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Abstract: We propose a simple and flexible fabrication approach based on the moiré effect
of photoresist gratings for rapid synthesis of apodized structures with continuously varying
depth. Minor modifications in a standard laser interference lithography setup allow creating
macroscopic, visible by naked eye moiré patterns that modulate the depth of subwavelength
diffraction gratings. The spatial frequency of this modulation is easily controlled in a wide range,
allowing to create a quasicrystal in extreme cases. Experimental results are confirmed by a theory
with clear graphical solutions and numerical modeling. The method is universal and does not
depend on a specific choice of photoresist and/or substrate materials, making it a promising
choice for structured light applications, optical security elements or as a basic structuring method
of complex optical devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nanopatterned surfaces play a crucial role in modern nanotechnology. The permanent industrial
need for miniaturization and integration demands compact, highly-effective optical devices with a
complex organization. For example, multidimensional architectures were proposed for broadband
light absorption [1,2], for investigating a visible band "rainbow trapping" effect [3,4] and for
various photonic-crystal-based devices [5–7].

Planar 1D or 2D diffraction gratings are widely used in structure design for plasmonics [8],
structured color [9], antireflection [10], photocatalysis [11] and biosensing [12,13] due to their
outstanding possibilities for light coupling. The grating functionality can be further extended by
additional diffraction patterns superposed in one single topography. The resulting hierarchical
structure yields combined optical properties of its components. This way of grating development
does not require supplementary materials and/or chemical procedures and usually utilizes well-
known fabrication approaches: 3D direct laser writing [14], electron-beam lithography [15],
polymer film wrinkling [16], self-assembly [17] and laser interference lithography (LIL) [18].
LIL nanostructuring [19], a maskless, wafer-scale, stitching defect free technique, attracts

a special attention. Its natural capability to generate and combine various interference fields
is intensively studied for multiscale fabrication [20–23] and multi-beam interference ablation
[24]. Nowadays there is a growing interest in hierarchical moiré architectures [25], whose
structural organization and optical properties can be easily and precisely tuned in a LIL setup.
Moreover, the inherent quasiperiodicity of moiré lattices gives an additional control over k-space
dispersion and optical coupling [26]. Reducing the difference between overlapping topographies
increases the size of the moiré patterns up to the macroscale. In contrast to the aforementioned
nano/microscale patterns, this limiting case received up to now much less attention. A significant
barrier for exploring this domain is in our opinion a lack of simple experimental techniques for
realizing very small differences between superposed motifs.
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In this article we propose an effective yet simple and inexpensive method for rapid formation
of macroscopic moiré patterns over wafer-scale, 1D and 2D diffraction gratings using only minor
modifications to a standard LIL setup. We utilize an effect of interference beats that appear in a
photoresist after two LIL exposures with a small manual-stage-controlled sample shift between
them. The method exploits the wavefront curvature of point laser sources, which is ordinarily
considered as a drawback of a LIL experimental bench. Together with sample rotations this
approach allows for a high variety of possible moiré patterns. We demonstrate this with gratings of
1 µm, 600 nm and 300 nm period. The resulting microstructures with adiabatically varying depth
can be utilized in diffractive optically variable image devices (DOVIDs) for anticounterfeiting
measures [27], structurally induced colors [28], plasmonic studies [29] and in general as elements
of more sophisticated optical devices.
The paper is organized as follows. Section 2 is devoted to the theoretical development of the

method leading to a graphical representation of possible moiré patterns. Section 3 demonstrates
the fabricated diffraction gratings with basic macroscopic moiré patterns, shows the structural
color given by insulator-metal-insulator variable depth gratings, and makes a connection between
micro- and macroscopic moiré-based structures using an example of 2D hierarchical gratings.
Finally, Section 4 concludes the text.

2. Moiré patterns in two-beam interference lithography

We start with the 1D case in order to explain the principles of moiré pattern formation in the LIL
process.

2.1. One-dimensional LIL moiré patterns

A standard LIL technique consists of three steps (see Fig. 1): deposition of photoresist on the
substrate (positive resist in our case), single or multiple two-beam laser exposure and dissolution
of the exposed resist during the development process. In the second step, the absorbed light
changes the resist chemical structure and makes the exposed areas more soluble for the developer.
Contrast curves describing the development rate / exposure dose dependence are often used to
numerically predict the final grating profile [30–32].

Fig. 1. The principal steps of two-beam LIL: (a) photoresist deposition; (b) exposure of the
resist in the interference field of two laser beams with incidence angle α, the exposed resist
depicted in dark red; (c) development of the exposed resist.

One single LIL exposure by two-beam interference creates a sinusoidal intensity distribution
with a period Λ on the resist surface: IΛ (x) = I0 sin (2πx/Λ) + I0, where Λ = λ/2 sinα and λ
is the laser wavelength. Moiré patterns in 1D appear if another exposure IΛ′ (x) with Λ′ ≈ Λ is
applied [27]:
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where the phase mismatch δϕ between intensity distributions IΛ (x) and IΛ′ (x) can be controlled
using a phase-locking scheme [33], and Λenv = 2ΛΛ′/|Λ − Λ′ | is a characteristic length of the
envelope function. For small enough values of |Λ − Λ′ | � Λ we get macroscopic straight moiré
lines modulating the microscopic 1D grating [29].

2.2. Two-dimensional LIL moiré patterns

We propose an approach of generating 2D macroscopic moiré patterns over the microscopic
1D diffraction gratings in a LIL process by an exploitation of the incident wavefront curvature,
which is ordinarily considered as a drawback of a LIL experimental bench.

Figure 2(a) sketches the dual beam interferometer bench. One single LIL exposure creates in a
photoresist a family of hyperbolic fringes. Such single-exposed sample after the development
step can be considered as an ideal 1D grating in most practical cases, because the fringes have a
very small curvature: for a square 10 cm×10 cm grating of period 1 µm these hyperbolic fringes
cause a maximum period perturbation of 2 nm and the angle of maximum fringe deviation from
a vertical orientation is only 3.5′, which can be considered negligible in practical experiments.
However, this curvature is enough to produce macroscopic moiré patterns visible by naked eye,
if the sample is exposed twice with a small spatial displacement between exposures. A small
horizontal shift, vertical shift or rotation of the sample leads to elliptical, hyperbolic or straight
moiré motifs, see Figs. 2(b)–2(d) respectively for a qualitative explanation. All sample shifts were
realized using manual translation and rotary stages with a precision of 20 µm and 1’ respectively.

Fig. 2. (a) Scheme of LIL process with two coherent point light sources with a fixed
distance D=69.3 cm between them; He-Cd laser wavelength λ = 442 nm, the distance H can
be changed in order to control the grating period. Single LIL exposure by two spherical
sources generates the family of hyperbolic fringes, represented as white lines on the red
resist surface. Combination of two consecutive LIL exposures with a small (much smaller
than H and D) sample movement in the xz-plane leads to various moiré patterns depending
on the kind of the movement: (b) horizontal shifting sx, elliptic moiré patterns; (c) vertical
shifting sz, hyperbolic moiré patterns; (d) small (∆θ < 1◦) rotation, straight moiré lines.

The case of straight moiré lines created by small rotation angle as in Fig. 2(d) is well-known
[34,35]. This rotation ∆θ between two LIL exposures with periods ΛLIL creates 2D gratings with
a rhombic elementary cell of ΛLIL/sin (∆θ) period. With decreasing of ∆θ one rhomb diagonal
is growing and becomes macroscopically-sized, whereas the other one remains very close to
ΛLIL. In the following process steps those straight macroscopic moiré lines become visible, with
grating grooves ≈ ΛLIL being perpendicular to them.
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In the appendix we provide a strict quantitative analysis of moiré patterns for the in-plane
sample translation case. Let us define this in-plane displacement vector between two exposures
as s = (sx, 0,sz)

T . The two particular cases s ≡ sx and s ≡ sz are presented in Figs. 2(b) and 2(c),
respectively. It can be shown that the form and size of every moiré line are described by an
equation

∆ ≡ ∆1,sx,sz − ∆2,sx,sz = 2k, (2)

where scalar fields ∆1,sx,sz (x, z) and ∆2,sx,sz (x, z) defined over the resist surface plane are propor-
tional to the optical path difference between point sources during the first and the second LIL
exposures, respectively, and k ∈ Z specifies a certain moiré line in the family of lines.
The main theoretical result obtained in the Appendix is that for any given parameters of

the LIL setup (distances D, H and the laser wavelength λ) we can construct a hyperboloid of
one sheet in Euclidean space (ς1, ς2, ς3), such that for any in-plane displacement vector s a
certain plane can be found that cuts the hyperboloid, revealing the moiré lines generated by this
displacement s. In other words, we propose a graphical solution of Eq. (2). Illustrations in
Figs. 3(a)–3(c) clearly show that experimentally achievable moiré lines for any displacement
s have elliptical or hyperbolical forms. Figure 4 shows several elliptical Figs. 4(a)–4(b) and
hyperbolical Figs. 4(c)–4(d) macroscopic patterns, generated by a 2 cm sample displacement
along different directions for 1 µm period gratings. In the next sections experimentally fabricated
samples with typical moiré patterns are demonstrated.

Fig. 3. Graphical solution of Eq. (2) as an intersection of a hyperboloid with different planes
which depend on the sample translation s and a number k ∈ Z: (a) hyperbolic intersection, for
the angles (ŝ,Ox) larger than some critical value; (b) the same vector s as in (a), conjugated
hyperbolic moiré line; (c) elliptical intersection, for the angles (ŝ,Ox) less than some critical
value. Every intersection line corresponds to a certain moiré shape, number k controls the
switching between conjugated hyperbolas as in (a) and (b). The overlapping families of LIL
fringes below every hyperboloid explains qualitatively the moiré formation at corresponding
s. Vectors p, n, m and angle γ in (a) correspond to a certain cutting plane parametrization,
see Appendix for details.
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Fig. 4. Numerically calculated macroscopic envelopes (moiré patterns) of a depth distribu-
tion generated by a sample displacement s along different directions θ ≡ (ŝ,Ox). Absolute
value of displacement s = 2 cm, grating period Λ= 1 µm, grating grooves are oriented
vertically in all examples as depicted in magnified insets in (a) and (d). Local sample
coordinate system as in Fig. 2(a) is used.

3. Experimental

In this part we provide and discuss the experimental results obtained by the modified LIL setup.
The section is organized as follows. In the first subsection the materials and fabrication details are
indicated, the second subsection is devoted to the primary moiré patterns considered theoretically
in the previous section, written in gratings with periods of 1 µm and 300 nm using the 2-exposure
LIL. The third subsection expands our method to the 4-exposure LIL.

3.1. Materials and fabrication

BK7 microscope glass slides 3.7 cm×2.5 cm were used as transparent substrates. They were
cleaned in a wet bench three-step procedure: 15 min, 15 min and 10 min in acetone ultrasonic
tank, ethanol ultrasonic tank and pure deionized water tank respectively, and then were dried
under a nitrogen stream. A thin 600 nm layer of a positive photoresist Shipley S1805 was
deposited on top by spin-coating and soft-baked at 60 °C for 1 min to evaporate the solvent,
harden the resist and improve its adhesion to the substrate.

We used 442 nm He-Cd laser with an effective power P = 500 µW in the LIL setup, see Fig. 5.
After the beam splitter two laser beams of equal intensity are injected into Polarization-

Maintaining Single Mode optical Fibers (PM-SMFs) adapted for a wavelength 442 nm. The light
comes out from fiber ends mounted on stepper motors to control the incidence angle. These fiber
ends are considered as point laser sources in Fig. 2(a). The distance between point laser sources
D = 69.3 cm is fixed, the grating period ΛLIL is defined by equal incidence angles of two beams
and an adjustable distance H to the sample holder (see also Section 2.1).
The sample displacement s was controlled by a standard manual linear translation stage with

the smallest scale division of 20 µm; the sample rotation ∆θ was performed using the rotary stage
with a precision 1′. The sample has been shifting between two consecutive LIL exposures in
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Fig. 5. Experimental LIL dual beam interferometer bench with a 442 nm He-Cd laser (top
view). PM-SMF is a Polarization-Maintaining Single Mode optical Fiber; Manual stage is
either translation or rotary stage depending on the method of sample shifting. The distance
between point laser sources D = 69.3 cm is fixed, the grating period ΛLIL is defined by equal
incidence angles of two beams and an adjustable distance H to the sample holder; the fiber
ends are mounted on rotary stepper motors.

order to generate moiré patterns on the grating after development. Each LIL exposure lasted
typically 23 s for subwavelength gratings with a period 300 nm and 150 s for gratings of 1 µm.
The exposure time depends on the distance H to the light sources (see Fig. 2(a)) and, consequently,
on the grating period.

After exposure the samples were developed in MF-319 developer at 8 °C for 4 and 5 seconds
in case of 300 nm and 1 µm gratings respectively and finally dried in a nitrogen stream.

For the structural color observations, presented in Section 3.2.2, a variable depth grating was
metallized in a physical vapor deposition (PVD) process by sputtering of an aluminum target. It
allows to deposit thin ∼20 nm metallic films for observations in transmission. Finally, a second
600 nm thick photoresist layer was spin-coated on top in order to protect the metallic surface and
to provide the required insulator-metal-insulator configuration; this upper resist layer has a planar
"dielectric-air" interface.

3.2. Moiré patterns generated by two-exposure LIL technique

3.2.1. Experimental observation of moiré patterns of different shapes

As we have seen previously, elliptical, hyperbolic and straight envelopes of 1D gratings can be
created by sample displacement or rotation between two LIL exposures. Experimental results
are shown in Fig. 6. We used manual translation and rotary stages to obtain a well controllable
sample movement. As it was predicted numerically, the displacement direction (depicted by the
red arrow on the top of each column) defines the form of the moiré lines, while the absolute
value controls the distance between them. For example, sample shifts of 3.6 mm, 5.2 mm
and 11 mm (which are much smaller than the LIL setup dimensions D and H of ∼0.5 m) in
the direction perpendicular to the grating grooves correspond to samples Figs. 6(a)–6(c) with
increasing number of moiré motifs (black lines). These black lines are zero-depth grating regions
without light diffraction and thus show the background color (see AFM measures in Fig. 6(j)).
Analogously, a sample rotation of 0.1’ to 0.5’ between 2 exposures also increases the number of
moiré lines (Figs. 6(d)–6(f)).
All hyperbolic patterns in Figs. 6(g)–6(i) were prepared using the same 2 cm displacement,

but the shapes of the moiré lines are quite different: the distance between the symmetry center
(denoted as white dots in Figs. 6(g)–6(i)) and nearest hyperbolic branches (white dashed lines in



Research Article Vol. 28, No. 11 / 25 May 2020 / Optics Express 16459

Fig. 6. Photographs of fabricated 1D gratings with 2D moiré patterns of elliptical (a)-(c),
straight (d)-(f) and hyperbolic (g)-(i) forms. Red schemes on the top show the method of
sample shifting in corresponding columns; (j) AFM measures of grating depth along the red
dashed line L, denoted on sample (b); black curves on all sample surfaces correspond to
zero-depth regions without light diffraction. Grating period Λ=1 µm, pitches are oriented
horizontally as depicted in the schemes above the images.

Figs. 6(g)–6(i)) is substantially larger in Fig. 6(g) than in Fig. 6(h) and Fig. 6(i). Moreover, the
major and mirror hyperbola axis in Fig. 6(g) and Fig. 6(h) switch their roles in Fig. 6(i). These
two observations can be explained by small inaccuracies in the displacement direction which is
very hard to control experimentally. This is shown by the envelopes in Figs. 4(d)–4(f) that have
almost the same shift direction with a deviation of only ±0.08′, which nevertheless is enough to
affect the moiré motif.
Calculations analogous to those presented in Figs. 4(d)–4(f) can be performed for any

displacement direction. In all cases a small angle deviation of ±0.08′ is enough to affect the
moiré motif in the central zone. It arises because fringes near the screen center are the most
straight (see Fig. 2(a)) and cause the minimum grating period perturbations. Consequently, after
the double LIL exposure the envelope of superposed grating reaches here the largest values,
and the moiré pattern becomes "zoomed" in the center with respect to the rest of surface. It
makes the central moiré part very sensitive to any small deviations in displacement direction. To
avoid this experimentally uncontrollable behavior we work with the non-central part of the LIL
interference pattern; an exception was made for patterns in Figs. 6(g)–6(i) to demonstrate clearly
their hyperbolic forms.
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The considered depth modulation method can be easily adopted for a wide range of grating
periods. This flexibility is demonstrated in Figs. 7(a)–7(e), where subwavelength variable depth
gratings with 300 nm period were fabricated. The diffracted light has a different color in
comparison with Fig. 6 because of the significantly different period, however, the moiré patterns
with large macroscopic dimensions are still visible.

Fig. 7. Photographs of fabricated 1D gratings with moiré patterns of elliptical (a)-(c)
and straight (d)-(e) forms. Red schemes on the top show the method of sample shift in
corresponding columns; (f) AFM measurements of grating depth along the white dashed
line M, denoted on sample (b); Black curves on all sample surfaces correspond to zero-depth
regions without light diffraction. Grating periodΛ=300 nm, pitches are oriented horizontally
as depicted in schemes above the images.

It was noted in Section 2.2 that our rotary stage precision is limited to 1′. This is larger than
the values for ∆θ given in Figs. 6(d)–6(f) and Figs. 7(d)–7(e). This is due to the possibility to
perform sub-scale rotations with the manual stage, just without a guaranteed control over the
angle. The angles ∆θ were calculated a posteriori after gratings fabrication using the formula
Λs = ΛLIL/2 sin (∆θ/2) (see Section 3.3.2) and measuring the distance between straight moiré
lines Λs.

3.2.2. Structural color in variable depth gratings

Adiabatic modulations of the grating depth due to the moiré effect allow observing the optical
response from different depth regions by a collimated light beam without using a microscope.
It simplifies spectral measurement setups and can be used for example in studies of plasmonic
effects in a symmetric insulator-metal-insulator (IMI) structure based on variable depth gratings
[29]. In this section the same IMI geometry is used to study structurally induced colors in
different depth regions, see Fig. 8. As a basic diffractive structure the variable depth grating
from Fig. 7(b) with an average thickness of 200 nm and a period of 300 nm was used. It was
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transformed into an IMI-structure as described in Section 3.1. As we have shown in [29], this type
of structures supports visible band plasmonic and waveguide modes with coupling efficiencies
that are strongly dependent on the incident light polarization and grating depth. Consequently,
a noticeable structural color variations should exist, which is confirmed by photographs of the
fabricated IMI sample in white light transmission in Fig. 8.

Fig. 8. (a)-(f) Photographs of 1D variable depth grating-based IMI structure in transmission
at 2 different incident angles and 3 polarization states. The diffraction grating from Fig. 7(b)
was used as the basic dielectric microstructure. The red parallel lines and orange arrows on
the top of each column denote the grating grooves orientation and incident light polarization,
respectively. Grating period Λ=300 nm. The sample turns around the horizontal axis M
denoted in (b), which is the same line as in Fig. 7(b). A polarizer is installed between the
sample and a camera. (g) Numerical calculations of visible band TE-transmission at normal
and 20◦ incidence for a resist/aluminum/resist model structure sketched on the left with layer
thicknesses h1=200 nm, h2=20 nm, h3=690 nm and aluminum grating depth 150 nm.

All the photographs demonstrate the influence of different grating depths on coloration. It can
be seen that an unpolarized transmission in Fig. 8(a) and Fig. 8(b) affects predominantly the color
intensity (green at normal incidence and red/pink at 20◦), whereas in the polarized transmission
Figs. 8(c)-(f) color changes are also prominent, shown for example by the green/red gradient
in Fig. 8(c). The structures with such noticeable color effects can be used in optical protection
elements and for decoration purposes. Systematic explanation of the colors is beyond the scope
of this article, but it can be stated that the resist/aluminum/resist model structure sketched in
Fig. 8(g), with a geometry close to experimental one, indeed demonstrates a wavelength shift
from green to blue for its maximum transmission as well as the region of experimental sample in
Figs. 8(c)–8(d) in dashed circles with an intermediate grating depth 150 nm. The transmission
spectra in Fig. 8(g) for this depth were calculated using a rigorous Chandezon method [36,37].

3.3. Moiré patterns generated by four-exposure LIL technique

An evident extension of the proposed moiré generation method is the use of more than two LIL
exposures to combine any type of sample displacement described above and create complex
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two-dimensional nanostructures. However, without loss of generality, we consider in this
subsection only rotations as they produce straight moiré lines, which are often very interesting
from a practical point of view.

3.3.1. Macroscopic moiré patterns

The sample rotation by a small angle between LIL exposures creates macroscopic grating depth
modulations visible by naked eye (see Figs. 6(d)–6(f) and Figs. 7(d)–7(e)). Introducing additional
exposures leads to 2D diffraction gratings with a complex topography, where the grating periods
and spatial moiré frequencies (microscopic and macroscopic topography variations, respectively)
can be adjusted independently. For example, Fig. 9(b) is a 2D rectangular dielectric 1 µm grating
fabricated by 4 equal LIL exposures with sample orientations depicted in Fig. 9(a), where the
small rotations between the two upper and two bottom orientations are ∆θ ≈ 1′. The same LIL
technique was used in Fig. 9(c), but the first two exposures were adjusted here for a period of
600 nm and the last two for 1 µm. For both of those 2D structures moiré patterns are visible by
naked eye as dark straight lines organising a 2D macroscopic mesh. This mesh causes adiabatic
changes in the amplitude of the vertical and horizontal microscopic undulations with periods
1 µm and 600 nm, thus forming microscopic regions of pure 1D vertical, horizontal and all
possible intermediate 2D gratings, as shown in the SEM images in Figs. 9(d)–9(f).

Fig. 9. (a) Principle of 4-exposure LIL with sample rotations used for the fabrication of
2D gratings with 2D moiré patterns presented in (b) and (c) with small rotation angles
∆θ ≈ 1′. Grating pitches are oriented as depicted by insets in the top left corners of (b) and
(c). Periods of vertical and horizontal grating grooves are: (b) 1 µm and 1 µm, (c) 600 nm
and 1 µm respectively. Black lines on sample surfaces correspond to zero-depth regions
without light diffraction. (d)-(f) SEM images of the sample (c) at microscopic scale for
different surface regions, demonstrating the variety of topographies in one single sample.

3.3.2. Microscopic moiré patterns and quasicrystals

Previous sections were devoted to large moiré patterns of macroscopic size. Such patterns
cause adiabatic change of grating profile, mainly grating depth, and can be utilized in diffractive
optically variable image devices (DOVIDs) for anticounterfeiting measures, plasmonic studies
or getting structurally induced colors (see Section 3.2.2). As it was discussed in Section 3.2.1,
the spatial distance between the moiré lines is increasing with a decreasing of the sample shift
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between LIL exposures, which was used to obtain depth variation patterns visible by naked eye.
In contrast, the period of depth modulations generated by large sample shifts can be comparable
to the microscopic grating period giving rise to new interesting applications and diffraction
systems like 2D quasicrystals.
Using both the exact calculations and the theoretical model proposed in the appendix it can

be shown that such high frequency grating envelopes cannot be generated by translation-only
displacements. We did not find practically feasible combinations of translations and rotations
for curvilinear microscopic moiré patterns so far, and thus in this section only rotations are
considered.

The same 4-exposure LIL technique as in Section 3.3.1 "Macroscopic moiré patterns" is used,
but with much larger rotation angles ∆θ > 1◦. AFM images in Figs. 10(a)–10(c) demonstrate how
the vertical and horizontal moiré lines approach each other with increasing values of ∆θ from 5◦
to 20◦ and correspondingly decreasing periods of the superlattice ofΛs = ΛLIL/2 sin (∆θ/2) from
6.8 µm to 1.7 µm, whereΛLIL = 600 nm is the period of LIL setup interference field. The resulting
topography is a superposition of two 2D gratings: the basic grating ΛLIL and the superlattice
Λs. The period ΛLIL = 600 nm is less than a laser wavelength λ = 633 nm used for diffraction
photographs in Figs. 10(d)–10(f), thus the basic structure supports zero order transmission only.
However, the bright diffraction spots around the central one exist in these images due to the
diffraction on the superlattice Λs > λ. We tried to keep the size of the image unchanged in
Figs. 10(d)–10(f) by varying the distances a1-a3 to the screen. Consequently, as these distances
decrease from Fig. 10(d) to Fig. 10(f), diffraction angles increase in correspondence with the
decreasing size of superlattice cells.

Fig. 10. (a)-(c) AFM images of 2D hierarchical gratings, fabricated by 4-exposure LIL
technique with sample rotations. Angles ∆θ are big enough to generate depth envelopes of
microscopic size comparable to the LIL setup period of 600 nm. The superlattice periods
are Λs=6.8 µm, 2.9 µm and 1.7 µm for (a), (b) and (c) correspondingly; (d)-(f) Photographs
of 2D diffraction patterns given by corresponding samples. Laser wavelength λ=633 nm is
larger than the LIL setup period Λ=600 nm. The non-zero diffraction angles increase due to
the decreasing superlattice period from (a) to (c), and consequently the distance between the
sample and the screen decreases from a1 to a3 in order to obtain an equally sized diffraction
pattern.

The arbitrariness of ∆θ value means repetitions of Λs (∆θ) and ΛLIL will not lead to a common
period and, consequently, a quasicrystal pattern will be formed. This quasicrystallinity becomes
visible at the small Λs limit in Fig. 10(c): we can notice here that the number of clearly
distinguishable ΛLIL-periodic maxima varies in different superlattice cells, and additionally
their positioning shows perturbations. In the diffraction patterns this quasicrystallinity causes a
complex form of superlattice non-zero orders. However, in case of small enough ∆θ (∼ 1’ and
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less) the size of the superlattice cells Λs � ΛLIL can exceed the diameter of the light beam, and
we return to macroscopic moiré patterns which modulate the grating depth adiabatically.

In this section we have shown that some hierarchical 2D structures intensively studied in recent
years can be considered as a limiting case of moiré-based geometries.

4. Conclusion

To conclude, this paper demonstrates a novel LIL-based approach for generation of macroscopic
visible by naked eye moiré patterns in 1D and 2D diffraction structures. The method yields
gratings with adiabatically varying depth, where the envelope size can be easily tuned in a wide
range. The wavefront curvature of point laser sources makes it possible to relax the requirements
imposed on LIL setups for apodized structures and creates inherently 2D depth distributions
even for linear gratings. We demonstrated structural color effects in transmission of apodized
metallic 1D grating and discussed the connection between macroscopic and microscopic moiré
patterns and quasicrystals. The proposed experimental approach consists only of a simple and
cheap modification of a standard, 2 source LIL setup and requires neither changing the number of
light sources nor their positions, while offering many new degrees of freedom in grating design.
It can thus be efficiently used in fabrication of optical security elements, structurally induced
colors, systematic study of depth-dependent effects and as an intermediate step in synthesis of
sophisticated optical devices.

Appendix

In this Appendix we will consider the derivation of Eq. (2) and its solution in analytic and
graphical forms. A single LIL two-beam exposure creates a 1D periodical distribution of fringes.
More precisely, these fringes are a family of hyperbolae with a weak curvature, see Fig. 2(a).
The local coordinate system Oxyz has an origin point O in the sample center and the coordinate
plane xOz coincides with a resist surface. Let us define an in-plane sample displacement vector
between two exposures as s = (sx, 0,sz)

T . The two particular cases s ≡ sx and s ≡ sz are presented
in Figs. 2(b) and 2(c), respectively. For the ease of theoretical consideration it is convenient
to have the moiré pattern symmetry center at the center O of a rectangular sample. To get this
we should shift the sample along a vector −s/2 and +s/2 from its initial symmetrical position
showed in Fig. 2(a) before the first and the second LIL exposure, respectively.

The optical path difference between left and right beams in any point (x, z) on the resist surface
normalized to laser wavelength λ is:

∆i,sx,sz (x, z) =
1
λ

√
(x + D/2 ∓ sx/2)2 + (z ∓ sz/2)2 + H2

−
1
λ

√
(x − D/2 ∓ sx/2)2 + (z ∓ sz/2)2 + H2,

(3)

for the first (i=1) and second (i=2) LIL exposure, respectively; D is a distance between two
coherent point light sources and H is a distance to sample, see Fig. 2(a). The total intensity
distribution over the resist surface after two exposures is:

I (r) = I0 sin [2π∆1 (r)] + I0 sin [2π∆2 (r)] + 2I0
= 2I0 sin [π (∆1 + ∆2)] cos [π (∆1 − ∆2)] + 2I0

(4)

The cosine on the right of Eq. (4) describes a low spatial frequency envelope, whereas the sine
gives a high-frequency surface modulation almost identical to the single LIL exposure. Regions
of maximum envelope values are determined as cos [π (∆1 − ∆2)] = 1, which gives an equation
of moiré lines:

∆ ≡ ∆1,sx,sz − ∆2,sx,sz = 2k, (5)
with a number k ∈ Z indicating a specific moiré line in the family.
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In order to understand better the structure of the left side of this equation we approximate it
using a Taylor decomposition in the limit |x|, |z|, |sx |, |sz | �

√
D2 + 4H2:

∆ ≈ C00sx + C11xzsz + C20x2sx + C02z2sx = 2k, (6)

where the constants
C00 = −

2D
λ
√

D2 + 4H2

C11 =
8D

λ
(
D2 + 4H2)3/2

C20 =
48DH2

λ
(
D2 + 4H2)5/2

C02 =
4D

λ
(
D2 + 4H2)3/2

(7)

depend only on the particular LIL setup (see Fig. 2(a)). Equation (6) clearly shows that in
a physically correct limit of a small sample |x|, |z|, |sx |, |sz | �

√
D2 + 4H2 moiré patterns are

controlled by a quadratic form(
x z

) ©«
C20sx

1
2C11sz

1
2C11sz C02sx

ª®¬ ©«
x

z
ª®¬ = 2k − C00sx (8)

which in particular explains elliptic and hyperbolic moiré forms for strictly horizontal (sz ≡ 0,
Fig. 2(b)) and strictly vertical (sx ≡ 0, Fig. 2(c)) sample displacement, respectively. In a general
case sxsz , 0 Eq. (8) is also valid and results in moiré patterns in the form of elongated ellipses
and hyperbolae. In order to better explain and visualize these intermediate patterns we propose a
graphical solution of Eq. (8).
Let us modify the matrix in Eq. (8):

©«
C20sx

1
2C11sz

1
2C11sz C02sx

ª®¬ = qs ©«
t cos θ sin θ

sin θ cos θ
ª®¬ ≡ qsB, (9)

where q = 4D/
(
D2 + 4H2)3/2 λ, t = 12H2/(D2 + 4H2), s = |s| and θ is an angle between the

sample displacement vector s and axis Ox (see Fig. 4). The principal axis theorem states that the
left part of Eq. (8) has a diagonal form in an orthonormal eigenbasis (V1,V2):(

u v
) ©«
β1 0

0 β2

ª®¬ ©«
u

v
ª®¬ = 2k − C00sx

qs
≡ Q, (10)

where
(
x z

)T
= (V1,V2)

(
u v

)T
, and eigenvectors correspond to matrix B. The sign of

eigenvalues β1 and β2 defines the type of moiré patterns. Our aim is to find graphically all
experimentally achievable moiré shapes. We found a possible geometrical interpretation of the
moiré lines as cross-sections of a one-sheet hyperboloid with different planes. In the following
we explain this approach.

Let us define in some coordinates {ζ1, ζ2, ζ3} the one-sheet hyperboloid:(
ς1 ς2 ς3

)
A

(
ς1 ς2 ς3

)T
= 1 (11)

defined by a diagonal matrix A ≡ diag (a, b,−c) with elements a = c = C20/C02, b = 1. This
geometrical object depends on the LIL setup parameters only (D and H). Another object that
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Fig. 11. Flowchart representing the algorithm for graphical visualization of all exper-
imentally possible moiré shapes as a cross-section of a one-sheet hyperboloid with a
plane.

depends additionally on the sample displacement is a plane, which should intersect the hyperboloid
and forms a moiré line of specific shape via the cross-section. This plane we define by the
following parametrization: ©«

ς1

ς2

ς3

ª®®®®¬
= un + vm + p, (12)

where the vector n ≡
©«
1

0

0

ª®®®®¬
is parallel to Oς1 axis, m ≡

©«
0

cos γ

sin γ

ª®®®®¬
lies in the ς2-ς3 plane and γ

is the plane inclination angle. The radius-vector p ≡
©«

0

p2

p3

ª®®®®¬
defines the origin of the local plane

coordinate system u, v.
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Mathematically the cross-section of the hyperboloid with the plane can be found as a solution
of a system of equations Eqs. (11)–(12). After substitution of Eq. (12) into Eq. (11) we get the
expression

(u v) ©«
1/a2 0

0 cos2 γ/b2 − sin2 γ/c2
ª®¬ ©«

u

v
ª®¬ = 1 −

p22
b2
+

p23
c2

(13)

with a constraint on the radius-vector p2 cos γ/b2 = p3 sin γ/c2 to eliminate the linear terms
and put the symmetry center in origin. The solution of this equation should be geometrically
similar with a moiré line defined by Eq. (10) at properly chosen plane inclination angles γ and
radius-vectors p.
One can verify that the so-defined cross-section of the plane with the hyperboloid yields all

practically achievable moiré lines described by Eq. (10). However, the γ, p parametrization with
the only constraint p2 cos γ/b2 = p3 sin γ/c2 is excessive, because moiré patterns of identical
form (and different size) can be achieved using for example different length |p|. We are interested
in graphical visualization of shapes only, for which the specific choice of parameters γ and p for
every moiré motif is presented in Fig. 11.
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