σl

y + 1
)α2+1 −

(
2σl

y − 1
)α2+1

2(α2 + 1)

(
∆y

2

)α2

.

Thus, from (3.3), we obtain

1

|cl|

∫
cl

φ̂i,j(x, y; d) dx dy = φi,j+

∑
|α|∈J1,dK

Rα
i,j

((
2σl

x + 1
)α1+1 −

(
2σl

x − 1
)α1+1

2(α1 + 1)

(
∆x

2

)α1
(
2σl

y + 1
)α2+1 −

(
2σl

y − 1
)α2+1

2(α2 + 1)

(
∆y

2

)α2

−Mα

)
.

(3.4)

Therefore, plugging (3.4) into (3.2), we have Ei,j(Ri,j) = ∥XRi,j − Φi,j∥2, where:

• Ri,j = (Rα
i,j)|α|∈J1,dK is the unknown vector;

• Φi,j = (φl − φi,j)l∈Σd
i,j

;

• the matrix X is defined as follows:

X =

[(
2σl

x + 1
)α1+1 −

(
2σl

x − 1
)α1+1

2(α1 + 1)

(
∆x

2

)α1

·
(
2σl

y + 1
)α2+1 −

(
2σl

y − 1
)α2+1

2(α2 + 1)

(
∆y

2

)α2

−Mα

]
l∈Σd

i,j ,|α|∈J1,dK

.
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Finally, we obtain Ri,j by using the normal equation associated to the minimization problem, as follows:

X⊺XRi,j = X⊺Φi,j . (3.5)

Remark 4. The reader is referred to [28, 35] for more details on how to efficiently solve the linear system (3.5).
Indeed, since X only depends on the fixed geometry, we avoid solving the linear system at each time iteration
thanks to the Moore-Penrose pseudoinverse of X. More details on this pseudoinverse can be found in [60].

Remark 5. In order to ensure that there exists a solution to the minimization problem (3.2), we need more
information from the stencil than we have reconstruction weights. Thus, we need #Σd

i,j > #{α ∈ N2 ; |α| ∈
J1, dK}. After straightforward computations, we have the following lower bound on the size of the stencil:

#Σd
i,j >

(d+ 1)(d+ 2)

2
− 1. (3.6)

Therefore, to determine the stencil, we take the smallest symmetric stencil whose size satisfies (3.6) and that
leads to the matrix X being invertible. These choices are detailed in figure 2, for d ∈ J1, 5K.

ci,j

d = 1

d = 2

ci,j

d = 3

d = 4

d = 5

Figure 2: Representation of the stencil Σd
i,j for d ∈ J1, 5K. The lower order stencils are always included in the higher order ones. For

the sake of simplicity, we take ∆x = ∆y in this figure.

3.2. The high-order scheme

Equipped with the polynomial reconstruction, our goal is now to obtain a high-order scheme, but we face a
new difficulty since this high-order scheme will not be well-balanced due to the polynomial reconstruction. In a

14

fig:stencil


later section, we shall introduce a correction to ensure the well-balancedness of the high-order scheme. We first
present the high-order procedure in space, then its associated high-order time discretization.

3.2.1. High-order space discretization

In order to improve the spatial order of accuracy of the scheme, we numerically integrate the flux at the
interfaces, which requires high-order quadrature formulas based on Gauss points. The number of Gauss points
NG depends only on the degree d, and is given by

NG = 1 +

⌊
d

2

⌋
.

Let ei+ 1
2 ,j

be the common interface between cells ci,j and ci+1,j . The rth Gauss point on ei+ 1
2 ,j

is denoted by
ζr
i+ 1

2 ,j
, with the associated weight ξr (see for instance [1] for more details on the coordinates of the Gauss points

as well as their weights). Figure 3 shows the approximate location of the Gauss points on the edges of cell ci,j in
the specific case where NG = 2.

×
(xi,j , yi,j)

×ζ1
i− 1

2 ,j

×ζ2
i− 1

2 ,j

×ζ1i+ 1
2 ,j

×ζ2i+ 1
2 ,j

×
ζ1
i,j− 1

2 ×
ζ2
i,j− 1

2

×
ζ1
i,j+ 1

2

×
ζ2
i,j+ 1

2

Figure 3: Approximate location of the Gauss points on the edges of cell ci,j . We have assumed NG = 2 for this figure.

The high-order scheme reads (see [19, 35, 29] for instance):

Wn+1
i,j =Wn

i,j −
NG∑
r=1

ξr

[
∆t

∆x

(
Fn

i+ 1
2 ,j,r

−Fn
i− 1

2 ,j,r

)]

−
NG∑
r=1

ξr

[
∆t

∆y

(
Gn
i,j+ 1

2 ,r
− Gn

i,j− 1
2 ,r

)]
+∆t(St)ni,j +∆t(Sf )ni,j .

(3.7)

The quantities Fn
i+ 1

2 ,j,r
and Gn

i,j+ 1
2 ,r

are the numerical fluxes evaluated at the edge Gauss points, given as follows:

Fn
i+ 1

2 ,j,r
= F

(
Ŵn

i,j(ζ
r
i+ 1

2 ,j
; d), Ŵn

i+1,j(ζ
r
i+ 1

2 ,j
; d)
)
,

Gn
i,j+ 1

2 ,r
= G

(
Ŵn

i,j(ζ
r
i,j+ 1

2
; d), Ŵn

i,j+1(ζ
r
i,j+ 1

2
; d)
)
.

(3.8)

In (3.8), Ŵn
i,j is the polynomial function containing the polynomial reconstructions of h, qx and qy within the cell

ci,j , and the functions F and G are the same as in (2.20), with the notable exception of the approximate friction
source term Sf within the numerical flux, which is no longer defined by (2.8). Indeed, so as not to introduce an
error of the order of ∆x in the high-order flux approximation, we have replaced the definition (2.8) of Sf with
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the following expression:
Sf := Sf (hL, hR, qL, qR) = −kq|q|h−η∆xd, (3.9)

where q is defined by (2.6) and h−η is given by:

h−η =
[h2]

2

η + 2

[hη+2]
− µ

k∆xd+1
[h]c

(
− 1

hLhR
+
hL + hR

2

[hη−1]

η − 1

η + 2

[hη+2]

)
, (3.10)

instead of (2.9). Note that, if d = 0, the expressions (3.9) and (3.10) coincide with (2.8) and (2.9), and the
numerical flux is not modified.

In the high-order scheme (3.7), (St)ni,j and (Sf )ni,j are the high-order numerical source terms of topography
and friction, defined as follows:

(St)ni,j =
1

|ci,j |

∫
ci,j

(
0

−gĥni,j∇Ẑn
i,j

)
dx dy, (3.11a)

(Sf )ni,j =
1

|ci,j |

∫
ci,j

(
0

−kq̂n
i,j∥q̂n

i,j∥(ĥni,j)−η

)
dx dy, (3.11b)

where Ẑn
i,j is the reconstruction of Z within the cell ci,j , computed from the reconstructions of h and h+Z, and

where q̂n
i,j = ((q̂x)

n
i,j , (q̂y)

n
i,j)

⊺. Note that we do not compute the exact integrals involved in (3.11), but rather
introduce a quadrature formula of order (d+1) in the cell ci,j . The reader is referred to [1] for more information
on high-order quadrature rules on a rectangle.

3.2.2. High-order time discretization

Strong stability-preserving Runge-Kutta (SSPRK) methods, introduced in [44, 45], are used to increase the
time accuracy of the scheme, thus providing a high-order time accuracy while retaining some robustness properties
of the original scheme (3.7). The second-order SSPRK(2,2), third-order SSPRK(3,3) or fourth-order SSPRK(5,4)
methods, described in [44, 59], are used in the present study. Note that the SSPRK(2,2) method is nothing but
Heun’s method. Table 1 displays the choice of the time discretization with respect to the degree d.

d = 1 d = 2 d ≥ 3

SSPRK(2,2) SSPRK(3,3) SSPRK(5,4)

Table 1: Choice of SSPRK method with respect to the degree of the polynomial reconstruction.

For the sake of simplicity, we shall only present the SSPRK(3,3) method, since the other two methods are
similar. The reader is referred to [43] for an overview of the three SSPRK methods we use, as well as additional
SSPRK methods. We begin by rewriting the scheme (3.7) as follows:

Wn+1 = H(Wn),

where Wn is the vector containing the Wn
i,j for (i, j) ∈ Z2, and H is a functional representing the scheme (3.7).
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With this notation, the SSPRK(3,3) scheme is given as follows:

Wn+1 =
Wn + 2W (3)

3
, with


W (1) = H(Wn),

W (2) = H(W (1)),

W (3) = H
(
3Wn +W (2)

4

)
.

(3.12)

The final step in the construction of the high-order time discretization is the choice of the time step ∆t. For
d ≤ 3, the time step is constrained with the classical CFL condition (2.22). However, since the SSPRK(5,4)
discretization is only fourth-order accurate in time, we have to introduce a correction of the time step for d = 4

and d = 5, as follows:

∆t ≤ δ
max(d,3)

3

2Λ
, (3.13)

where δ is the 2D mesh step, given by δ = min(∆x,∆y). The time step condition (3.13) ensures that the time
scheme will be the same order of accuracy as the space scheme.

4. Well-balancedness recovery for the high-order scheme

The reconstruction procedure introduced in section 3.1 causes the high-order scheme to no longer exactly
preserve steady solutions, and causes non-physical oscillations when dealing with non-smooth solutions. In this
section, we deal with the preservation of the steady solutions, assumed to be smooth. The oscillations are treated
in the next section.

In order to recover the well-balancedness property, we propose a convex combination procedure between
the first-order scheme and the high-order scheme. This convex combination recovers the well-balancedness by
gradually downgrading the high-order scheme into the first-order well-balanced scheme when the solution becomes
close enough to a steady state. This specific approach has been introduced in [52, 53] to produce a second-order
well-balanced scheme (see also [49] for related work), and a proof of second-order accuracy was obtained in [11].
Here, the goal is to provide a very simple expression of the convex combination parameter that ensures high-order
accuracy.

4.1. The well-balancedness property

We set up the convex combination of the first-order and the high-order schemes by introducing a parame-
ter (θx)

n
i+ 1

2 ,j
at each horizontal interface ei+ 1

2 ,j
and a parameter (θy)

n
i,j+ 1

2

at each vertical interface ei,j+ 1
2
. The

expressions of these parameters, which will be used to define a convex combination between the first-order and
the high-order schemes, shall be given later.

Recall that the first-order well-balanced scheme is given by the two steps (2.21) – (2.24), while the high-order
scheme is defined by (3.7). For the sake of clarity, we artificially split the high-order scheme (3.7) into two steps,
the first one with the transport and the topography, and the second one with the friction, as follows:

W
n+ 1

2
i,j =Wn

i,j −
NG∑
r=1

ξr∆t

[Fn
i+ 1

2 ,j,r
−Fn

i− 1
2 ,j,r

∆x
+

Gn
i,j+ 1

2 ,r
− Gn

i,j− 1
2 ,r

∆y

]
+∆t(St)ni,j ,

Wn+1
i,j =W

n+ 1
2

i,j +∆t(Sf )ni,j .

17

sec:reconstruction


We denote by (St)ni,j the second and third components of (St)ni,j , defined by (3.11) and containing the to-
pography contribution to the discharge for the high-order scheme. The first step of the high-order well-balanced
scheme is merely a convex combination in each direction of the first steps of the two schemes:

W
n+ 1

2
i,j =Wn

i,j −
∆t

∆x

NG∑
r=1

ξr

(
(θx)

n
i+ 1

2 ,j
Fn

i+ 1
2 ,j,r

− (θx)
n
i− 1

2 ,j
Fn

i− 1
2 ,j,r

)
− ∆t

∆x

((
1− (θx)

n
i+ 1

2 ,j

)
F
(
Wn

i,j ,W
n
i+1,j

)
−
(
1− (θx)

n
i− 1

2 ,j

)
F
(
Wn

i−1,j ,W
n
i,j

))
− ∆t

∆y

NG∑
r=1

ξr

(
(θy)

n
i,j+ 1

2
Gn
i,j+ 1

2 ,r
− (θy)

n
i,j− 1

2
Gn
i,j− 1

2 ,r

)
− ∆t

∆y

((
1− (θy)

n
i,j+ 1

2

)
G
(
Wn

i,j ,W
n
i,j+1

)
−
(
1− (θy)

n
i,j− 1

2

)
G
(
Wn

i,j−1,W
n
i,j

))
+∆t

(
0

θn
i,j · (St)ni,j +

(
1− θn

i,j

)
· (St)ni,j

)
,

(4.1)

where θn
i,j := ((θx)

n
i,j , (θy)

n
i,j)

⊺ is a convex parameter on the cell ci,j , whose expression with respect to (θx)
n
i± 1

2 ,j

and (θy)
n
i,j± 1

2

will also be given later.

Concerning the updated water heights, we take hn+1
i,j = h

n+ 1
2

i,j , since the last step is devoted to the friction
source term and therefore has no impact on the water height. We denote by (Sf )ni,j the second and third
components of (Sf )ni,j , as defined by (3.11). Following (2.24), let (qWB)

n+1
i,j be the vector containing the discharge

obtained after the second step of the first-order scheme. The second step of the high-order well-balanced scheme
consists in the convex combination of the two second steps, as follows:

qn+1
i,j = θn

i,j ·
(
q
n+ 1

2
i,j +∆t(Sf )ni,j

)
+
(
1− θn

i,j

)
· (qWB)

n+1
i,j . (4.2)

In the two-step scheme (4.1) – (4.2), if (θx)
n
i± 1

2 ,j
and (θy)

n
i,j± 1

2

are close to 1, then the high-order scheme is
preferred, while the first-order well-balanced scheme is used if (θx)ni± 1

2 ,j
and (θy)

n
i,j± 1

2

are close to 0.
In order to recover the high-order accuracy in time, we apply the relevant SSPRK procedure with respect to

the degree of the polynomial reconstruction, according to table 1. For instance, if d = 2, the SSPRK(3,3) method
(3.12) is used.

4.2. A high-order accurate convex combination

The convex combination detailed in section 4.1 is performed in each cell ci,j , while computing the numerical
fluxes and the numerical source terms. The only remaining unknowns are the parameters (θx)ni+ 1

2 ,j
and (θy)

n
i,j+ 1

2

.

Note that, if (θx)
n
i± 1

2 ,j
and (θy)

n
i,j± 1

2

are approximations of 1 up to order ∆xd+1 in each direction, then the
two-step scheme with convex combination (4.1) – (4.2) is automatically of order (d+ 1), like the fully high-order
scheme (3.7).

In the remainder of this section, we derive an expression of the convex combination parameter in the x-
direction (θx)

n
i+ 1

2 ,j
. The expressions in the y-direction are obtained in a similar fashion. Let us define a steady
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state detector εx in the x-direction between two states WL and WR, as follows:

εx(WL,WR, ZL, ZR, xL, xR) =

√(
ψt
x(WR, ZR)− ψt

x(WL, ZL)
)2

+
(
(qx)R − (qx)L

)2
+

1

2

(
(qy)2R + (qy)2L

)
×
√(

ψf
x(WR, xR)− ψf

x(WL, xL)
)2

+
(
(qx)R − (qx)L

)2
+

1

2

(
(qy)2R + (qy)2L

)
,

(4.3)

where ψt
x(W,Z) and ψf

x(W,x) are respectively defined by the algebraic expressions of the topography and friction
steady states (1.11) and (1.13), as follows:

ψt
x(W,Z) =

q2

2h2
+ g (h+ Z) , (4.4a)

ψf
x(W,x) = −q2 h

η−1

η − 1
+ g

hη+2

η + 2
+ kq|q|x. (4.4b)

Note that this definition ensures that the steady state detector εx vanishes as soon as a steady state with either
topography or friction is detected between the states WL and WR in the x-direction, that is to say as soon as the
pairs (hL, (qx)L, ZL) and (hR, (qx)R, ZR) define a 1D steady state, and that (qy)L = (qy)R = 0.

We define the convex combination parameter (θx)
n
i+ 1

2 ,j
at the interface ei+ 1

2 ,j
by:

(θx)
n
i+ 1

2 ,j
=

(εx)
n
i+ 1

2 ,j

(εx)ni+ 1
2 ,j

+

(
∆x

Lx

)k
, (4.5)

with (εx)
n
i+ 1

2 ,j
= εx(W

n
i,j ,W

n
i+1,j , Zi,j , Zi+1,j , xi,j , xi+1,j), Lx a characteristic length and k ≥ d + 1. The convex

combination parameter in the x-direction (θx)
n
i,j within the cell ci,j is then defined as follows:

(θx)
n
i,j =

√
1

2

((
(θx)ni− 1

2 ,j

)2
+
(
(θx)ni+ 1

2 ,j

)2)
. (4.6)

Proposition 4. The convex combination parameter in the x -direction (θx)
n
i,j, given by (4.6), satisfies the fol-

lowing properties:

• (θx)
n
i,j vanishes as soon as Wn

i−1,j, Wn
i,j and Wn

i+1,j define a steady state;

• If Wn
i−1,j, Wn

i,j and Wn
i+1,j do not define a steady state, then (θx)

n
i,j is an approximation of 1 up to ∆xd+1.

Proof. Equipped with the definition (4.3) of the steady state detector εx, we immediately obtain that (εx)
n
i+ 1

2 ,j

vanishes as soon as Wn
i,j and Wn

i+1,j define a steady state. Therefore, in this case, (θx)ni+ 1
2 ,j

given by (4.5), also
vanishes, which ensures that (θx)ni,j vanishes as soon as Wn

i−1,j , Wn
i,j and Wn

i+1,j define a steady state, and proves
the first property.

The second property is proven by arguing a Taylor expansion of the expression (4.5). Indeed, let us assume
that Wn

i−1,j , Wn
i,j and Wn

i+1,j do not define a steady state, i.e. that (εx)
n
i± 1

2 ,j
̸= 0. Then, (θx)

n
i± 1

2 ,j
can be

rewritten as follows:
(θx)

n
i± 1

2 ,j
=

1

1 + Cn
i,j ∆x

k
, with Cn

i,j =
1

(εx)ni± 1
2 ,j

Lk
x

.
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Since Cn
i,j is a constant independent of ∆x, we get

(θx)
n
i± 1

2 ,j
= 1− Cn

i,j∆x
k +O(∆x2k) = 1 +O(∆xd+1),

since k is such that k ≥ d + 1. Then, arguing another Taylor expansion in the definition (4.6) of (θx)
n
i,j , we

immediately get (θx)
n
i,j = 1 +O(∆xd+1).

In the y-direction, the convex combination parameter (θy)
n
i,j is obtained in a similar fashion. Equipped with

the expressions of (θx)ni+ 1
2 ,j

and (θy)
n
i,j+ 1

2

, the high-order well-balanced scheme (4.1) – (4.2) is complete, and its
properties are summarized in the following result.

Theorem 5. The scheme (4.1) – (4.2), equipped with the convex combination parameter defined in section 4.2,
is well-balanced in the x- and y-directions and high-order accurate.

Proof. Since the convex combination parameter vanishes as soon as a steady state in the x- and y-directions is
detected, the convex combination scheme (4.1) – (4.2) reverts to the first-order scheme in this case, which is
well-balanced according to theorem 3. In addition, since the convex combination parameter is nothing but an
approximation of 1 up to ∆xd+1 according to proposition 4, the resulting convex combination scheme is necessarily
high-order accurate far from a steady state. The proof is thus concluded.

5. The MOOD method

The previous section proposes an adaptation of the high-order scheme to recover the well-balancedness. How-
ever, this high-order accuracy comes with the loss of the non-negativity property, and the numerical solutions
obtained with this scheme may present spurious oscillations around discontinuities (see [64, 51] for instance).

To address this issue, we use MOOD techniques (see [28, 35, 36] for an overview of this method, and [9, 38,
30, 29] for more recent applications, related to the shallow water equations and dry/wet transitions). Classical
MOOD limiters, detailed below, are applied to preserve the non-negativity as well as to prevent the scheme from
creating non-physical oscillations.

5.1. Overview of the MOOD method

The goal of the MOOD procedure is to recover the essential stability properties of a first-order scheme, for
instance its robustness, by detecting whether the properties are verified by the high-order approximation. If this
verification fails in some cell, the degree of the approximation is lowered in this cell, until the properties are
satisfied. In this work, we use a more direct version of this method, by switching to the first-order scheme as soon
as the verification fails, instead of progressively downgrading the polynomial degree. This choice is motivated by
the fact that only the first-order scheme is well-balanced, and the well-balancedness preservation for the high-order
scheme requires directly switching to the first-order scheme, as explained in section 4.

The core of the MOOD method is in the choice of the properties that need to be satisfied by the high-order
scheme, and in their detection. Detection criteria are commonly used within the MOOD procedure. Note that
the detection criteria in section 5.1 have already been introduced in [38, 29] (and references therein). In this
section, we recall these criteria for the sake of completeness.

We introduce the notation W ⋆ for the candidate solution, i.e. the solution obtained from Wn using the high-
order well-balanced scheme presented in section 4. This candidate solution is then tested against the following
criteria, to determine the cells where it is not acceptable.

20

sec:WB_correction_coefficient
thm:properties_2D_scheme
prop:convex_combination_parameter
sec:WB_correction
sec:MOOD_limiters
sec:WB_correction


5.1.1. Physical Admissibility Detector (PAD)

The PAD determines whether the approximate solution is out of the admissible states space Ω. In the case of
the shallow water equations, we check whether the water height is non-negative, and state that the PAD criterion
fails within the cell ci,j if

h⋆i,j < 0.

Let us underline that, equipped with the PAD, the high-order scheme is non-negativity preserving.

5.1.2. Discrete Maximum Principle (DMP)

Although the PAD ensures the non-negativity preservation, it does not prevent spurious oscillations from
appearing in the vicinity of discontinuities. To address this issue, we use the DMP criterion to check for potential
oscillations. Let νi,j be the set of cells connected to ci,j with an edge or a vertex. The DMP criterion fails if one
of the following three checks is not fulfilled:

min
l∈νi,j

(hl + Zl)− εh ≤ h⋆i,j + Z⋆
i,j ≤ min

l∈νi,j

(hl + Zl) + εh,

min
l∈νi,j

((qx)l)− εq ≤ (qx)
⋆
i,j ≤ min

l∈νi,j

((qx)l) + εq,

min
l∈νi,j

((qy)l)− εq ≤ (qy)
⋆
i,j ≤ min

l∈νi,j

((qy)l) + εq,

(5.1)

where εh and εq are used to reduce the risk of oscillation overdetection, mainly due to floating-point truncation
errors. In practice, we usually take εh = εq = δ3, with δ = min(∆x,∆y).

5.1.3. Detecting physical oscillations: the u2 criterion

The DMP criterion (5.1) can detect and eliminate physical extrema, thus resulting in a false positive that
reduces the accuracy of the scheme. Therefore, we add another criterion to detect whether an extremum is
physically admissible, namely the u2 criterion. It uses the second derivative of the polynomial reconstruction
φ̂i,j(x, y; 2). Note that, since φ̂i,j(x, y; 2) is a second-degree polynomial, its second derivative is constant. In
practice, we take φ ∈ {h+ Z, qx, qy}. We then define the following curvatures on the cell ci,j :

Xmin
i,j = min

l∈νi,j

(∂xxφ̂i,j , ∂xxφ̂l) , Xmax
i,j = max

l∈νi,j

(∂xxφ̂i,j , ∂xxφ̂l) ,

Ymin
i,j = min

l∈νi,j

(∂yyφ̂i,j , ∂yyφ̂l) , Ymax
i,j = max

l∈νi,j

(∂yyφ̂i,j , ∂yyφ̂l) .

Equipped with the curvatures, we define three criteria, which are combined to form the u2 criterion (see
[38, 29]). First, the plateau detector focuses on the micro-oscillations, and is defined as follows:

max
(∣∣Xmin

i,j

∣∣ , ∣∣Xmax
i,j

∣∣ , ∣∣Ymin
i,j

∣∣ , ∣∣Ymax
i,j

∣∣) ≤ δ. (5.2)

Next, the local oscillation detector is given by:

Xmin
i,j Xmax

i,j ≥ −δ and Ymin
i,j Ymax

i,j ≥ −δ. (5.3)

The third criterion involves a smoothness detector, given as follows, to assess whether the solution is locally
smooth:

1

2
≤

min
(∣∣Xmin

i,j

∣∣ , ∣∣Xmax
i,j

∣∣)
max

(∣∣Xmin
i,j

∣∣ , ∣∣Xmax
i,j

∣∣) ≤ 1 and
1

2
≤

min
(∣∣Ymin

i,j

∣∣ , ∣∣Ymax
i,j

∣∣)
max

(∣∣Ymin
i,j

∣∣ , ∣∣Ymax
i,j

∣∣) ≤ 1. (5.4)
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The u2 criterion is finally defined as a combination of these three detectors. Indeed, if a plateau is detected
by (5.2) or if the solution is considered locally smooth by (5.4), then the DMP criterion becomes irrelevant and
the u2 criterion succeeds. On the contrary, if a local oscillation is detected by (5.3), then the u2 criterion fails.

5.1.4. The detector chain

Equipped with these detectors, we state the order in which the detectors are checked. To address this issue, we
introduce the Cell Polynomial Degree (CPD) as an integer, associated to a cell ci,j , such that CPD(i, j) ∈ {0, d}.
If CPD(i, j) = 0, then the first-order scheme is used in the cell ci,j . On the contrary, if CPD(i, j) = d, then the
high-order scheme is used within cell ci,j . Figure 4 displays the detector chain, and the effect of each detector on
the CPD.

candidate
solution PAD

no

CPD = 0

yes
DMP

yes

CPD = d

no
u2

no

CPD = 0

yes
CPD = d

Figure 4: The MOOD detector chain.

At the end of the chain, if CPD(i, j) = d, the candidate solution is declared eligible in the cell ci,j , and is
accepted as the updated approximate solution Wn+1. If one of the criteria did fail, then CPD(i, j) = 0 is set to
0 and the candidate solution is discarded in the cell ci,j and its neighbors. If that is the case, a new candidate
solution is computed using a polynomial reconstruction whose degree in cell ci,j is equal to CPD(i, j). Note that,
if a cell and its neighbors are declared eligible, there is no need to compute a new candidate solution in these
cells.

5.2. Algorithm for the high-order well-balanced scheme with MOOD detection

According to section 4, the stationarity of a numerical solution is determined at time tn, before any update
computations. Hence, when a steady solution is detected, the first-order scheme is used and the MOOD limiters
described in section 5.1 become unnecessary. Therefore, we first check the stationarity of the numerical solution,
before applying the MOOD procedure. Then, the admissibility of the reconstruction is checked twice, once when
computing the reconstructed heights at the Gauss points, and once when computing the numerical approximation
of the mean of the friction source term. The full MOOD procedure, applied to the high-order well-balanced
scheme (4.1) – (4.2), is detailed below. Note that, to prevent non-physical solutions, this MOOD procedure is
applied at each step of the SSPRK time discretization.

Algorithm 6. For a single iteration in time of the SSPRK time discretization, the MOOD loop reads as follows.

1. For each interface ei+ 1
2 ,j

(resp. ei,j+ 1
2
), compute the correction parameters (θx)

n
i+ 1

2 ,j
or (θy)

n
i,j+ 1

2

according
to (4.5). Then, for each cell ci,j, compute θn

i,j with (4.6).

2. For each cell ci,j, initialize CPD(i, j) = d. If θn
i,j = 0, then CPD(i, j) = 0.
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3. For each cell ci,j, if CPD(i, j) > 0, compute the interface reconstruction. If ĥni,j(ζ) < 0 for some edge Gauss
point ζ, then the reconstruction is rejected in that cell, and we set CPD(i, j) = 0.

4. For each cell ci,j, if CPD(i, j) > 0, compute the cell reconstruction. If ĥni,j(ζ) < 0 for some cell Gauss
point ζ, then the reconstruction is rejected in that cell, and we set CPD(i, j) = 0.

5. Equipped with the new CPD map, compute the candidate solution W ⋆, using the high-order well-balanced
scheme (4.1) – (4.2).

6. Apply the detection process displayed in figure 4 to compute a potentially new CPD map and to decide
whether to accept the candidate solution. If the candidate solution is rejected, go to step 5 with the new
CPD map. Otherwise, go to step 7.

7. The candidate solution is accepted, and we set Wn+1 =W ⋆.

6. Numerical experiments

This last section is devoted to numerical experiments, designed to highlight the essential properties of the
scheme. The following notation is introduced to concisely label the schemes to be tested.

• The scheme that uses a polynomial reconstruction of degree d, i.e. whose order of accuracy is (d + 1),
is denoted by Pd, including the first-order well-balanced scheme. For d ≥ 1, the Pd scheme includes the
MOOD detection loop from section 5.1, but not the well-balancedness correction from section 5.2.

• For d ≥ 1, the Pd scheme equipped with the well-balancedness correction from section 5.2 is denoted by PWB
d .

In addition, in order to assess the well-balancedness and the high-order accuracy of the scheme, we shall
evaluate the error between the exact solution W ex(t, x, y) and the approximate solution. Consider a uniform
Cartesian mesh made of N = Nx×Ny cells. We denote by W ex

i,j the average of the exact solution over the cell ci,j
at time t, as follows:

W ex
i,j (t) =

1

∆x∆y

∫
ci,j

W ex(t, x, y) dx dy.

Equipped with this notation, we compute the errors in L1, L2 and L∞ norms between with Wn
i,j , the approximate

solution at time tn, and the exact solution W ex
i,j (t

n):

L1 error:
1

N

Nx∑
i=1

Ny∑
j=1

∣∣Wn
i,j −W ex

i,j (t
n)
∣∣ ,

L2 error:

√√√√ 1

N

Nx∑
i=1

Ny∑
j=1

(
Wn

i,j −W ex
i,j (t

n)
)2
,

L∞ error: max
1≤i≤Nx
1≤j≤Ny

∣∣Wn
i,j −W ex

i,j (t
n)
∣∣ .

The evaluation of W ex
i,j (t) for all cells ci,j is achieved by using a quadrature rule of the same order as the scheme

(see [1] for instance). To assess the well-balancedness and the accuracy of the scheme, we evaluate these errors
at the final physical time tend.

23

fig:MOOD_detector_loop
sec:MOOD_limiters
sec:MOOD_and_WB
sec:MOOD_and_WB


Let us recall here that, given ∆x and ∆y, the time step ∆t is constrained by the CFL-like condition (3.13).
In practice, we take the following time step:

∆t =
δ

max(CPDmax,3)
3

2Λ
, (6.1)

where CPDmax := maxi,j [CPD(i, j)], where δ = min(∆x,∆y) and where Λ is the maximum of all characteristic
velocities at each interface. As soon as the solution is steady on the whole mesh, we get CPDmax = 0 and the
first-order scheme is used everywhere. In this case, the time step (6.1) degenerates towards the time step of the
first-order scheme (2.22). This saves a considerable amount of CPU time without modifying the accuracy of the
scheme, which is exact up to machine precision on steady solutions.

Finally, unless otherwise specified, the two parameters from the well-balancedness detection are defined as
follows: the characteristic length Lx is taken as the length of the domain, and we take k = d + 1. In addition,
we set g = 9.81m s−2 and we recall that η = 7⧸3. To deal with vanishing water heights, the velocity u is defined
according to the machine precision εm, where εm ≃ 2.22 × 10−16 for double-precision floating-point numbers.
Namely, if h < εm, we set u = 0; otherwise, we set u = q/h.

We first propose in section 6.1 several numerical experiments designed to assess the well-balancedness of the
PWB
d scheme, namely the preservation of the 2D lake at rest and of 1D moving steady states. Then, section 6.2

is dedicated to the high-order accuracy on 2D exact solutions. Dam-break experiments are tackled in section 6.3,
while the simulation of the 2011 Tōhoku tsunami is carried out in section 6.4.

6.1. Well-balancedness assessment

We perform numerical experiments to assess the well-balancedness of the scheme. The first experiment con-
cerns the preservation of a lake at rest steady state with a dry area, and the second one focuses on capturing a
one-dimensional moving steady state with friction and topography that has been perturbed.

6.1.1. Preservation of the lake at rest

We begin the well-balancedness numerical experiments with the preservation of a lake at rest steady state.
This experiment involves a nonzero Manning coefficient k = 10, nonconstant topography and a dry area. On the
space domain [0, 1]× [0, 1], the topography is given by:

Z(x, y) =
√
x2 + y2.

The water height and the discharge are chosen according to (1.7), ensuring that h stays nonnegative, as follows:

h(t, x, y) = (1− Z(x, y))+ and q(t, x, y) = 0.

Note that this steady solution contains transitions between dry and wet areas. The exact solution is prescribed
as both initial and boundary conditions.

In order to highlight the relevance of the well-balancedness correction, the simulation is carried out using the
first-order scheme and the sixth-order scheme, with and without correction. The results of the experiment are
reported in table 2, for 2500 (50 × 50) cells and at time tend = 0.1 s. For this simulation, we set the cut-off
constant C defined in (2.10) to C = +∞. Numerically, we take C as the upper bound of the double-precision
floating-point numbers.

24

sec:numerical_WB
sec:numerical_HO
sec:numerical_dam_breaks
sec:Japan_tsunami
tab:lake_at_rest


h+ Z ∥q∥
scheme L1 L2 L∞ L1 L2 L∞ CPU time (s)

P0 5.76e-18 2.53e-17 2.22e-16 5.68e-17 1.05e-16 7.44e-16 0.04259
P5 5.85e-05 1.60e-04 1.51e-03 7.98e-05 2.62e-04 7.54e-03 4.205
PWB
5 2.71e-17 6.95e-17 6.66e-16 2.59e-16 3.77e-16 2.13e-15 0.3012

Table 2: Free surface error, discharge norm error and CPU time for the lake at rest experiment, using each of the three schemes.

From table 2, we observe that the first-order scheme indeed exactly preserves the lake at rest. However, the
sixth-order P5 scheme, as expected, does not exactly preserve the lake at rest but instead gives a sixth-order
approximation of this steady state. The relevance of the correction is thus highlighted here, since it allows to
recover the exact lake at rest steady state. In addition, the correction reduces the CPU time taken by the PWB

5

scheme by a factor of about 14 compared to the P5 scheme. This is due to the fact that, since the solution is
steady, the detection procedure forces the use of the first-order scheme. The difference in CPU time between the
PWB
5 and P0 schemes comes from the definition (6.1) of the time step, as well as from the SSPRK3 time integrator

(3.12).

6.1.2. Subcritical steady flow over a bump without friction

To assess the well-balancedness in the x- and y-directions, we consider the well-known Goutal and Maurel
test case from [46] We perform this experiment in the x-direction; of course, the same conclusion is reached by
considering the test case in the y-direction.

The initial conditions for this experiment consist in a lake at rest over a topography with a bump, given on
the domain (0, 25)× (0, 1) by:

Z(x, y) = max
([
0.2− 0.05(x− 10)2

]
, 0
)
.

The initial free surface is given by h(0, x, y) + Z(x, y) = 2, and the initial discharge is set to zero. The friction is
canceled, and we take k = 0.

The main feature of this experiment is that the final steady state is obtained following a transient state, which
is governed by the boundary conditions. Neumann boundary conditions are prescribed on each boundary and
each variable, except on the left boundary where the x-discharge is such that qx(t, 0, y) = 4.42, and on the right
boundary where the height is set to h(t, 25, y) = 2. These boundary conditions enable the eventual formation of a
subcritical moving steady state. Therefore, this test case not only checks whether the well-balanced scheme under
consideration is able to preserve a given steady state, but also if it is possible to capture a steady state obtained
after a transient state. In [52], the first-order well-balanced scheme was shown to capture this subcritical steady
state, and gives evidence that the well-balancedness correction of the PWB

5 scheme should also capture the steady
solution.

The simulation is carried out on 100 = 100× 1 cells, using the first-order scheme and the sixth-order scheme,
with and without correction. Regarding the correction, we take Lx = 0.5. The errors are presented in table 3 at
the final time tend = 500 s, where ψt

x is the topography steady state detector in the x-direction given by (4.4a),
which becomes constant once a steady state is reached. We correctly recover the expected behavior, that is to
say both the P0 and PWB

5 schemes capture the subcritical steady state up to the machine precision, while the P5

scheme merely approximates this steady state. The trend in CPU time reported in the previous experiment is
still observed, with the PWB

5 scheme switching to the P0 scheme once the steady state is reached.
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ψt
x ∥q∥

scheme L1 L2 L∞ L1 L2 L∞ CPU time (s)

P0 1.03e-13 1.85e-13 1.41e-13 6.69e-14 7.74e-14 1.41e-13 0.7412
P5 2.14e-04 1.03e-03 9.92e-03 2.12e-04 5.44e-04 2.11e-03 42.43
PWB
5 1.05e-12 1.88e-12 4.34e-12 6.75e-13 8.25e-13 1.53e-12 16.42

Table 3: Error on ψt
x, error on ∥q∥ and CPU time for the subcritical Goutal and Maurel test case, using each of the three schemes.

Note that a steady solution is exactly captured after a transient state.

6.1.3. Perturbed steady state with friction over a flat topography

We now consider a numerical experiment designed to check the well-balancedness with respect to the friction
source term. To that end, we take k = 1 and a flat topography Z(x, y) = 0. The initial water height derives from
solving the equation ψf

x = 0.02, with qx(x, y) = −0.5 and qy(x, y) = 0, where ψf
x , defined by (4.4b), is constant

for a friction steady state. This initial condition W steady(x, y), therefore, represents a steady state at rest in the
x-direction for the friction source term, and it should be preserved by the well-balanced schemes. Note that the
same conclusion is obtained for the y-direction.

To study the capture, rather than the preservation, of a friction steady state we add a perturbation to the
steady solution W steady(x, y). The height is perturbed as follows:

h(0, x, y) = hsteady(x, y) + 0.05 if x ∈
(
3

7
,
4

7

)
,

h(0, x, y) = hsteady(x, y) otherwise,

while the following perturbation is applied to the x-discharge:
qx(0, x, y) = qsteady

x (x, y) + 0.5 if x ∈
(
3

7
,
4

7

)
,

qx(0, x, y) = qsteady
x (x, y) otherwise.

We prescribe the exact steady solution as inhomogeneous Dirichlet boundary conditions for this experiment. This
ensures that the correct steady state is recovered once the perturbation is dissipated, i.e. once the perturbation
has lest the space domain. Thus, the test case enables to test the capture of the resulting friction-only steady
state, obtained after a transient state. A similar experiment was performed in [53], where the first-order scheme
was shown to capture this steady state at machine precision.

We carry out the simulation on 100 = 100 × 1 cells with the P0, P5 and PWB
5 schemes, until the final time

tend = 5 s. For the PWB
5 scheme, we take Lx = 1/15. As expected, the P0 and PWB

5 scheme capture the steady
solution up to machine precision. The P5 scheme gives an approximation of the solution, but remains far from
the exact solution.

Table 4 reports the errors and CPU times for the three schemes under consideration. We draw the same
conclusions as in section 6.1.2. In addition, we display the results of the P0 and PWB

5 schemes in figure 5, for
several physical times (t = 0s, t = 0.05s and t = 5s). We observe that, starting with the same initial condition, we
end up with the same steady state up to machine precision. However, the approximation of the transient state in
the middle panel is much less diffusive when using the PWB

5 scheme compared to the P0 scheme. This highlights
the relevance of both the high-order accuracy and the well-balancedness property.
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ψf
x ∥q∥

scheme L1 L2 L∞ L1 L2 L∞ CPU time (s)

P0 9.18e-15 1.08e-14 1.96e-14 3.43e-15 3.95e-15 6.88e-15 0.2991
P5 1.55e-03 1.55e-03 1.59e-03 1.04e-03 1.04e-03 1.06e-03 34.23
PWB
5 6.53e-13 8.38e-13 1.44e-12 3.38e-13 3.82e-13 5.47e-13 4.708

Table 4: Error on ψf
x , error on ∥q∥ and CPU time for perturbed steady state with friction, using each of the three schemes. Note

that a steady solution is exactly captured after a transient state due to the propagation of the perturbation.
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Figure 5: Water height for the perturbed steady state with friction, with the P0 scheme (dashed line) and the PWB
5 scheme (solid

line). Left panel: initial condition at t = 0s; middle panel: transient state at t = 0.05s; right panel: steady state at t = 5s.

6.2. Order of accuracy assessment

We now assess the accuracy of the high-order scheme. To that end, we propose two numerical experiments.
The first one only involves the topography source term, while both topography and friction are considered in the
second benchmark.

6.2.1. Steady vortex

This first experiment is a steady vortex (see [52, 29]). On the space domain (−1, 1)2, we set the topography
as Z(x, y) = 0.2e0.5(1−r2), with r2 = x2 + y2. We cancel the friction term by taking k = 0. The exact solution,
displayed in figure 6, is then given by Wex = (h, hu, hv)⊺, where we have set

h(t, x, y) = 1− 1

4g
e2(1−r2) − Z(x, y) ; u(t, x, y) = y e1−r2 ; v(t, x, y) = −x e1−r2 .

The initial conditions consist in computing a numerical average, with a quadrature formula of order (d + 1), of
the exact solution in each cell. Similarly, the boundary conditions are obtained by evaluating the exact solution
at the Gauss points on the domain boundary.

The simulations are carried out with the PWB
3 and PWB

5 schemes, until a final physical time tend = 1 s. In
addition, we take C = +∞ for each scheme. The results of the simulations are presented in figure 7.

In all cases, the accuracy reaches the order (d + 1), as expected. Optimal accuracy is maintained thanks to
the u2 detection criteria. Indeed, on such smooth solutions, the DMP criterion (5.1) would wrongly lower the
CPD in some cells by over-detecting smooth extrema. Here, the smoothness detector (5.4) is used to correct
over-detection from the DMP criterion. The reader is referred to [29] for a comparison of the order with and
without the u2 criterion. In [29], the authors show that the u2 criterion is mandatory to recover the expected
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Figure 6: Exact solution for the steady vortex experiment. Left panel: free surface. Right panel: velocity norm (the vortex flows
clockwise).
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Figure 7: Error lines in L2 norm for the exact solution with topography, using the PWB
3 and PWB

5 schemes. Left panel: L2 error on
h; right panel: L2 error on ∥q∥.

order of accuracy.

6.2.2. Experiment with topography and friction

The second experiment for accuracy assessment concerns a two-dimensional steady state involving both the
topography and the friction source term (see [53]). The exact solution is defined as follows. Let r = (x, y)⊺. We
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assume, for this experiment, that ∥r∥ ≠ 0. The topography is given by:

Z(x, y) =
2k∥r∥ − 1

2g∥r∥2 .

In addition, we set Wex = (h, q)⊺, where

h(t, x, y) = 1 and q(t, x, y) =
r

∥r∥2 .

For the purpose of the simulation, we consider the exact solution on the space domain (0.4, 1)2, with a Manning
coefficient k = 1. As in the previous experiment, the initial and boundary conditions derive from the exact
solution.

In order to check the high-order accuracy of the schemes, the benchmark is carried out with the PWB
3 and

PWB
5 schemes. The final physical time is tend = 0.1 s, and we take once again C = +∞. Convergence curves are

presented in figure 8.
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Figure 8: Error lines in L2 norm for the exact solution with topography and friction, using the PWB
3 and PWB

5 schemes. Left panel:
L2 error on h; right panel: L2 error on ∥q∥.

Once again, we obtain the expected order of accuracy, around d + 1. Similarly to the previous experiment,
this order of accuracy is recovered thanks to the u2 criterion in addition to the DMP criterion.

6.3. Dam break test cases

This section is dedicated to the validation of dam-break benchmarks. We first consider a dam break over a dry
bottom in one space direction. Such a simulation will highlight the relevance of the well-balancedness correction
and the MOOD procedure. Next, we present a two-dimensional partial dam break.

6.3.1. One-dimensional dry dam break

We consider the academic square domain [0, 1]2, and the topography is given by:

Z(x, y) =
ex

e1
− e−1,
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such that Z(0, y) = 0 and Z(1, y) = 1. The initial free surface consists in a double dam break, obtained by setting:

h(0, x, y) + Z(x, y) =


2 if x <

1

2
,

Z(x, y) otherwise.

In addition, the initial discharge is zero, i.e. q(0, x, y) = 0. The Manning coefficient is set to 1 and the boundaries
are considered to be solid walls. The experiment is carried out with the P0 and PWB

5 schemes. The final physical
time is tend = 0.07 s, and we set C = +∞. We also take Lx = 0.1. The results are presented in Figures 9 and 10.

Figure 9 shows a comparison between the free surface obtained with the P0 scheme and the one obtained with
the PWB

5 scheme, using 50 = 25× 2 cells in each case. We also display a reference solution, obtained by using the
P0 scheme with 1000 = 500× 2 discretization cells.
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Figure 9: Free surface for the dam-break on a dry slope experiment; reference solution (dashed line), P0 scheme (dotted line), PWB
5

scheme (solid line). The gray area represents the topography.

Figure 9 highlights the relevance of the well-balancedness property as well as the high-order accuracy. First,
despite the coarse grid, the results from the PWB

5 scheme are close to the reference solution, except in one cell
close to the dry/wet transition, where the PAD detector is activated. In addition, we note that the free surface
is unperturbed close to the left edge of the domain. Indeed, the waves from the dam break have not yet reached
the edges of the domain at t = tend, and the area located in the vicinity of the left edge is in a lake at rest
configuration. This essential property exactly holds for the PWB

5 scheme. This behavior is obtained thanks to the
well-balancedness correction, which forces the well-balanced scheme to be activated in lake at rest-type situations.

In figure 10, the well-balancedness coefficient in the x-direction θx is depicted, together with the free surface
and the topography, for t = tend/2 and t = tend, for the PWB

5 scheme.
In the left panel of figure 10, we observe that θx is zero in areas that have not yet been impacted by the

waves, i.e. in the areas where a lake at rest configuration is found. As a consequence, in these areas (close to the
edges of the domain), the well-balanced scheme is used. Similar conclusions are drawn from the right panel of
figure 10. The edges of the domain are still considered to be at rest, which is evidenced by the convex combination
parameter being very close to zero.

6.3.2. Two-dimensional partial dam-break

The second experiment concerns a two-dimensional partial dam break (see [55, 29, 53]). An extensive study of
this experiment, focusing on the differences between various reconstruction degrees and MOOD criteria, has been
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Figure 10: Free surface h+Z (solid line) and well-balancedness parameter in the x-direction θx (dashed line) for the dam-break on a
dry slope experiment using the PWB

5 scheme. The gray area represents the topography. Left panel: t = tend/2; right panel: t = tend.

carried out in [29]. In [29], the authors show that the depth of the vortices appearing at the edges of the dam
strongly depends on the degree of the reconstruction and the MOOD criteria used. However, in [29], the friction
source term was not present, and the authors only studied the effects of the topography. Thus, in the present
paper, we focus on the impact of the friction source term, by carrying out the simulation with three different
Manning coefficients.

For this experiment, the space domain is [−100, 100]× [−100, 100], and the topography is given as follows:

Z(x, y) =



1 if x ≤ −5,

0 if x ≥ 5,

0.1(5− x) if − 5 < x < 5 and − 40 < y < 40,

12 if − 5 < x < 5 and y ∈ [−100,−40] ∪ [40, 100].

It represents a 12 meters high, 10 meters wide broken dam. Initially, the reservoir (to the left) is filled, as follows:

h(0, x, y) =



10− Z(x, y) if x ≤ −5,

5− Z(x, y) if x ≥ 5,

5− Z(x, y) if − 5 < x < 5 and − 40 < y < 40,

0 if − 5 < x < 5 and y ∈ [−100,−40] ∪ [40, 100].

The water is initially at rest, i.e. q(0, x, y) = 0. For this simulation, we use wall boundary conditions. All the
simulations are carried out with 40000 = 200× 200 discretization cells.

The goal of this simulation is to compare the results from the P0, PWB
1 and PWB

5 schemes. Moreover, the
simulation is carried out with various Manning coefficients, namely k = 0, k = 0.25 and k = 2, and until the final
physical time tend = 7 s. In addition, we set C = 0.5.

The results of the simulations are displayed in figure 11 (k = 0), in figure 12 (k = 0.25) and in figure 13
(k = 2). We use the same color scale in all figures.

Figure 11 and figure 12 show that the shock wave to the right of the dam and the rarefaction wave to the
left of the dam are clearly more smeared when using the P0 scheme instead of the PWB

1 or the PWB
5 scheme. In
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Figure 11: Free surface for the partial dam-break simulation with k = 0. From left to right: results of the P0, PWB
1 and PWB

5 schemes.
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Figure 12: Free surface for the partial dam-break simulation with k = 0.25. From left to right: results of the P0, PWB
1 and PWB

5
schemes.

addition, the shock structure at the center of the water flow is not visible with the P0 scheme. This structure,
although smeared, is visible with the PWB

1 scheme, and turns out to be very well defined with the PWB
5 scheme.

We draw similar conclusions from figure 13. The smearing of the shock wave and the rarefaction wave is noticeable
with the first- and second-order schemes, but it is strongly reduced with the high-order scheme. In addition, the
important friction has caused the central structure to nearly disappear.

An important remark we make here concerns the vortices present at the edges of the dam in Figures 11 and 12.
The presence of the friction source term dampens the depth, as well as the size, of these vortices. We focus on the
top vortex, whose characteristics are similar to the bottom one since the experiment is symmetric with respect
to the y = 0 line. This behavior is displayed in table 5, where the approximate size and the depth of the vortex
are collected.

Concerning the left rarefaction wave, the relevant indicators are the position of the head of the rarefaction
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Figure 13: Free surface for the partial dam-break simulation with k = 2. From left to right: results of the P0, PWB
1 and PWB

5 schemes.

Manning coefficient Vortex size Vortex depth

k = 0 84m2 4.28m

k = 0.25 17m2 5.45m

k = 2 0m2 7.23m

Table 5: Depth and approximate size of the deepest vortex, for the PWB
5 scheme. For the case where k = 2, there is no vortex, and

the table displays the free surface at the point where the vortex would be located if the Manning coefficient were lower.

wave, its size, and its amplitude along the y = 0 line. Those quantities are reported in table 6, where we chose to
compute the amplitude of the rarefaction wave by subtracting the water height at the tail from the water height
at the head.

Manning coefficient Size Amplitude Head

k = 0 39m 2.68m x = −74m

k = 0.25 38m 2.28m x = −74m

k = 2 31m 1.29m x = −74m

Table 6: Left rarefaction wave: approximate size, water height amplitude and position of the head, with respect to the Manning
coefficient.

Concerning the shock wave, we report on its position and its amplitude along the line y = 0, given in table 7.
Similarly to the rarefaction wave, the amplitude of the shock wave is obtained by computing the difference between
the water height to the left of the wave and the water height to its right. Note that, since those computations
are performed on the numerical results of the PWB

5 scheme, the shock wave takes only a couple of cells, and the
evaluation of its position is fairly accurate. In addition, the amplitude of the shock wave presented for k = 0 in
table 7 is very similar to the results obtained in [29], although the authors do not use the same scheme.

Tables 6 and 7 give evidence about the effect of the friction on the water flow. The Manning term dampens
the amplitudes of both the rarefaction wave and the shock wave, while an increase in the friction coefficient is
accompanied by a diminution of the size of the rarefaction wave, and a decrease in the distance traveled by the
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Manning coefficient Position Amplitude

k = 0 x = 60m 2.28m

k = 0.25 x = 58m 1.96m

k = 2 x = 53m 0.98m

Table 7: Right shock wave: approximate position and water height amplitude, with respect to the Manning coefficient.

shock wave. This behavior is expected, as an increase in friction leads to a decrease in discharge, as evidenced by
the expression (2.23). The discharge decrease leads to a slower travel time of the shock wave, which means that
the wave will travel less distance.

Finally, we observe from table 6 that the friction does not change the position of the head of the rarefaction
wave. This behavior is also expected from the expression of the friction source term given by (1.8) in 1D and (1.1)
in 2D. Near the head of the rarefaction wave, the water is almost at rest, since no wave has already perturbed
the initial rest condition, leading to a negligible impact of the friction source term, which means the head of the
rarefaction wave travels at the same speed for k = 0, k = 0.25 or k = 2. Therefore, the value of the Manning
coefficient does not alter the position of the head of the rarefaction wave.

6.4. Simulation of the 2011 Tōhoku tsunami

We tackle the simulation of the tsunami that hit the Japanese region of Tōhoku in 2011. This simulation is
based on real data, see for instance [30]. This real data consists in a uniform Cartesian mesh made of about 13

million rectangles, where the cell topography and the initial free surface for the tsunami simulation are given, see
figure 14. The initial discharge is set to zero, that is q(0, x, y) = 0. Homogeneous Neumann boundary conditions
are prescribed at each boundary. In addition, we set k = 0.05.

To assess the simulation accuracy, we compare real physical measurements from DART buoys far from the
Japanese coast with the numerical approximation. The positions of these sensors are depicted in the left panel of
figure 15. The sensors have measured the water height during one hour, and thus we set the final physical time to
tend = 3600 s. Note that, even though the mesh contains a large number of rectangles, the side length of each cell
is close to 900m. Such large cells create large topography gradients with respect to the characteristic cell size,
especially close to the Kuril trench the tsunami originated from. For instance, the right panel of figure 15 shows
the topography over the solid horizontal line in the left panel of figure 15. The extreme topography gradients,
especially around the Kuril trench, have to be correctly handled by the scheme, which is the main difficulty of
this simulation.

This presence of large topography gradients also highlights why using a well-balanced scheme is absolutely
necessary in such simulations. In figure 16, we display the first time iteration of the standard HLL scheme
from [48] applied to the tsunami simulation. We observe large oscillations, which completely destroy the numerical
approximation, even at this first time step. Therefore, using a well-balanced scheme is indeed crucial for such
simulations. Such issues may be less prominent when dealing with finer meshes to approximate coastal areas, like
in [25, 58, 2] and references therein.

We check the numerical results of the P0, PWB
1 and PWB

3 schemes. We ran the simulation until the final time
tend = 1h on 48 computational cores; the P0 scheme took around 1 hour of CPU time, whereas the PWB

1 and
PWB
3 schemes took respectively around 2.5 h and around 10 h. The numerical results are displayed in figure 17.

The P0 and PWB
1 schemes yield comparable results, and the second-order result is, as expected, less diffusive than
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Figure 14: Depiction of the 2011 tsunami simulation. Left panel: bathymetry (submerged topography). The Kuril trench is the
deepest part of the ocean, depicted in deep blue. The continents are represented in red. Right panel: initial free surface. The
continents are depicted in black, the average water surface in gray, and the initial tsunami wave lies over the Kuril trench, next to
the Japanese coast.
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Figure 15: Left panel: position of the three sensors. Right panel: depiction of the topography over the white line drawn in the left
panel.
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Figure 16: First time iteration of the 2011 Tōhoku tsunami simulation using a non-well-balanced scheme. The average sea surface
height is represented in gray, and the continents are displayed in dark red. Oscillations, which correspond to the regions with a large
bathymetry gradient displayed in the left panel of figure 14, are clearly visible. Note that the color scheme is the same as in the right
panel of figure 14, which emphasizes that the oscillations are much larger than the tsunami.

the first-order one, with much more structure present within the waves. Unfortunately, the results of the PWB
3

scheme are unsatisfactory. The extreme topography gradients present in the domain, like the ones depicted in the
right panel of figure 15, have led to an over-limitation of the MOOD method to remove the spurious oscillations,
and the fourth-order solution ends up looking very similar to the first-order one.

In figure 18, we display the sea surface height (SSH), that is to say the difference between the water height
and the average surface elevation, at each of the three sensors. The physical data is compared to the results from
the P0 and PWB

1 schemes. We observe that, although the P0 scheme already gives a good approximation of the
data, the PWB

1 approximation is even better. Namely, the correct tsunami propagation time is captured, and the
well-balancedness of the schemes ensure that no spurious oscillations come from the balance between flux and
topography. This result questions the need to even use higher-order schemes for this simulation with such large
cells, since the second-order results are already very close to the physical data.
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Figure 17: Simulation of the 2011 Tōhoku tsunami with the P0 scheme (left panels), the PWB
1 scheme (middle panels) and the PWB

3
scheme (right panels). Snapshots taken at times t = 720s (top panels) and t = 3600s (bottom panels). The average sea surface height
is represented in gray, and the continents are displayed in dark red.
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Figure 18: Sea surface height at each sensor (from left to right, sensor #1 to sensor #3, whose positions are displayed in figure 15).
The physical data is represented in black, the P0 approximation in blue, and the PWB

1 approximation in red. The total water depths
below sensors #1, #2 and #3 are respectively 5700m, 6600m and 4400m.
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