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Abstract
Viral evolutionary analyses are confronted with increasingly large sequence data sets, both in
terms of sequence length and number of sequences. This can result in considerable computa-
tional burden, not only to infer phylogenies but also to obtain associated estimates such as their
time scales and phylogeographic patterns. Here, we illustrate two frequently-used approaches
to obtain phylogenomic estimates of time-measured trees and spatial dispersal patterns for fast-
evolving viruses. First, we discuss computationally efficient procedures that employ a fixed
tree topology obtained through maximum likelihood inference to estimate molecular clock rates
and phylogeographic spread for Dengue virus genomes. Using the same viral example, we also
illustrate Bayesian phylodynamic inference that jointly infers time-measured trees and phylogeo-
graphy, including covariates of spatial dispersal, from sequence and trait data. We highlight
state-of-the-art efforts to perform such computations more efficiently. Finally, we compare the
estimates obtained by both approaches and discuss their strengths and potential pitfalls.
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1 Introduction

According to a “quick guide” to phylogenomics (Telford, 2007), standard phylogenomic
approaches leverage the information present in a large number of genes generated in large-
scale genome sequencing efforts. In infectious disease research, phylogenomic alignments that
comprise single-nucleotide polymorphism (SNP) data of several hundreds or thousands of
genes are now also an important focus of modern microbiology studies. However, for rapidly
evolving RNA viruses, phylogenetic and evolutionary analyses remain inherently restricted
to small genomes that encode for a limited number of genes. In this chapter, we focus on
current challenges and opportunities for evolutionary inference from rapidly evolving viral
genomes. This goes beyond common phylogenomic approaches and it is perhaps more in line
with some of the earliest published mentions of phylogenomics that refer to a mixed bag of
gene or genome analyses within a phylogenetic framework. We will primarily focus on the
many different types of analyses that are being used in epidemiology, which shares many
common interests with the field of phylodynamics.

The mention of “large” viral data sets in our title refers to the increase in two dimensions
of the information available for studying molecular epidemiology and virus evolution, which
has been brought about by the revolution in sequencing technology. The first dimension
concerns the transition from a single gene or a typical PCR amplicon sequenced by Sanger
sequencing to complete genomes that are now easily obtained through next generation
sequencing, which roughly represents an increase of one order of magnitude for many RNA
viruses. This seems less impressive than the increase from a single gene to hundreds of genes
that phylogenomic studies of many other organisms have to confront. In addition, due to
evolutionary rates that are about a million times faster than our own cellular genes, a limited
marker in an RNA virus genome may already offer reasonable resolution for reconstructing
evolutionary histories with time-scales of a decade or older. For example, a polymerase gene
fragment of about 1 000 bp that is routinely sequenced for drug resistance testing has been
extensively and successively used in HIV molecular epidemiology (e.g. Hué et al. 2005) while
a fragment of less than half this size – but for the more variable envelope gene – has been
used to reconstruct the origin and spread of the virus in Central Africa (Faria et al., 2014).
Nevertheless, complete genomes offer an important increase in the resolution of the inferred
phylogenies (Yebra et al., 2016), which for short-term outbreak dynamics in particular opens
up new opportunities for epidemic reconstructions and tracking transmission. We illustrate
this increase of phylogenetic resolution by comparing maximum likelihood trees for complete
genome data and the corresponding glycoprotein gene sequences for the 2013− 2016 West
African Ebola virus outbreak in Figure 1. In this case, a single gene does not provide
sufficient information about clustering of Ebola virus isolates whereas complete genomes do
offer reasonable phylogenetic resolution allowing to identify some degree of structuring by
country of sampling.

Complete genome sequencing has in recent years become the standard in outbreak
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Figure 1 Maximum likelihood phylogenetic trees of Ebola virus inferred using complete genomes
(left) and only the glycoprotein gene (right). Branches are coloured according to country (green:
Guinea; blue: Sierra Leone; red: Liberia), based on a parsimony reconstruction for internal nodes.
Complete genome data allow to infer reasonably resolved phylogenetic trees with a discernible
structuring of lineages by country, whereas a single gene produces a multitude of polytomies and
essentially prevents from uncovering any relevant (geographic) structure in the resulting phylogeny.

surveillance as illustrated in recent work on Zika (Faria et al., 2017), Chikungunya (Naveca
et al., 2019) and Yellow Fever (Faria et al., 2018). Such complete genome data also come with
specific challenges, such as the need to take into account recombination in different viruses
or the difficulty to combine segments for viruses that undergo reassortment, or with the
general challenge of increased computation times in likelihood-based phylogenetics (Chapter
1.2 [Stamatakis and Kozlov 2020]). In this chapter, we devote a great deal of attention
to describing the methods that can be employed to address the computational challenges
caused by these increases in data set sizes and model complexity. Related to this, Chapter
5.4 (Ayres et al. 2020) describes improvements in the latest version of the BEAGLE library
for high-performance likelihood computation (Ayres et al., 2019), which enables parallel
calculation of independent data partitions on powerful multi-core computing solutions such
as GPUs.

The other dimension we focus on is the increasing sampling intensity leading to the
availability of large numbers of sequences for viral evolutionary reconstructions. This is also
illustrated by the sequencing efforts during the 2013-2016 West African Ebola virus outbreak
that yielded over 1 600 complete genomes (Figure 1), representing over 5% of the known
cases and making it the most densely sampled acute viral outbreak to date. This upscaling
in sequencing is also impacting the molecular epidemiology of viruses with older transmission
histories. For example, the genome sequencing efforts of the “Phylogenetics and Networks for
Generalised HIV Epidemics in Africa” consortium (PANGEA-HIV) recently presented almost
4 000 HIV consensus sequences from different cohorts across sub-Saharan Africa (Ratmann
et al., 2017). Such initiatives are transforming HIV molecular epidemiology into “big data”
science, which hopefully can lead to new insights into HIV-1 transmission dynamics that can
be translated to prevention strategies. However, large numbers of sequences also represent
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a tremendous challenge for computational analyses, even more so than the length of the
sequences. Indeed, it is well-known that phylogenetic likelihood computations scale linearly
with alignment length, but the number of possible tree topologies grows super-exponentially
with the number of taxa, which makes the search for optimal trees or distributions a highly
cumbersome task. For this reason, we dedicate a large section in this chapter on phylogenetic
approaches aimed at tackling the large data problem in viral sequence analyses.

Viral genomic data analyses are now frequently performed in the context of phylody-
namics, a term that was originally introduced to describe “the melding of immunodynamics,
epidemiology and evolutionary biology” (Grenfell et al., 2004). A key focus of phylodynamics
is how the genetic diversity of viral pathogens is shaped by epidemic processes and natural
selection (mostly in the context of immunological processes). Due to high mutation rates,
large population sizes and short generation times, RNA viruses evolve at high evolutionary
rates ensuring that their genomes can accumulate substitutions even over short-term epidemic
time-scales. Sampling viral genomes over the time-scale of such epidemic processes therefore
allows us to capture the relationship between time elapsed and sequence divergence. This is
illustrated by plotting the root-to-tip divergence for the taxa in Ebola trees (Figure 1) as a
function of sampling time in Figure 2, which can easily be done using software packages such
as TempEst (Rambaut et al., 2016a). In this case, complete genomes show an increasing
divergence over the sampling time range (Figure 2, left) while no such temporal signal is
apparent in the corresponding glycoprotein gene sequences (Figure 2, right).
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Figure 2 Plotting root-to-tip divergence as a function of sampling for the 2013 − 2016 Ebola
virus data set. Data points are coloured according to country of sampling (green: Guinea; blue:
Sierra Leone; red: Liberia). A comparison between complete genomes (left) and the glycoprotein
gene (right) reveals a clear increase in divergence over the sampling time versus no temporal signal
respectively.

This relationship between time and sequence divergence can be used to inform or calibrate
molecular clock models (see Chapters 4.4 and 5.1 [Bromham 2020; Pett and Heath 2020]).
These models are now routinely applied to phylogenetic trees, or integrated in phylogenetic
inference, in order to estimate trees in units of time allowing us to date the epidemic origins or
key (transmission) events in epidemic histories. Time-measured trees are also the necessary
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prerequisite for the application of coalescent models that aim at estimating changes in
epidemic size through time, and of birth-death models that estimate key parameters that
determine an epidemic, such as the basic reproductive rate (R0), i.e. the average number of
cases one case generates over the course of their infectious period assuming a fully susceptible
population (e.g. Fraser et al. 2009).

More broadly, pathogen genomes have been shown to contain a wealth of information
concerning population size dynamics and the process of spatial spread that generated the
geographic distribution of an epidemic, which can be recovered using a wide variety of
demographic and phylogeographic models within a phylodynamics framework (Minin et al.,
2008; Lemey et al., 2009, 2010; Gill et al., 2013, 2016). We illustrate some of the insights
these approaches can obtain using specific viral examples.

Data
In this chapter we illustrate computational proaches on a data set of dengue virus (DENV),
the most common vector-borne viral disease of humans. The dengue viruses are members of
the genus Flavivirus in the family Flaviviridae, with four serotypes of dengue virus having
been discovered to date. The four dengue serotypes are relatively closely related, but even
within a single serotype, there is considerable genetic variation (Blok, 1985), with each
serotype being further divided into several genotypes. The serotypes diverged approximately
1 000 − 2 000 years ago; the genotypes within each serotype diverged much more recently,
about 100− 200 years ago (Pollett et al., 2018). Despite these variations, DENV infections
result in similar disease and clinical symptoms irrespective of serotype/genotype. Dengue
serotypes are increasingly co-circulating in most regions of the world, particularly in Latin
America and Asia (Messina et al., 2014), with global phenomena such as urbanisation and
international travel acting as key factors in facilitating the spread of dengue.

We here perform phylodynamic inference on a dengue virus data set consisting of 997
genomes spanning the global dengue diversity, with a total of 6 869 unique site patterns across
10 gene-based partitions. This data set was generated in 2014 by downloading from GenBank
all 3 289 available dengue genomes with known sampling year and country. Based on a
maximum likelihood tree reconstruction, we used Phylogenetic Diversity Analyzer (Chernomor
et al., 2015) to select the most diverse subset of 1 000 genomes. Three outliers according to
root-to-tip regression explorations were excluded (Rambaut et al., 2016a). The nucleotide
partitions correspond to the ten protein-coding genes that make up the dengue genome.

The 997 samples of this data set are annotated with discrete location states, one of the
most popular traits associated with virus data sequences. This allows us to perform spatial
ancestral state reconstruction in order to determine the origin of specific outbreaks and track
viral spread over time. Owing to the widespread nature of dengue viruses, a total of 64
countries across six continents are used as location states to perform such a reconstruction.
The number of taxa and the state dimensionality make for a computationally demanding
joint inference of nucleotide and trait evolutionary processes.

In this chapter, we show how to analyse such a challenging data set using two popular
inference frameworks: an approach oriented towards maximum likelihood inference (Section
2) and a fully Bayesian inference approach through Markov chain Monte Carlo (MCMC)
(Section 3).

To illustrate the ability of maximum likelihood methods to handle very large data
sets, we used an additional, larger, data set of 5 132 full dengue genomes downloaded
from GenBank (Benson et al., 2012). The sequences were serotyped and genotyped with
GenomeDetective (Vilsker et al., 2019) and those with type support < 100 removed. When
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available, the sequences were annotated with the collection date and country metadata
from the Entrez molecular biology database system (Sayers et al., 2009). The larger data
set includes all the sequences from the smaller one, represents more (83 vs 64) countries,
and is more noisy: no temporal outlier filtering or diversity-based selection was performed;
moreover, some of the sequences had no sampling date (4%) or no location (1%) metadata.

2 Analysis of large phylogenies with Maximum Likelihood

Maximum likelihood (ML) inference is a procedure that for a given model finds the parameter
values that maximise the observed data likelihood, thereby producing a single (maximum-
likelihood) estimate of – for example – a phylogeny. Typically, an ML approach splits the
analysis into several steps forming a pipeline, where the phylogeny reconstruction from
sequence data is followed by further analysis (e.g. divergence time estimation, ancestral
location reconstruction, . . . ) assuming a fixed phylogenetic tree. Using the dengue data
set analysis as an example, we describe an ML pipeline for phylogeographic analysis of
virus spread over time, consisting of the following steps detailed below: phylogenetic tree
reconstruction from multiple sequence alignment, tree rooting and dating, and ancestral
character reconstruction for geographic data.

2.1 Tree reconstruction
Phylogenetic inference using ML aims at finding the tree and model parameters that maximise
the likelihood and is known to be NP-hard (Chor and Tuller, 2005). ML tree reconstruction
tools generally approach the problem by performing a “hill-climbing” optimisation, i.e. these
methods start by generating an initial tree (e.g., a randomly generated tree or a maximum-
parsimony tree), and then keep replacing it with a better (in terms of likelihood) neighbouring
tree (obtained using certain topological rearrangements), until no better tree can be found.
A potential danger in a pure hill-climbing is the possibility to get trapped in a local optimum.
To overcome this issue, it is recommended to perform the optimisation starting from multiple
initial trees, and then keep the best result, and to use more expansive techniques for searching
neighbouring tree space (Zhou et al., 2018). The most common topological rearrangement
algorithms for finding a neighbour tree are Nearest-Neighbour-Interchange (NNI), which
swaps two non-sibling subtrees adjacent to an internal branch (Robinson, 1971), and Subtree-
Pruning-and-Regrafting (SPR), which prunes a subtree from the initial tree and regrafts it
onto a different branch (Swofford et al., 1996). SPR can evaluate many more trees (quadratic
to the number of tips) from one initial topology than NNI (linear), but as a consequence
it is also much slower (Allen and Steel, 2001) and therefore different heuristics have been
developed to filter out the unpromising SPR candidates (Stamatakis et al., 2005; Hordijk
and Gascuel, 2005; Guindon et al., 2010).

Among multiple ML tools that are available for phylogenetic tree reconstruction, the most
popular are FastTree (Price et al., 2010), PhyML (Guindon et al., 2010), RAxML (Stamatakis,
2014) (and its updated version RAxML-NG [Kozlov et al. 2019], see also Chapter 1.3 [Kozlov
and Stamatakis 2020]), and IQ-TREE (Nguyen et al., 2015). FastTree works very well to
perform a preliminary analysis as it can be orders of magnitude faster than other ML tools, but
as a trade-off, generates less accurate tree estimates due to limited tree space exploration and
less thorough branch length optimisation. FastTree starts with a distance-based optimisation
using both NNI and SPR rearrangements, followed by ML-based NNI rearrangements to
search for the final tree, using heuristics at all stages to limit the numbers of tree searches and
likelihood optimisations. PhyML performs hill-climbing tree searches using both NNI and
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SPR rearrangements (with a parsimony-based filtering of the least promising SPR moves),
while RAxML/RAxML-NG implements SPR-based hill-climbing, employing heuristics to
reduce the number of unpromising SPR candidates (typically regrafting the pruned subtree
in a position remote from the original one). IQ-TREE combines hill-climbing algorithms with
random perturbations of the current best trees and broad sampling of initial starting trees,
and generates a pool of candidates containing the top 5 trees obtained by NNI hill-climbing
from the 20 best parsimony-based starting trees. At each iteration, a randomly chosen
candidate tree is perturbed with 0.5(n− 3) random NNIs, where n− 3 is the number of inner
branches, and optimised with the hill-climbing NNIs. If the resulting tree is better than
the best tree in the candidate pool, the iteration is considered successful and the best tree
is replaced. Otherwise the worst tree in the candidate pool is replaced if it is worse than
the resulting tree. The analysis terminates after a certain number of unsuccessful iterations.
RAxML (and especially RAxML-NG) and IQ-TREE are parallelised which makes them
faster than PhyML.

In a comparison of these different ML packages in terms of their accuracy, Zhou et al.
(2018) recently analysed various middle-sized data sets of about 200 taxa, including genome
and transcriptome data of fungi, animals and plants, using both single gene alignments as well
as concatenated full genomes. In this comparison, IQ-TREE (version 1.5.5) outperformed
RAxML (8.2.11) and PhyML (20160530) in most cases, with the exception of some of the
largest data sets. Kozlov et al. (2019) repeated the comparisons on the same data sets
using the latest available version of RAxML (RAxML-NG) and found it to be generating
the highest tree likelihood while being 1.3 to 4.5 times faster than IQ-TREE. Similar
results can be obtained with the most recent (but as of yet unpublished) version of PhyML
(https://github.com/stephaneguindon/phyml; data not shown), showing that there is
still room for improvement in these complex algorithms and programs.

In conclusion, for extremely large trees (dozens of thousands of tips) FastTree is probably
the only choice due to its speed, while for the other cases (up to thousands of tips) we
recommend to use several programs and compare the results.

2.1.1 Application to dengue data
The four dengue serotypes diverged thousands of years ago while the genotypes within each
serotype diverged about 100 to 200 years ago (Pollett et al., 2018). We therefore expect a
phylogeny with very long branches connecting the serotypes and much shorter ones within
each serotype. This makes the common tree reconstruction challenging: On one hand,
for deep phylogenies (like the inter-serotype one) one often uses amino acid alignments
due to codon degeneracy and therefore loss of signal for the deep nodes on the nucleotide
level (Rota-Stabelli et al., 2013). On the other hand, for the intra-serotype phylogenies,
which contain much closer related sequences, amino acid alignments might not have enough
resolution, and hence the nucleotide alignments should be preferred. To account for codon
degeneracy a partitioning scheme with a distinct group for the third codon positions can be
used.

We have reconstructed phylogenies for the smaller (997 sequences) and the larger (5 132
sequences) data sets with RAxML-NG (version 0.9.0, starting from a parsimonious tree)
and IQ-TREE (version 1.6.9), both from the amino acid alignment (HIVb+I+G6 evolu-
tionary model) and from the nucleotide one (GTR+I+G6) with a two-group partitioning
scheme (Chernomor et al., 2016): for the codon positions 1 − 2 and for the position 3.
Evolutionary models were selected by the model selection tool SMS (Lefort et al., 2017), we
increased the number of GAMMA categories from 4 (as used in SMS) to 6, for a better fit of
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the gamma distribution of rates across sites.
On a machine with 12 cores, phylogeny reconstruction for the larger data set took 1 day 8

hours for RAxML-NG on the amino acid alignment, and 7 hours on the nucleotide alignment;
for IQ-TREE it took 1 day 2 hours on the amino acid alignment, and 1 day 17 hours on the
nucleotide alignment. In terms of likelihood RAxML-NG got a better result on the amino
acid data (log likelihood of −174 295 vs −174 473), and IQ-TREE on the nucleotide one
(−873 396 vs −873 406).

Once the reconstruction is done it is important to assess the results. It can be done using
prior knowledge on the expected tree topology, and by comparing the phylogenies obtained
with different tools. The tree topologies of the reconstructed phylogenies were overall close,
especially those reconstructed on the same alignment. We formally assessed this using the
normalised quartet distance (Estabrook et al., 1985) (calculated with tqDist [Sand et al.
2014]), which takes on values between 0.0 for identical trees and 1.0 for trees that have no
quartet in common. The normalised quartet distance was 0.004 [DNA] and 0.008 [AA] for
the tree pairs reconstructed with different tools on the same alignment, and varied from
0.015 (RAxML-NG [DNA] vs RAxML-NG [AA]) to 0.022 (IQ-TREE [DNA] vs IQ-TREE
[AA]) for the tree pairs reconstructed on different alignments.

However, the reconstructed topologies (for both data sets) had differences for the deep
parts of the phylogeny, i.e. serotype subtree rooting. Moreover, none of them corresponded
to the the expected tree topology (prior knowledge). We expected to find monophyletic
clades for the genotypes within the same serotype with a serotype root that is placed on
one of the inter-genotype branches as done by Pollett et al. (2018); we will also confirm
this assumption in Section 2.2 with rooting of serotype-specific trees based on dates. For
DENV2 and DENV4 this was the case: the root was placed on the branch separating sylvatic
genotype from the epidemic ones, all the genotypes were monophyletic, and their relative
positions were consistent in all the reconstructed phylogenies. For DENV1 and DENV3 the
relative genotype positions were consistent in all the phylogenies, but the root positions
varied and the root was often placed within one of the genotypes (see Figure 3). The only
exception was the phylogeny reconstructed by IQ-TREE on the nucleotide alignment: it
managed to place the DENV1 root correctly (but still had issues with DENV3).

This difficulty with resolving deep parts of the phylogeny is likely due to the fact that
all the DENV1 and DENV3 genotypes diverged relatively simultaneously (within dozens of
years, while the root age is 1 000− 2 000 years), and there is a lack of sequences that diverged
earlier (e.g. within hundreds of years). Moreover, the branches connecting serotype subtrees
were extremely long: 0.56− 1.1 mutations per site. Bayesian methods can address this issue
by incorporating temporal and phylogeographic information along with the alignment data,
which increases the signal. In the maximum clade credibility (MCC) tree reconstructed with
Bayesian methods (see Section 3), the rooting of DENV1, DENV2 and DENV4 is correct,
however DENV3 subtree root is also misplaced within one of the genotypes (3.II).

To overcome the issues described above, we reconstructed serotype-specific subtrees from
the nucleotide alignments using both RAxML-NG and IQ-TREE (as described before) and
then kept the most likely tree for each serotype.

2.2 Tree rooting and dating
For data sets in which sufficient genetic change has accumulated during the window of
sampling, the divergence in each sequence is expected to correlate with the date of sampling,
as illustrated in the introduction (Figure 2). Hence, the sampling times of the sequences can
be used to estimate the substitution rate and the divergence dates, transforming a phylogeny
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Figure 3 Phylogeny estimated with RAxML-NG on the nucleotide alignment for the small data
set, visualised with iTOL (Letunic and Bork, 2007). The rooting of the DENV2 and DENV4 serotype
subtrees is correct, with all the genotypes being monophyletic and the roots placed on the branches
separating sylvatic genotypes from the epidemic ones. For DENV1 and DENV3 subtrees the roots
are misplaced: instead of a branch separating different genotypes, the serotype roots are within
one of their genotype trees (3.II for DENV3 and 1.V for DENV1), however the other genotypes are
monophyletic.
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into a time-scaled tree whose branches are measured in units of time, e.g. years. Various
molecular clock models are available to perform such estimations, such as the strict clock
(SC) – which assumes substitution rate homogeneity throughout the tree (Zuckerkandl and
Pauling, 1965) – and the uncorrelated relaxed clock – which allows a different rate along
each branch in the tree, but with rates assumed to follow a chosen statistical distribution
(Bromham et al. 2018; Chapter 4.4 [Bromham 2020]). The methods for substitution rate and
time-scaled tree estimation can be divided into two groups: those that incorporate sequence
dates into the tree reconstruction framework, and the ones that estimate the substitution
rate on a fixed phylogeny (with fixed branch lengths measured in substitutions per site).

The methods of the former type evolved from an intermediate approach where only the
tree topology was fixed (but not the branch lengths) and were initially implemented in the
program TipDate (Rambaut, 2000) (and later as an R package node.dating [Jones and Poon
2017]): given a rooted tree topology and the tip dates, TipDate optimises the substitution
rate under the SC model and estimates the times of the internal nodes using ML under a
given evolutionary model, e.g. HKY (Hasegawa et al., 1985). Drummond et al. (2001) first
extended TipDate by allowing different rates to be estimated for different intervals of time,
and later embedded them into a Bayesian framework for joint inference of mutation rate
and population size that incorporates the uncertainty in the genealogy by using MCMC
integration (Drummond et al., 2002).

Among the methods of the latter type, one of the very first ones was Root-To-Tip
(RTT) regression (Shankarappa et al., 1999; Drummond et al., 2003a): assuming a strict
clock, the root-to-tip distance in the phylogeny should be proportional to the corresponding
elapsed time, and a regression of the root-to-tip distance as a function of tip dates provides
estimates of the mean substitution rate (regression slope) and the root date (x-intercept).
This constitutes a very fast method that allows estimating the root of the tree, e.g. by
searching for a tree branch that minimises the sum of regression residues. However, it does
not provide the dates for the internal nodes, and therefore does not output the time-scaled
tree. Also, RTT regression violates the assumption of data independence as deep branches
contribute to multiple RTT distances, it therefore is not suitable for statistical hypothesis
testing and should rather be used as a data exploration tool (Rambaut et al., 2016b).

The LF (Langley and Fitch, 1974) model – implemented in r8s (Sanderson, 2003) –
assumes a strict clock with a constant substitution rate, and a Poisson distribution for the
number of substitutions along every tree branch. The substitution rate and the internal node
dates are estimated by maximising the likelihood of the rooted input tree.

Least-Squares Dating (LSD) (To et al., 2016) uses a normal approximation to the LF
model to estimate the substitution rate. LSD assumes the following relationship between the
branch lengths in the initial phylogeny and the corresponding time-scaled tree:

bi = yi · ω + εi,

where bi is the length of the branch i measured in substitutions per site, yi – its length in
years, ω is the substitution rate, and εi ∈ N(0, σ2

i ) is a noise (error) term drawn from a
normal distribution (independent for different branches). In other words, LSD assumes a
strict clock, but the noise term makes it robust to uncorrelated violations. When run in
“temporal precedence constrained mode”, LSD additionally ensures that all the dated branch
lengths are non-negative (which could otherwise be violated due to the noise terms for short
branches). LSD minimises the error using the weighted least squares criterion:∑

i

1
σ2
i

(bi − yi · ω)→ min,
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where the variance terms are derived from the Poisson nature of the substitution process as

σ̂2
i = bi + c/S

S
,

S being the sequence length, and c – a constant smoothing factor. Uncertainty can be
obtained via parametric bootstrap or by repeating the analyses on a set of non parametric
bootstrap trees. LSD can root and date large phylogenies in quadratic time (i.e. proportional
to the number of tips squared). The new (but as of yet unpublished) version of LSD –
LSD2 (https://github.com/tothuhien/lsd2) – extends the tool with several new features,
including outlier detection (sequence or date annotation errors or samples that are poorly
described by the fitted substitution model), and the local clock model (Yoder and Yang,
2000).

Treedater (Volz and Frost, 2017) extends the concepts of LSD by implementing outlier
detection and an uncorrelated relaxed molecular clock (i.e. the global substitution rate
ω is replaced with a collection of branch-specific rates ωi drawn from a common gamma
distribution). Treedater implements a heuristic iterative approach to optimise both the
parameters of the gamma distribution (shape and scale) and the internal node times. It
initialises branch-specific rates to the common rate estimated by RTT, then repeats the
optimisation cycle until convergence (defined by a tolerance threshold). At each iteration,
first the internal node times are calculated based on the branch-specific rates by solving a
(constrained) least-squares problem like in LSD, secondly the gamma distribution parameters
are optimised based on the new ancestral dates using gradient-descent. Therefore when
compared to LSD, the computation time is multiplied by the number of iterations. Moreover,
it is recommended to repeat the optimisation with different starting conditions to avoid local
optima.

Treedater also implements a statistical test for selecting the appropriate clock model. In a
comparison performed by Volz and Frost (2017), treedater outperformed LSD and BEAST on
9 out of 16 simulated data sets, with all methods showcasing their strengths and weaknesses
in at least one scenario.

TreeTime (Sagulenko et al., 2018) is an ML relaxed clock method that allows to either
optimise the branch lengths on a given tree topology (along with ancestral sequence re-
construction) or to use the branch lengths provided in an input phylogeny. TreeTime uses
dynamic programming for branch length optimisation and its run times scale linearly in the
size of the data set.

Duchêne et al. (2016b) have compared the rate estimation by Bayesian, least-squares
and RTT regression methods on 81 RNA and DNA virus data sets (9 to 120 sequences of
350 to 10 066 nucleotides sampled over 0.5 to 86 years), and observed that the methods
largely produce congruent estimates of substitution rates, provided that the data meet certain
criteria, such as the absence of high among-lineage rate variation, congruence between the
tree topology and no phylogenetic and temporal clustering. Moreover Duchêne et al. (2016b)
pointed out that clock-model testing should be routinely performed, as the use of relaxed
molecular clocks can lead to overestimates of the mean substitution rate when the data in
fact fit a strict clock.

2.2.1 Application to dengue data
ML tree reconstruction methods estimate an unrooted phylogeny, which one can either root
using an outgroup, or using the sampling dates and a molecular clock model. In the case of the
dengue data set, no outgroup is present for the full tree (though different serotypes/genotypes
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Figure 4 Results of RTT regression (performed using TreeTime) for the large dengue data set
(RTT regression on the small data set is similar). The RTT distance is plotted as a function of the
tip dates and provides estimates of the mean substitution rate (regression slope) and the root date
(x-intercept). The fit line is almost horizontal, therefore an accurate root date estimation is almost
impossible: the slightest error in the slope would lead to a large error in the x-intercept.
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Figure 5 Estimated dates of emergence of each of the four dengue human serotypes [years] (with
95% CIs), obtained with treedater, TreeTime, LSD, and LSD2. The estimates obtained on the
smaller data set are shown with circles, on the larger one – with diamonds. Median 95% CIs from
the literature that are summarised in Table 3 of (Pollett et al., 2018) are shown by dotted horizontal
lines. The estimates provided by different tools are generally within the CIs from the literature
(apart from DENV3 small data set and LSD estimate for DENV2 small data set (due to outliers))
but vary for different data sets and tools, which could be due to not enough quality control for the
samples included in the data sets.
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can serve as outgroups for its subtrees), and we therefore had to resort to using sampling
dates for rooting. RTT regression suggests the presence of temporal signal in the data, but
potentially too short of a sampling window (with respect to the total time span from the
most recent common ancestor up to the present) for the full tree: the x-intercept (root date)
of the RTT plot for the full tree (Figure 4) is very old, while the slope (rate) is almost
horizontal, therefore the slightest error in the rate estimation (slope) would result in a large
error in the root date (x-intercept). Moreover, underestimation of evolutionary distances in
deep branches separating serotypes might obfuscate temporal signal (Duchêne et al., 2016a).
If we had ancient samples, their dates might have helped to calibrate the slope. Dating,
rooting and confidence interval (CI) estimation (the most time consuming part) on the full
tree was performed in 2 minutes by LSD/LSD2, in 1 hour 30 minutes by TreeTime, and in 6
days by treedater.

To assess the performance of various ML packages on more recent data, we dated the
four serotype phylogenies separately. We used four recently developed applications that
allow dating unrooted phylogenies: LSD (version 0.3beta), LSD2 (version 1.4, strict clock),
treedater (version 89a0df0) and TreeTime (version 0.5.5, using branch lengths of the input
tree). TreeTime and treedater implement both relaxed and SC, and are able to detect
outliers, while LSD only implements SC and does not detect outliers. LSD2 extends LSD
with outlier detection.

The clock model selection test performed by treedater identified the relaxed clock as the
model of choice, therefore we run treedater and TreeTime with the uncorrelated relaxed clock
model. For rooting we used the sylvatic outgroup for DENV2 and DENV4, and estimated
the root position from dates for DENV1 and DENV3. Note that not all of the outliers
detected by different methods were the same. TreeTime generally finds more outliers than
LSD2 which in turn finds more than treedater, e.g. for DENV4 subtree TreeTime detected
35 outliers, LSD2 detected 14 (5 of which were among the ones detected by TreeTime), while
treedater detected none.

The rates estimated by different tools were close to those reported in the literature (see
Table 2 in (Pollett et al., 2018) for a summary) for DENV1-2 and about 2 times lower for
DENV3-4. Figure 5 shows the estimated dates of emergence of the four serotypes, where the
dotted horizontal lines indicate the median 95% CIs from a literature summary provided
in Table 3 of (Pollett et al., 2018). All the estimates are consistent with literature, except
for those obtained on DENV3 small data set (potentially due to root position as explained
below) and the LSD estimate on DENV2 small data set (due to outliers). Additionally,
we observe several phenomena: (1) As expected, the full tree was harder to date than the
serotype trees, which led to much larger CIs for the dates, e.g. [−6392,−1957] for treedater
(data not shown); (2) The estimates provided by LSD2 (after outlier removal) are often
different from those of LSD (with outliers), suggesting an important impact of outliers; (3)
CIs calculated by treedater are much larger and generally include CIs from other methods.
CIs estimated by different tools on the large data set overlap more, suggesting that adding
more data helps to increase the signal; (4) The estimates provided by different tools are
quite consistent for DENV1 but much less so for other serotypes, which could be due to the
absence of quality control for the samples included in the data sets, such as removal of clone
sequences, duplicates, erroneous metadata, etc.

The estimated root position was consistent among all tools and data sets for the full tree
(on the branch separating DENV4 from the other serotypes) and DENV1 tree (on the branch
separating the common ancestor of genotypes III and V from the other genotypes); and
varied for DENV3 tree. For DENV3 three scenarios for the root position were present: (1)
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on the branch separating genotype II from the other genotypes (LSD, LSD2 and TreeTime
on the small data set); (2) on the branch separating the common ancestor of genotypes II
and III from the common ancestor of genotypes I and V (LSD, LSD2 and TreeTime on the
large data set, and treedater on the small data set); and (3) unresolved root, with genotype
II, genotype III and the ancestor of genotypes I and V as children (treedater on the large
data set). Note that (3) represents a consensus between (1) and (2), moreover the branches
that needed to be collapsed to reach this consensus with the time-scaled trees obtained by
other tools were short (1.5-5 years).

Overall, our analyses indicate that dating an unrooted tree is a complex task, especially
when combined with using a relaxed clock and outlier detection and removal. In theory, the
use of a relaxed clock should reduce the number of outliers compared to a strict clock but
both depend highly on the root position. When applied to noisy (real) data, dating becomes
truly challenging.

2.3 Phylogeography
Analyses of epidemic spread through space and time are often performed by defining a finite,
non-ordered set of locations (e.g. countries) and using ancestral character reconstruction
(ACR) along a phylogenetic tree with the defined locations as possible character states, based
on the known tip locations. ACR aims to unravel how the character has changed on the tree
from the root to the tips through time, by assigning the most likely ancestral character state
to each internal node. Various inference methods can be used to perform ACR, and a range
of software packages is available for each type of inference.

Parsimony-based ACR methods infer a scenario with minimum state changes along the tree.
These methods are quick and simple, however, due to the over-simplification of evolutionary
processes (e.g. not accounting for branch lengths and evolutionary times), parsimony has
limited accuracy (Zhang and Nei, 1997; Collins et al., 1994). ML and Bayesian approaches on
the other hand are based on probabilistic models of character evolution that adapt standard
nucleotide substitution models to s-state (discrete) trait characters. They have been shown
to outperform parsimony methods, using both theoretical arguments and simulation studies
under a variety of conditions (Zhang and Nei, 1997; Gascuel and Steel, 2014), and are also
robust to moderate model violations and phylogenetic uncertainty (Hanson-Smith et al.,
2010).

Statistical ACR methods employ continuous time Markov chains (CTMCs) models that
emit discrete outcomes as a continuous function of time. This process is assumed to be
memoryless, in that the probability of transitioning to a new location only depends on the
current location and not the past history. As with nucleotide substitution models, an s× s
infinitesimal rate matrix Λ = {λij} completely characterises the CTMC process (Lemey et al.,
2009). The rate matrix Λ contains non-negative off-diagonal entries and all rows sum to 0,
yielding a stochastic matrix upon exponentiation. To determine the finite-time transition
probabilities between states (or locations) over a branch of length t, the following matrix
exponentiation is required:

P (t) = eΛt (1)

In its most general form, such a discrete trait substitution model allows a unique instantan-
eous rate between each pair of character states to be estimated, which may prove problematic
because these rate parameters are only informed by a single discrete trait character observed
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at the tips of the phylogeny (Gascuel and Steel, 2019). Hence, simpler models are often used,
such as s-state generalisations of 4-state JC and F81 models for DNA (Jukes and Cantor,
1969; Felsenstein, 1981). Under F81-like models, migration rate from a state (location) i to a
state j (i 6= j) is proportional to the equilibrium frequency of j, πj ; JC-like models are a
special case where all equilibrium frequencies are equal: ∀i πi = 1/s. A big computational
advantage of F81-like models is that the probability of changes along a branch of length t
can be calculated with a simple formula:

Pi→j(t) =
{

(1− e−µt)πj , if j 6= i

e−µt + (1− e−µt)πj , otherwise

}
,where µ = 1/(1−

∑
i

π2
i ). (2)

Dudas et al. (2017) showed that the origin and destination population sizes (πi and πj) are
two of the main factors explaining Ebola dissemination in West-Africa. This advocates for the
use of s-state F81-like models, where the expected number of changes from i to j is proportional
to πiπj . Moreover, Gascuel and Steel (2014) showed with simulations on DNA-like data
generated using an HKY model (Hasegawa et al., 1985) with high transition/transversion
rate and heterogeneous nucleotide frequencies that even the simpler JC-like model performs
nearly as well as the true one.

In the likelihood framework, to predict ancestral character states based on the selected
model of character evolution, one commonly uses the marginal posterior probabilities of
the character states (Felsenstein, 1981; Yang, 2007), the joint reconstruction of the most
likely scenario (Pupko et al., 2000), or an approach that lies in between these two extremes.
Marginal reconstructions provide users with state probabilities, but these are difficult to
interpret and visualise, while joint reconstructions select a unique state for every tree node
and thus do not reflect the uncertainty of inferences. Intermediate approaches overcome
these limitations by predicting a unique state in the regions of the tree that are easy to
estimate (typically close to the tips [Gascuel and Steel 2014]), while keeping several likely
states in the more difficult regions (typically close to the root), reflecting the uncertainty of
the inferences.

PastML (Ishikawa et al., 2019) is a fast ACR tool that implements several parsimony
and ML ACR methods: Joint, MAP (maximum a posteriori) that selects the state with the
highest marginal probability, and MMPA (marginal posterior probabilities approximation),
an intermediate approach that uses decision-theory concepts and the Brier criterion to
associate each node in the tree to a set of likely states: a unique state is predicted in the
tree regions with low uncertainty, while several states are predicted in the uncertain regions.

An important choice to take before performing a phylogeographic ACR is that of the
precision level and whether the geographic sampling captures the range of the pathogen.
Choosing a character with many possible states on a small data set can be limiting in terms
of phylogeographic signal and can leave many nodes unresolved between several states for
methods like MPPA, or predict a poorly supported state (e.g. low marginal probability even
for the most likely state) for unique-state methods like Joint or MAP. Moreover, if the states
present in the data (tree tips) do not cover all the possibilities, it can bias the predictions, as
for instance it is impossible to predict missing countries. Biases in sampling for the states
that are represented can also affect the reconstructions. Such biases are prominent in most
real data sets, including the examples we study here.

To strengthen the signal extracted from the data, one needs to increase the number of
sequences for each character state, sampled over a larger time range. This can be achieved
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either by adding more sequences annotated with each state to the data set, or by generalising
the annotations to decrease the number of character states, by grouping countries into
broader geographic regions.

2.3.1 Application to dengue data
We reconstructed ancestral geographic characters with PastML (version 1.9.20) using the
MPPA method and the F81-like model. Performing the country ACR on the full tree of
the large data set (4 767 tips after outlier removal by LSD2) took 3 hours 30 minutes. The
large data set includes sequences from 83 different countries, of which 65 are present in the
smaller data set. Moreover 23 countries are present only once and hence do not provide
sufficient information on the migration to and from them. As a result, 3.7% of internal nodes
remain unresolved between several countries (10.3% for the small data set). As expected,
the majority of unresolved nodes are found deeper in the tree, corresponding to the root and
the common ancestors of different serotypes and genotypes.

The difference in percentage of unresolved nodes between the small and large data sets
shows that adding more data increases the signal. The ACRs for the two data sets are
generally compatible, while some of the nodes that remain unresolved in the small data set
are resolved in the large one (see Figure 7), suggesting that the method is to some extent
robust against sampling variation.

To further increase the signal we generalised the countries into 11 geographic regions:
South America, Caribbean, Central America, Northern America, Africa, Europe, Western
Asia, Eastern Asia, South-eastern Asia, Southern Asia, and Oceania. This allowed to
reconstruct states closer to the root, and reduce the percentage of unresolved internal
nodes to 1.2%. Finally, when we generalised the locations even further, into five continents
(Americas, Africa, Europe, Asia, Oceania), the number of unresolved internal nodes was
reduced to only 0.5%.

Summarised ancestral scenarios for location reconstruction on the full tree and for country
on the DENV3 subtree are shown in Figures 6 and 7. PastML visualises these scenarios by (1)
clustering the parts of the tree where no state change happens into meta-nodes (whose size
corresponds to the number of samples (tips) they contain); (2) clustering independent events
of the same kind into meta-edges (whose size corresponds to the number of such events). For
example, the large “South-eastern Asia 1 503” node in Figure 6 represents the reconstructed
cluster of DENV1 spread in South-eastern Asia, which includes 1 503 sequences in our data
set; while its “Eastern Asia 1− 7” child node connected by a meta-edge of size 36 represents
36 independent DENV1 transmissions from South-Eastern Asia to Eastern Asia.

The predicted ancestral locations generally agree with previous studies, performed on
different dengue data sets. For instance, in the study of global DENV2 phylogeography by
Walimbe et al. (2014) performed using Bayesian inference on 307 DENV2 E-gene sequences
from GenBank (sampled between 1944 and 2011), the authors also could not pinpoint the
ancestral location for sylvatic and epidemic strains, and detected Southeast Asia as the
ancestral region for the Asian/Asian-American and Cosmopolitan genotypes. The authors
also found multiple migrations from the Caribbean to the American mainland (see Figure 6
for our predictions).

In the study of spatio-temporal dynamics of dengue in Colombia, performed on 143
newly sequenced samples from Colombia (sampled between 1998 and 2015) combined with
full-length E-gene sequences retrieved from GenBank, Jiménez-Silva et al. (2018) performed a
Bayesian analysis of spatial spread and detected significant viral diffusion between Venezuela
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Figure 6 Ancestral location scenario reconstructed on the full DENV tree (large data set) using
PastML (MPPA+F81). Locations are colour-coded in the right halves of the nodes and shown as
labels, serotypes are colour-coded in the left halves of the nodes, as follows (from left to right):
DENV1 (green), DENV3 (blue), DENV2 (orange), DENV4 (pink). Tips representing less than 14
sequences are not shown.
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Figure 7 Ancestral country reconstructed on the DENV3 subtree with PastML (MPPA+F81) for
the large data set (left) and the small one (right). Countries are colour-coded and shown as labels.
Tips representing less than 5 (2) sequences are not shown for the large (small) data set. ACR for
the two trees are compatible, additional sequences present in the larger data set allowed to resolve
some of the nodes unresolved for the smaller one.

and Colombia for all serotypes. In our predictions using PastML we also observe this pattern,
e.g. for DENV3 we inferred 7 introductions from Venezuela to Colombia (meta-edge of size 7
connecting “Ven 105” cluster to “COL 1− 9” one in Figure 7).

Tan et al. (2018) performed a Bayesian analysis of DENV3 genotype III spread to Malaysia
using 602 complete coding sequences and 972 E-gene sequences from 56 countries between
1966 and 2014, including the complete genome sequences of 21 newly sequenced Malaysian
DENV3 genotype III isolates. They detected an introduction from Sri Lanka to Singapore
and from there to Malaysia. Our data set does not contain Malaysian sequences, but the
spread of DENV3 genotype III from Sri Lanka to Singapore is also inferred, as indicated by
the arrow from cluster “LKA 13” to “SGP 42” in Figure 7.

2.4 Discussion
ML methods are fast and permit the analysis of a large number of sequences in a relatively
short time (e.g. 1.5 days for a phylogeny reconstruction on a 5 132 full genome data set with
IQ-TREE, 2 minutes of dating with LSD2, and 3.5 hours of ancestral country reconstruction
with PastML, on a 12-core machine). Adding more sequence data is desirable as it generally
helps to reduce bias and uncertainty (e.g. for phylogeny rooting or ACR).

Phylogeny reconstruction is robust when applied to data with homogeneous time scale
(e.g. serotype-specific trees): the results obtained by different tools were highly similar.
However care needs to be taken when reconstructing phylogenies with mixed time scale (e.g.
deep intra-serotype branches versus much shorter inter-serotype ones in the case of dengue):
one needs to verify the reconstruction results, for example, based on prior knowledge on
expected tree topology (e.g. monophyletic genotypes within the dengue serotypes), or by
comparing the results obtained with different tree reconstruction tools. Rooting and dating
with dengue data proved to be a difficult task. Popular ML/distance dating methods (e.g.
LSD2, TreeTime) are fast and able to deal with large phylogenies, but particular problems
remained difficult to solve (rooting, relaxed molecular clock, outliers, noisy dates). The full
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dengue data set did not have enough signal for confident dating of deep nodes, and even
for some of the more recent, serotype-specific phylogenies, different results were obtained
depending on the method used. Any additional input (such as an outgroup) could be of great
help. Preliminary exploratory analyses are very important, e.g. checking temporal structure
and using regression to select an appropriate model and to determine whether molecular
clock-based dating is valid at all. There is still room for improvement of these fast dating
approaches.

ACR and phylogeography on the other hand, showed a strong and robust signal. A fast
ML method like PastML was able to analyse large data sets, and provide results that were
robust against sampling variations and phylogenetic uncertainty (see results for DENV3
[Figure 7] and [Ishikawa et al. 2019]).

3 Bayesian phylodynamic inference

Within the field of pathogen phylodynamics, Bayesian inference through Markov chain
Monte Carlo (MCMC) is a widely used framework owing its popularity to a wide range of
available models and its accommodation of phylogenetic uncertainty in generating posterior
distributions for all parameters (including the tree topology). In practice however, data set
sizes limit the application of Bayesian phylodynamic inference much more than the approaches
highlighted earlier in this chapter. Recent applications have involved over a thousand genomes
(e.g. for Ebola virus, Dudas et al. (2017)), and one of the largest studies included about 4,000
influenza gene sequences (Bedford et al., 2015). For the latter, strong temporal structure
and phylogenetic resolution aided integrating over all plausible evolutionary histories. Many
different approaches to confront the computational limitations are currently in development,
focusing on different aspects of Bayesian inference.

Typically, MCMC algorithms may suffer from two problems that hamper performance:
slow convergence and poor mixing (Nascimento et al., 2017). To remedy this, Bayesian
inference often tries to employ a(n approximate) maximum-likelihood tree – which can be
quickly estimated (see previous sections) – to yield a better-than-random starting location
in tree space to initiate its search. While this aids the search in discrete tree space, it
is important to note that other parameters involved in the phylodynamic model are not
subject to such a pre-optimisation step and convergence may still take non-negligible time.
The continuous need to further optimize MCMC integration is the focus of many current
developments in the field.

A related interesting avenue of research is trying to deal with the problem of continuously
accumulating data during an ongoing epidemic. The generation of additional sequence data
requires an update of previously obtained results, which is typically done with a complete
re-evaluation of the integrated Bayesian inference estimation procedure. Such a procedure
renders Bayesian approaches costly to maintain an up-to-date estimate of the phylogenetic
posterior distribution and this has motivated initial work on “online” Bayesian phylogenetic
inference methodology, which can update an existing posterior with new sequences (Dinh
et al., 2018; Gill et al., 2020).

While efficiently achieving convergence is one important aspect of the Bayesian challenge,
mixing efficiency – which refers to how efficiently the chain samples from the posterior
after it has converged on the posterior distribution (Nascimento et al., 2017) – is also of
critical importance. In practice, mixing efficiency is frequently assessed by determining the
degree of autocorrelation in the MCMC sample, with high autocorrelation reflecting a poor
sample to characterise the posterior. If the Markov chain can be made more efficient in
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sampling from the posterior, a relatively shorter chain may provide an acceptable estimate
of the parameters of interest. Both the model parameterization (and prior specification)
and the transition kernels acting upon the model’s parameters can have a great effect on
mixing efficiency. To deal with the issue of mixing among the potentially vast collection of
parameters stemming from different models, adaptive MCMC approaches can potentially
increase sampling efficiency for many continuous parameters simultaneously (see Section 3.2).

While convergence and mixing issues will impact the number of MCMC iterations needed
to appropriately sample from the posterior, overall computation time will also be determined
by the time it takes to evaluate the joint posterior density at each step. The same densities
need to be estimated repeatedly and there are no shortcuts to evaluate each observed data
likelihood and prior density, no matter which software framework or computational library
is being employed. However, developments in multi-core computational hardware – both
in the area of traditional central processing units (CPUs) but also of graphical processing
units (GPUs) – offer increasing capabilities to compute those densities more efficiently
by leveraging high-performance computational libraries. Such libraries provide access for
multiple inference software packages to the underlying state-of-the-art hardware, allowing
each inference program to avoid implementing low-level access to such hardware. In Chapter
5.4 (Ayres et al. 2020), we describe the BEAGLE high-performance computational library –
which is used by multiple phylogenetic inference software packages – to illustrate how such
performance increases in computing observed data likelihoods are brought about. All of
the approaches described here that deal with Bayesian phylodynamic inference are available
through BEAST v1.10 (Suchard et al., 2018), which now by default requires the BEAGLE
library to run (Ayres et al., 2019).

3.1 Bayesian phylodynamic inference using BEAST 1.10
While many software packages are available today that focus on phylogenetic and even
phylogenomic inference, BEAST (Bayesian Evolutionary Analysis by Sampling Trees; Suchard
et al. 2018) unifies molecular phylogenetic reconstruction with complex discrete and continuous
trait evolution and allows modelling parameters of interest as a function of external covariate
data. In particular, the use of location data associated with genetic sequences has been
popularised through Bayesian inference approaches for ancestral location reconstruction,
allowing to track the spread of an organism through geographic space.

Since its inception, BEAST has focused on estimating time-scaled (rooted) trees from
genetic data. This can be done through the classical use of external calibration information,
such as information from the fossil record or through studies on plate tectonics as well as
the use of the sampling times of sequences from ‘measurably evolving populations’ (MEPs,
Drummond et al. 2003b). MEPs are characterized by either fast substitution rates and
sample availability over a limited time-scale (e.g. for rapidly evolving RNA viruses) or slower
substitution rates but with much longer sampling time scales (e.g. ancient DNA, Drummond
et al. 2003b). Prior distributions over time-measured genealogies such as the coalescent allow
inferring temporal changes in population size. To this end, BEAST provides a wide range of
molecular clock models and coalescent models, alongside the traditional range of nucleotide,
codon and amino acid substitution models.

In recent years, BEAST has increasingly focused on the analysis of rapidly evolving
pathogens and their evolutionary and epidemiological dynamics. Given the rapid growth
of pathogen genome sequencing as part of public health responses to infectious diseases,
recent areas of interest for further development of BEAST are the exploitation of increasingly
parallel computing architectures to decrease time to results, such as multi-core CPU and GPU
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hardware, both through the development of novel estimation procedures (such as adaptive
MCMC; see Section 3.2) and a much closer integration with the BEAGLE high-performance
computational library (see Chapter 5.4 [Ayres et al. 2020] for more information).

3.2 Adaptive MCMC
Novel sequencing technologies are delivering increasingly larger numbers of genome sequences,
which may amount to thousands of sequences containing hundreds or even thousands of genes.
Viruses with limited genome sizes are typically characterised by a restricted number of genes.
In a viral outbreak setting, recent years have witnessed the deployment of portably sequencing
technologies (Quick et al., 2016), for example to analyse a large-scale Ebola virus outbreak in
West Africa (Dudas et al., 2017) and the Zika epidemic in the Americas (Faria et al., 2017).
The increasing reliability and accuracy of portable genome sequencing technologies have now
turned them into an important instrument in shedding light on unfolding epidemics.

Large viral data sets can typically be analysed using evolutionary models that take into
account the structural properties of those alignments by employing gene-specific and/or codon
position-specific partitioning schemes. Such modelling approaches combine the benefits of
more accurately modelling the underlying evolutionary processes with increased computational
performance, for example by using different nucleotide substitution models per codon position
rather than computationally demanding full codon models (Shapiro et al., 2006). However,
as partitioning strategies involve estimating conditionally independent models of molecular
evolution for different genes and different positions within those genes, they require a large
number of evolutionary parameters to be estimated, which may pose difficulties for traditional
Bayesian inference approaches. Given the predominance of single-component Metropolis-
Hastings approaches, a parameter estimation strategy which proposes a new value for one
single parameter at a time (Gilks et al., 1996), estimating large numbers of parameters that
are spread across multiple data partitions is associated with a considerable computational
burden in Bayesian phylogenetic inference (see Figure 8).

Baele et al. (2017a) have introduced a transition kernel into BEAST (Suchard et al.,
2018) based on the adaptive Metropolis (AM) algorithm of Haario et al. (2001) and Roberts
and Rosenthal (2009) that continuously adapts its d-dimensional proposal distribution to
better match the target distribution and hence learn better parameter values as the analysis
progresses. Computing the covariance of the proposal distribution using all of the previous
states, the AM algorithm is in turn based on the classical random walk Metropolis algorithm
(Metropolis et al., 1953) and earlier work by Haario et al. (1999) that entertains a Gaussian
proposal distribution centered on the chain’s current state but with the covariance being
calculated from a fixed number of previous states. The use of simple recursion formulae
to update the covariances ensures that the computational cost associated with the AM
algorithm remains constant as the analysis progresses (Haario et al., 2001).

Apart from updating the proposal distribution by using currently available knowledge
about the target distribution, the construction of the AM algorithm is identical to the usual
random walk Metropolis-based chain. Suppose that at iteration n we have previously sampled
the states X0, X1, . . . , Xn−1, where X0 is the initial state (typically sampled at random from
its prior distribution). A candidate point Y is then sampled from the (asymptotically
symmetric) normal proposal distribution, given at iteration n by Qn(x, ·) = N(x, (Cd)2Id/d)
for n ≤ C0, while for n > C0:

Qn(x, ·) = (1− β)N(x,Σn/d) + βN(x, (Cd)2Id/d), (3)

where Σn is the current empirical estimate of the covariance structure of the target distribution
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Figure 8 Conceptual visualisation of the potential benefits of an adaptive MCMC algorithm
over single-component Metropolis-Hastings when assuming a codon partitioned substitution model
(green bars indicate a processor’s occupancy while computing a specific likelihood). In Bayesian
phylogenetics, the common practice of updating a single parameter at a time typically only requires
a single CPU core in order to recompute the observed data likelihood, leaving many CPU cores idle
and hence underusing the computational capacity of multi-core CPU architectures. In many cases,
the likelihood for the second codon position is quickly computed given the low number of unique site
patterns at this position, whereas the third codon position typically accumulates more substitutions
resulting in a more demanding likelihood computation. Adaptive MCMC allows updating a collection
of continuous parameters simultaneously, putting many cores to work in a parallel fashion to compute
the various (codon) partitions. Note that different computational demands between data partitions
will lead to waiting times (shown in grey) which hamper performance, a problem that can be tackled
by splitting the computation of a particular partition over multiple processor cores. In this example,
a fourth processor core is not being used and hence partially offloading the computation of the third
codon position likelihood to the remaining free processor core reduces waiting time and increases
overall throughput. Quad-Core AMD Opteron processor silicon die shown courtesy of Advanced
Micro Devices, Inc. (AMD), obtained from Wikimedia Commons.
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based on the run so far, Id is the d-dimensional identity matrix and β is a small positive
constant. The (order of) magnitude for the parameters C0 and Cd is not easily determined
however and, given the only recent introduction of such adaptive transition kernels in
Bayesian phylogenetics, is subject to further research. The candidate point Y proposed by
the transition kernel is accepted with probability

α(Xn−1, Y ) = min
(

1, π(Y )
π(Xn−1)

)
, (4)

in which case we set Xn = Y , and otherwise Xn = Xn−1, where π(·) is the target distribution.
Note that the chosen probability for the acceptance resembles the familiar acceptance

probability of the Metropolis algorithm, but the corresponding stochastic chain is no longer
Markovian (Haario et al., 2001). It is known that adaptive MCMC algorithms will not always
preserve stationarity of π(·) (Roberts and Rosenthal, 2009). However, having proven the
ergodicity of adaptive MCMC under certain conditions (Roberts and Rosenthal, 2007), the
AM algorithm above will indeed converge to π(·) and satisfy the Weak Law of Large Numbers
(WLLN), even though it is not Markovian.

The use of a d-dimensional proposal distribution through such an adaptive transition
kernel can correspond in its simplest (or standard) use case to updating one parameter in
each of d sequence data partitions (e.g. when d genes are present in the multiple sequence
alignment). The simultaneous proposal of updated parameter values for all d parameters
will in such a case trigger d likelihood calculations, which can be performed in parallel
as there is no dependency of the sequence data likelihoods on one another. The current
surge in development and availability of multi-core processors, both in the central processing
unit (CPU) and graphics processing unit (GPU) processor markets, provides an excellent
opportunity to perform such massively parallel computations. Multi-core CPU systems allow
evaluating multiple data likelihoods simultaneously on a single processor, employing each
processor core to compute the likelihood of a given data partition. GPU cards aimed at the
scientific computing market benefit from a different approach towards likelihood computation,
with an implementation that is agnostic of the concept of tree topologies (Suchard and
Rambaut, 2009). High-performance computational libraries such as BEAGLE (Ayres et al.,
2019) provide an extended API and library to support concurrent computation, not only
on CPU but also on GPU, of independent partial likelihoods, for increased performance of
analyses with greater flexibility of data partitioning (see the separate BEAGLE chapter for
more information).

3.3 Discrete phylogeographic inference
Apart from the availability of many nucleotide data partitions in modern-day data sets
that need to be analysed using phylogenetic approaches, an increasing number of trait data
partitions are being included into phylodynamic analyses (for an overview, see Baele et al.
2017b). Given the specific properties of the data set we analyse in this chapter, we focus
here on a discussion of discrete trait analysis in combination with sequence data. As in the
previous sections in this chapter, we consider sampling location as a discrete trait to perform
phylogeographic analyses in conjunction with approaches to visualize the reconstructed viral
spread over time and space.

Discrete phylogeographic inference has witnessed a surge in popularity after its develop-
ment and inclusion into the BEAST software package (Lemey et al., 2009; Suchard et al.,
2018). A popular approach for discrete trait modeling is to take guidance from standard
phylogenetics and borrow the process of exchange between sequence character states as a
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generic model for how (discrete) traits evolve over the branches of a phylogeny, as described
in the previous section.

With most general models, it requires estimating large migration rate matrices and
therefore significant computer power and typically makes the resulting analysis no longer
suitable even for multi-core CPU systems and requires the use of state-of-the-art GPUs
(Suchard and Rambaut, 2009).

Informing the instantaneous rate parameters of a discrete trait model can be aided by
providing predictors or covariates that inform the transition rates between discrete states
(see Section 3.4). Other approaches to protect against over-parameterization include prior
specification, which can for example consist of proposing higher rates of diffusion between
nearby locations a priori. In addition, Bayesian stochastic search for variable selection
(BSSVS) can be adopted to reduce the number of rate parameters to a restricted set that
provides the most adequate parsimonious description of the diffusion process (Lemey et al.,
2009). Variable selection and informative prior specification both increase statistical efficiency,
which becomes even more important when drawing inference from sparse data – such as
a single column of discrete traits – under more complex models, for example, assuming
asymmetric transition rates between each pair of discretized trait values (Edwards et al.,
2011).

3.4 Incorporating potential predictors of spatial spread
As mentioned in the previous section, the estimation of a potentially large number of transition
rates in a discrete trait model can be informed by incorporating predictors that may play
an important role in the underlying transition process between trait states. Such predictors
can be integrated using a generalized linear model (GLM) formulation for the transition
rates, a common approach in statistics that allows to model the linear relationship between a
dependent variable (in this case the transition rates) and a collection of independent variables.
To identify the relevant subset of predictors out of a number of explanatory variables, the
GLM model can be extended with a BSSVS procedure. To this end, the (K − 1) × K
parameters that model the instantaneous rates of spread between the K discrete locations
Λij(∀i 6= j) is modelled as a log linear function of the set of P predictors (x1, . . . , xP ) so that

logΛij = β1δ1xi,j,1 + β2δ2xi,j,2 + . . .+ βP δPxi,j,P , (5)

where (β1, . . . , βP )’ represent the effective sizes (or coefficients) for the predictors,
quantifying their contribution to Λ, and (δ1, . . . , δP ) are (0,1)-indicator variables that govern
the inclusion or exclusion of the P predictors in the model. The incorporation of indicator
variables allows to perform the BSSVS procedure, which involves letting the data decide
whether or not the corresponding predictor provides a significant contribution to the model
and hence should be kept as part of the model. In other words, when an indicator δp equals
1, then predictor xp is included in the model, and assessing its effect size through βp allows
interpreting the direction and magnitude of that predictor’s contribution. The average value
of each indicator across iterations provides an estimate of the inclusion probability of a
predictor and can be used to compute a Bayes factor expressing how much the data change
our prior opinion about the inclusion of each predictor. Completing the model’s specification
is done by assuming a small prior probability on each predictor’s inclusion that reflects a
50% prior probability on no predictors being included, but specifying equal prior probability
on each predictor’s inclusion and exclusion yields highly similar results. The Bayes factor
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for a predictor BFp is then calculated by dividing the posterior odds for the inclusion of a
predictor with the corresponding prior odds

BFp =
ppp

1− ppp
/

qpp
1− qpp

, (6)

where ppp is the posterior probability that predictor p is included, in this case the
posterior expectation of indicator δp, and qpp is the prior probability that δp = 1.

3.4.1 Predictor data
In order to offer an explanation for the geographic dispersal of emerging pathogens, different
sources of information can be incorporated in the phylogeographic testing procedures. To
illustrate the principle behind this approach, we have collected two data matrices that we
use here as predictors for the geographic spread patterns of dengue. First, we consider
air transportation data between the 64 countries from which the dengue sequences were
obtained, thereby aggregating data from a passenger flux matrix that quantifies the number of
passengers traveling between each pair of airports on a daily basis. We use a dataset provided
by OAG (Official Airline Guide) Ltd. (http://www.oag.com), containing 4.092 airports and
the number of seats on scheduled commercial flights between pairs of airports during the
years 2004-2006. We take the number of seats on scheduled commercial flights from airport i
to j to be proportional to the number of passengers traveling. Because passenger flux does
not differ in a statistically significant manner from symmetry in the global air transportation
network (Woolley-Meza et al., 2011), we consider flows that were symmetrized. These air
transportation data were converted to “effective distances”, which aim to reflect the idea
that a small fraction of traffic is effectively equivalent to a large distance, and vice versa
(Brockmann and Helbing, 2013). A second predictor consists of the average distances between
the locations in our data set. Specifically, we considered the average great-circle distance
between two locations based on the pairwise distances between all pairs of airports from
the two locations. While further predictors can be added into the GLM, we use these two
predictors described here to showcase their use and interpretation.

3.4.2 Results
In our BEAST analysis – comprising 200 million iterations – both predictors were consistently
included in the GLM model (the associated indicator variables remained 1, so E[δ] = 1),
indicating that our data support an important contribution of these two predictors to the
geographic spread of dengue. We also find effect sizes that are centered around negative values,
indicating an inverse relationship between the predictors and the instantaneous rates of dengue
spread between locations, and credible intervals that exclude 0 (β = −0.71[−0.83,−0.59] for
air flux and β = −0.49[−0.60,−0.37] for geographic distance). In other words, the closer
two locations are to one another and the smaller their ’effective distances’ are (or the more
frequent air travel between them), the more intense the spread of dengue between those two
locations becomes. In summary, using a framework that estimates the migration history
of dengue while simultaneously testing and quantifying potential predictive variables of
spatial spread, we show that the global dynamics of dengue are potentially driven by a
combination of air passenger flow and geographic distance between the locations from which
these dengue samples originated. However, we caution against drawing strong conclusions
from this analysis as only two predictors were tested and considerable bias may exist in
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the sampling by country. We note that in addition to offering a phylogeographic testing
approach, the GLM parameterisation of discrete trait diffusion also considerably reduces the
number of parameters to be estimated. While the standard CTMC model has transition rate
parameters that scale quadratically with the number of states, the GLM-diffusion parameters
scale linearly with the number of predictors. Although the parameters remain restricted
in this way, the likelihood calculation for high state spaces remains associated with a large
computational burden. However, this can to a large extent be mitigated by parallelisation as
discussed in the BEAGLE chapter.

3.5 Tree visualisation using FigTree
We first focus on presenting the inferred time-stamped phylogenetic tree as one of the key
outcomes of our joint inference of sequence and trait data, which includes the parameterization
of the geographic spread between location as a function of our predictor data. To this end, we
employ FigTree, a popular cross-platform graphical tree display software package. Although it
can be used as a general tree visualisation tool, it is particularly powerful to display annotated
trees produced by BEAST. In order to construct a maximum clade credibility (MCC) tree,
i.e. the single tree in the posterior sample with the largest sum of posterior probabilities
across its constituent bifurcations, we first use TreeAnnotator (which is part of the BEAST
software package) to summarize the trees from the posterior distribution collected during
an analysis that comprised 200 million iterations (after removing the necessary burn-in).
The resulting time-stamped MCC tree can then be visualised in different manners and with
different annotations in FigTree, as illustrated in Figure 9, where different colours have been
used for the clusters of sequences corresponding to the different dengue subtypes.

1400 1500 1600 1700 1800 1900 2000

serotype

DENV-1

DENV-2

DENV-3

DENV-4

Figure 9 Time-stamped tree visualisation according to the default view in FigTree, with clusters
coloured according to the corresponding dengue serotype.

Oftentimes, discrete ancestral trait reconstructions on a tree are represented by branch
colour annotations. Such a visualisation allows interpreting the time and location of origin
as well as the introduction into different locations at different points in history of dengue.
Given that the different dengue serotypes diverged centuries ago (see Figure 9), we here
focus on showing the phylogeographic reconstructions of the different serotypes in Figures
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10, 11, 12 and 13 (all trees are MCC trees). In doing so, we have “ladderized” the trees,
meaning that the nodes have been sorted on one level by the count of their subnodes (on all
levels under the node), for easier visualisation and interpretation of the trees.

Dengue virus comprises four serotypes that co-circulate in tropical regions and the
relationship between the various dengue serotypes depicted in Figures 9 is well known. It has
been hypothesised that antibody-dependent enhancement (ADE) may explain this particular
shape of the dengue virus phylogeny, in which the four serotypes are phylogenetically
equidistant (see e.g. Grenfell et al. 2004). Natural selection may favour this level of antigenic
dissimilarity, as cross-protective antibodies would neutralize more similar strains, whereas
more divergent strains would not stimulate ADE. It has also been suggested that independent
cross-species (monkey-human) transmission might be able to explain the dengue phylogeny
if the serotypes predominate in different geographic areas, followed by later mixing (Holmes
and Twiddy, 2003). However, this is difficult to determine based on the visualisation of the
trees in Figures 10-13, and a projection onto geographic space would be more useful in such
a case, which we discuss in the following section.
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Figure 10 Time-stamped tree visualisation of serotype 1 – based on the full MCC tree (see
Figure 9) – with each branch being coloured according to the location state at its descendant node.
Based on our Bayesian inference, serotype 1 is estimated to have originated in Indonesia in the
1930s.

3.6 Visualisation and animation using spreaD3
In order to visualise the estimated spread over time in a geographically explicit way, each
discrete location considered in the ancestral reconstruction needs to be complemented with a
set of GPS coordinates. We here resort to the centroid of each country, which can be easily
retrieved online (an alternative option could be to use the GPS coordinates for the capital of
the country). These latitude and longitude data can be readily loaded in spreaD3 (Bielejec
et al., 2016), along with a geographic map in GeoJSON format containing the regions of
interest. SpreaD3 will then generate, by using the sampling times and locations, and the
estimated divergence times and ancestral location reconstruction, an animated visualisation
of the viral spread over time, starting from the estimated time to most recent common
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Figure 11 Time-stamped tree visualisation of serotype 2 – based on the full MCC tree (see
Figure 9) – with each branch being coloured according to the location state at its descendant node.
Based on our Bayesian inference, serotype 2 is estimated to have originated in Indonesia in the first
half of the 18th century.
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Figure 12 Time-stamped tree visualisation of serotype 3 – based on the full MCC tree (see
Figure 9) – with each branch being coloured according to the location state at its descendant node.
Based on our Bayesian inference, serotype 3 is estimated to have originated in Thailand at the end
of the 19th century.
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Figure 13 Time-stamped tree visualisation of serotype 4 – based on the full MCC tree (see
Figure 9) – with each branch being coloured according to the location state at its descendant node.
Based on our Bayesian inference, serotype 4 is estimated to have originated in Myanmar in the first
half of the 19th century.

ancestor of the data being analysed, until the most recent sampling date. This is shown in
Figures 14-17, where – for each serotype – we present two snapshots of the animation in
progress: one taken early on in the epidemic, when dengue still seems to be restricted to
South East Asia, and another taken at the start of 2014 (i.e. the most recent sampling date
in our dengue data set), where the different dengue serotypes have spread throughout most
tropical regions on earth.

4 Comparison between ML and Bayesian estimates

In the previous sections, we have described large whole-genome virus data set analyses using
ML and Bayesian approaches, and discussed their inference results on an example of Dengue
virus. To assess how their results compare, we looked at the three aspects that correspond to
the three ML pipeline steps: (1) the reconstructed tree topologies; (2) the node dates of the
time-scaled trees; (3) and the geographic predictions. To make the ML analysis performed
on a larger 5 132 complete genome data set comparable with the Bayesian and ML analyses
on the small dataset, we pruned the resulting phylogenies to keep only the common tips. We
also calculated a consensus topology by collapsing the branches corresponding to internal
nodes that were not common to all of the three (pruned) trees (ML (small), ML (large) and
Bayesian): each internal node was uniquely identified by the set of tips in its subtree. For
the Bayesian case we used the MCC tree.

Tree topologies.

To compare the tree topologies we calculated pairwise normalised quartet distances (Estabrook
et al., 1985) (with tqDist [Sand et al. 2014]), where 0.0 indicates identical trees and 1.0
corresponds to trees that have no quartet in common. The topologies obtained using the
various inference methods were very similar: the closest ones were reconstructed on the same
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Figure 14 The geographic dispersal over time of dengue serotype 1, visualised using spreaD3
(Bielejec et al., 2016). The top figure shows the spread of dengue serotype 1 at the start of 1970,
when the virus is estimated to have originated in Indonesia, from where it first spread to Thailand
and the United States. The bottom figure shows the “current” spread (i.e. when the final sample in
our data set was taken, at the start of 2014).
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Figure 15 The geographic dispersal over time of dengue serotype 2, visualised using spreaD3
(Bielejec et al., 2016). The top figure shows the spread of dengue serotype 2 at the start of 1980,
when the virus is estimated to have originated in Thailand, from where it first spread to China,
Myanmar and the United States. The bottom figure shows the “current” spread (i.e. when the final
sample in our data set was taken, at the start of 2014).
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Figure 16 The geographic dispersal over time of dengue serotype 3, visualised using spreaD3
(Bielejec et al., 2016). The top figure shows the spread of dengue serotype 3 at the end of the
1920s, when the virus is estimated to have originated in Indonesia, from where it spread to Thailand,
Myanmar, India and the African continent. The bottom figure shows the “current” spread (i.e. when
the final sample in our data set was taken, at the start of 2014).
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Figure 17 The geographic dispersal over time of dengue serotype 4, visualised using spreaD3
(Bielejec et al., 2016). The top figure shows the spread of dengue serotype 4 at the start of 1950,
when the virus is estimated to have originated in Myanmar, from where it spread to India, Myanmar,
Singapore and the African continent. The bottom figure shows the “current” spread (i.e. when the
final sample in our data set was taken, at the start of 2014).
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(small) data set (normalised quartet distance of 0.003), the distance between the two ML
trees was 0.009, and 0.011 between the ML tree reconstructed on the large data set and the
tree obtained through Bayesian inference.

Time-scaled trees.

We compared the predicted dates of the internal nodes present in the consensus topology. The
root (common ancestor of four dengue serotypes) dates were very different and hence strongly
depended on the inference used. A root date was estimated to be −2377 [−2885;−1642] for
the small ML tree (LSD2) and −54 [−132; 56] for the large one; the Bayesian analysis on
the other hand yielded 1370 as the median root date, with a 95% HPD (i.e. [1215; 1475])
that can be considered relatively narrow compared to the CIs obtained by various ML tools.
These results show that dating relatively deep divergence in a phylogeny can yield drastically
different results depending on the methodology used, when all methods rely solely on the
sequences and their sampling times, which are all very recent (and given the oldest estimated
ages of the full tree may almost be considered to be contemporaneous). This could be
predicted from the RTT plot in Figure 4.

We observed considerably smaller root date differences for the serotype subtrees, for
which the results are plotted in Figure 18. The time-scaled trees obtained on the same,
small, data set are closer to each other than those estimated on different data sets for all the
serotypes except for DENV4. In the case of DENV4, the ML time-scaled tree reconstructed
on the large data set and the tree from Bayesian inference are very similar. As was already
apparent from the full tree root date comparison between the different frameworks, node
date estimates obtained through a fully Bayesian inference are consistently more recent than
those generated by ML, regardless of the data set size used for the latter. Irrespective of
differences in methodology, we stress that estimating relatively deep divergence times based
on the divergence accumulating between recent tips can be misleading. Specifically, purifying
selection has been shown to lead to severe underestimates of the ancient age of viral lineages
(Wertheim and Kosakovsky Pond, 2011). Recent advances in molecular clock modelling
attempt to address this (Membrebe et al., 2019).

Geographic reconstruction.

For each internal node in the consensus tree we compared its predicted country and prob-
abilities. As the MPPA method used for ML phylogeographic reconstruction might predict
multiple countries per node, we checked whether the modal Bayesian state was among them.
For the majority of the nodes it was the case: 98% (91%) for ML ACR on the small (large)
data set vs the Bayesian ACR. Less intersection with the large data set could be explained
by the fact that it included more countries (83 versus 67): for the ACRs performed on the
small data set the 16 unseen countries could never be reconstructed.

5 Conclusions

The combination of high-throughput experimental techniques and advanced methods that
stem from physics, statistics and computer science allow to analyse increasingly large
quantities of genomic data. ML and Bayesian phylogenomic tools can perform divergence
time estimation and phylogeographic reconstruction of thousands of genome-scale virus
sequences. However, care should be taken in choosing the data (e.g. removing erroneously
annotated and poorly sequenced data that can bias the predictions), choosing correct tools
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Figure 18 Common node dates for ML (small, dated with LSD2, pink), ML (large, dated with
LSD2, red) and Bayesian (blue) trees by serotype (y axes) plotted against the node date averaged
over the three trees (x axis): DENV1 (top left), DENV2 (top right), DENV3 (bottom left), and
DENV4 (bottom right). Root nodes correspond to the left-most points.
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(e.g. FastTree is a good tool for a quick preliminary phylogeny reconstruction but it is not
very accurate) and correct configurations (e.g. priors for Bayesian analysis, relaxed vs strict
molecular clock), checking the results at all stages of the analysis (e.g. correct tree root
position), and comparing the predictions obtained by different methods.

We compared Bayesian and ML analyses on the example of Dengue virus data, and
obtained results that are similar overall, but also showed many differences (especially in terms
of time predictions). It is however difficult to assess which result is closer to biological truth.
ML analysis is much faster to perform (∼ 2 days on a 12-core machine for the large data set
and ∼ 2, 5 hours for the small one) and can be therefore applied to larger data sets. However
by performing the analysis step by step, it might accumulate error, so each intermediate
result needs to be checked. When possible, it may prove useful to perform different analyses
and compare the results. The DENV data sets we have used in our comparisons serve to
illustrate the computational approaches. We acknowledge that considerable sampling bias
may exist between countries, which complicates drawing reliable conclusions about patterns
of spatial spread. Furthermore, we have not performed any recombination analyses. As
pointed out in the introduction, such analyses should be part of phylogenomic studies of
pathogens that may recombine, which is the case for DENV (Worobey et al., 1999).

We note an interesting convergence in the development of Bayesian and ML analysis
frameworks. The ML tools for dating trees have evolved towards the inclusion of (1) relaxed
molecular clocks, which have to a large extent been advanced in Bayesian frameworks, and (2)
statistical tests to decide between strict and relaxed clock models, which also have received
much attention in Bayesian frameworks. On the other hand, we illustrated some of the efforts
to reduce the computational burden of Bayesian inference in order to decrease the large gap
with ML approaches. However, accommodating phylogenetic uncertainty by averaging over
all plausible evolutionary histories will always remain restrictive relative to ML estimation.
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