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Rubik Gaussian-based patterns for dynamic texture
classification

Thanh Tuan Nguyen and Thanh Phuong Nguyen and Frédéric Bouchara *

Abstract

Illumination, noise, and changes of environments, scales negatively
impact on encoding chaotic motions for dynamic texture (DT) rep-
resentation. This paper proposes a new method to overcome those
issues by addressing the following novel concepts. First, different
Gaussian-based kernels are taken into account as an effective filtered
pre-processing with low computational cost to point out robust and
invariant features. Second, a discriminative operator, named Local
Rubik-based Pattern (LRP), is introduced to adequately capture both
shape and motion cues of DTs by proposing a new concept of com-
plemented components together with an effective encoding method.
In addition, it also addresses a novel thresholding to take into ac-
count rich spatio-temporal relationships extracted from a new model
of neighborhood supporting region. Finally, an efficient framework for
DT description is presented by exploiting operator LRP for encoding
various instances of Gaussian-based volumes in order to form a robust
descriptor against noise, changes of illumination, scale, and environ-
ment. Experiments for DT classification on benchmark datasets have
authenticated the interest of our proposal.

1 Introduction

Analysis to perceive dynamic textures (DTs), textural features “moving”
in a temporal domain, plays an important role in numerous applications of
computer vision. Due to the turbulent expansions of DT's in sequences, those
intensify challenges in video representation. Many efforts have nominated
diverse techniques to effectively characterize their complex motions for DT
recognition issue. It can be practically categorized them into the following
groups. First, for DT description in natural ways, optical-flow-based meth-
ods take into account direction and magnitude information of normal flows
for capturing chaotic motion features of DTs [1, 2]. Second, thanks to dis-
criminant power against the changes of environmental elements in video en-
coding, filter-based methods have favorable results in DT classification [3, 4].

*All authors work at Université de Toulon, Aix Marseille Université, CNRS, LIS, Mar-
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In the meanwhile, model-based methods principally exploit Linear Dynami-
cal System (LDS) [5] to model textural appearance and motions [6]. LDS’s
derivations are then extended to be in accordance with modeling DT prop-
erties, such as bag-of-words (BoW) [7], bag-of-systems (BoS) [8], and BoS
Tree [9]. Fourth, instead of using filtering techniques, geometry-based meth-
ods address fractal analysis to deal with the environmental changes, such as
Dynamic Fractal Spectrum (DFS) [10], Multi-Fractal Spectrum (MFS) [11],
Wavelet-based MFS (WMFS) [12], Spatio-Temporal Lacunarity Spectrum
(STLS) [13], and Stationary Subspace Analysis (SSA) [14]. Fifth, in terms
of learning-based methods, two kinds of techniques are frequently taken into
account for learning DT features: i) based on derivations of Convolutional
Neural Networks (CNNs) to capture deep structures of DTs [15, 16, 17],
and i) utilizing kernel sparse coding for learning dictionaries to make the
complex motions of DTs more receptive [18, 19]. Finally, local-feature-based
methods have considerable attention thanks to their performances with low
computation for DT representation. [20] nominated Local Binary Pattern
(LBP) [21] for analyzing videos in two ways: VLBP patterns, which are
structured from three consecutive frames of a sequence, and LBP-TOP pat-
terns from three orthogonal planes. After that, some works proposed various
schemes to enhance the distinguishing power by dealing with limitations of
the typical LBPs in DT encoding such as problems of rotation-invariant [22],
near-uniform regions, and sensitivity to noise [23, 24, 25, 26].

Although many efforts have been made for DT description, most of them
gain modest results due to partly the negative impacts of environmental
changes and other affected elements. Recently, the deep-learning methods
can cover those problems using deep models. However, the following re-
strictions have prevented them from deployment in real-time applications of
computer vision: a huge volume of parameters which is needed for modeling
DT features prevents an application on embedded devices, non-unique pa-
rameters are addressed for learning from all datasets [16], failure of transfer-
based learning approaches in case of extracting DT features from strange
videos [17]. In the meanwhile, the local-feature-based methods have achieved
promising results in DT recognition using simple computations contrary to
those in the deep learning techniques. In spite of that, they remain sev-
eral limitations, such as sensitivity to environmental changes: illumination,
scales, noise, and near-uniform regions. To mitigate these drawbacks, we
proposed in this paper crucial extensions of our previous work [27] to com-
pletely construct an efficient framework for DT representation. Our proposal
has the following prominent contributions:

e Analysis of Gaussian-based kernels to reduce the negative impacts

from noise and changes of environments.

e A completed model for better exploiting rich spatio-temporal relation-

ships extracted from a novel concept of supporting region.

e A novel operator LRP, constructed from complementary components,



allows to effectively capture both shape and motion cues around a
cube centered at each voxel thanks to a novel machanism of encoding
and thresholding.

e A robust descriptor is structured using a simple computation for ex-
ploiting blurred-invariant features of Gaussian-based volumes at dif-
ferent scales.

2 Related works

Extracting DT features with a simple computation, the LBP operator [21]
and its variants have formed robust descriptors with competitive perfor-
mances for DT classification task. In this section, we take a brief of them as
well as an overview of the n-dimensional Gaussian-based filtering functions
used as pre-processing steps against problems of environmental changes in
video sequences.

2.1 A brief review of LBP and its completed model

A well-known operator LBP encodes a center pixel q. of 2D gray-scale image
7 as a binary string in consideration of local relationships of q. and its
regional neighbors {p;} as follows.

LBPpr(ac) = {f(Z(p:) — Z(qe)) H! (1)

in which P means local regarding neighbors addressed by a interpolated
computation on a circle with radius R, Z(.) returns the gray-value of a
pixel, and function f(.) is defined as

ﬂwz{LtEO )

0, otherwise.

Consequently, it takes 27 diverse values to structure a histogram for textu-
ral image description. Due to the curse of dimensionality, LBP’s utilization
for real applications can be unfeasible. In practice, the LBP patterns are
often matched with two following popular mappings for dimensional reduc-
tion: w2 mapping for uniform patterns with P(P — 1) 4+ 3 bins, and riu2
for uniform rotation-invariant patterns with only P + 2 bins [21]. Other
influential mappings have been introduced to refine patterns, such as Local
Binary Count - a substitution for choosing uniform patterns [28], TAP# for
mapping topological information [29].

[30] presented a completed model of LBP (CLBP) by incorporating three
following crucial components: CLBPg that is equal to the typical LBP,
CLBP,, for capturing magnitudes of gray-level differences between a center
pixel and its neighbors with the average of those on the whole image, CLBP ¢



for measuring the gray-value divergence of a pixel versus the mean of that
on the entire image. Those components are integrated into various modes
to boost the performance.

2.2 Gaussian-based filtering functions

A Gaussian filtering is a process of convolving a Gaussian kernel on a spatial
domain. Its outcome should be agreed with the regulation of a Gaussian dis-
tribution. In general, a n-dimensional Gaussian kernel is defined as follows.

1 22+ ad . 4l
G ({g At V=~ ¢ (_ 1 2 n) 3
i) = (g - g
in which o means a pre-defined standard deviation, n denotes a number
of spatial axes ¢, = {x;}!'_; that are taken into account in the convolving
operation. Accordingly, a kernel of the Difference of Gaussian (DoG) filters
with o < ¢’ is defined as

DoGg i (¢n) = G5(en) — Gor(en) (4)

3 Proposed method

3.1 Overview

We introduce an efficient framework, as illustrated in Fig. 1, to construct
a robust DT descriptor based on extracting blurred and invariant spatio-
temporal features with forceful robustness to illumination and noise. To
this end, first, Gaussian-based kernels are taken into account in Section 3.2
for pre-processing an input video V in order to point out blurred volumes V&
with more intensity to noise and invariant sequences VP°¢ against changes of
environmental elements. Second, we introduce the notion of complemented
components in Section 3.3, inspired from [30], in order to better capture
spatio-temporal relationships than typical LBP-based variants for DT rep-
resentation such as LBP-TOP, VLBP, etc. Third, this allows us to propose
a novel operator LRP in Section 3.4 based on the concept of neighborhood
configuration considering local relationships between a voxel and its neigh-
bors interpolated from 6 sides and 3 orthogonal plane-images of a cube.
From now on, we call it a rubik cube because the neighborhood supporting
region has a similar shape to a rubik cube (see Fig. 2(b)). In addition, it is
somewhat homonym with RUBIG features presented in Section 3.5. Taking
advantage of beneficial properties of VLBP, LBP-TOP, and CLBP allows
LRP to effectively capture spatio-temporal features in concern with a full
space investigation. We then introduce a discriminative descriptor, namely
RUBIG (Rubik Blurred-Invariant Gaussian features), which is formed by
utilizing LRP for capturing space-completed features in different scales of
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Figure 1: Illustration of proposed framework for DT representation.

Gaussian-based filtered volumes (see Section 3.5). Finally, Section 3.6 dis-
cusses a computational analysis of LBP-based models for DT representation.

3.2 Gaussian-based filtering

Filter-bank approach, which has been early applied for texture analysis since
years of 90s [31] , was also considered for DT representation in recent works
[32, 3, 33]. Moreover, filter-bank and LBP-based approaches have been
also addressed together in [34] for an effective texture representation. In-
spired from this approach, we address Gaussian-based filters to overcome
well-known issues in DT description: the influence of noise, changes of envi-
ronments, scales and illumination, etc. Indeed, two complementary families
of filtering are taken into account for this purpose. First, Gaussian filters
G? are used to produce blurred volumes V& which are more robust against
noise. Second, DoG filters are addressed to figure out invariant volumes
VPG which is robust against changes of illuminations and scales. It should
be noted that Gaussian distribution has been also used in a totally different
way in [35] to simulate image texture by stationary Gaussian random fields.
We point out hereafter the following beneficial properties of our approach
inheriting from these Gaussian-based filters.

e Robustness to changes of illumination, scales, and environment: Gaussian-

based filtered volumes V£ OUCf are invariant sequences against illumina-

Y5

tion thanks to exploiting various scales of Gaussian filtering kernels. In
addition, the receptive V£ OUCf volumes, formed by two different Gaus-



sian kernels, allow to capture features with more robustness to the
major remaining problems of DT description: illumination, scale, and
environmental changes.

e Robustness to noise: Instead of extracting features from a raw video V,
its Gaussian-based filtered volumes V& allow to capture local features
with more intensity to noise. On the other hand, DoG features are
also exploited in our proposal to make descriptor more robust against
changes of environment and illumination.

o Forceful incisive elements: Well-known as an approximation of Lapla-
cian of Gaussian (LoG), V(g‘ﬁ sequences provide beneficial receptive

clues for feature encoding. Meantime, Vg volumes produce robust
blurred features for the description. Consequently, the performance
of DT recognition is enhanced thanks to these supplementary filtered
volumes (see Table 3 for their contributions).

3.3 Complemented components

Motivated by the conception of complemented components in [30, 23, 36],
three prominent components are proposed to address forceful discrimination
of local textural features by adapting the concept to the supporting region
constructed from 6 sides of a rubik cube and by introducing new concepts
of encoding and thresholding dedicated to this neighborhood configuration
for three completed components (see Equations (6), (8), (9), and (11)).
Accordingly, let q be a voxel in a video V; qy be its projection on a plane-
image f € V (see Fig. 2(a) for a graphical illustration). Figure 2(b) presents
our neighborhood supporting region which is constructed from 6 sides of a
rubik cube centered at the voxel together with 3 orthogonal planes passing
through this voxel. The first component captures the differences between the
mean gray-level center points (i.e., q, q¢) and each of {p; ¢} local neighbors
of qy as follows.

Dpry(a,qy) = {S(I(Pi,f)az(Qf)uI(Q))}f:_ol (5)

where P denotes the number of considered neighbors interpolated on a circle
of radius R, Z(.) returns the gray-scale of an image pixel, the binary function

s(.) is defined as
1,z > Y42
s(x,y,z>={ o (6)

0, otherwise.

The second conducts informative magnitudes by comparing the gray-level
differences in the first component with the average of them m; computed
for the whole textural region as follows.

Mp g (a,ar) = {h(Z(pss), Z(ay) T(a), my) b (7)



in which ¢ and function h(.) are defined in (8) and (9) respectively, A/
means the quantity of pixels {q;} in current image f.

P

g: < (Pis) Z(qjf) + I(q)> (8)

2
] 0 =0

,_.

1,0 — Y2 > ¢

h(x,y,z,t):{ ’ 2. N (9)

0, otherwise.

The third component features central differences of the mean gray-level of
the center points (i.e., q and qy) versus the average of them ¢y calculated
for the entire plane image f as follows.

Cprs(a,qr) = 9(Z(as) +Z(q) — ¢f) (10)

where g(.) is identical to Equation (2) and ¢y is computed as

cf—NZ( a;) + (@) (1)

Those components are complementary [30]. Therefore, their integra-
tion is recommended in order to improve the discriminant power. Let
DMCpra(.) be an integration € of the complemented components (i.e.,
Dprs(.), Mpr,t(.), Cpr.f(.)) subject to each voxel. For instance, DMCp ra(q,qy, ,)
computes Dpr 5, (a, Afia ) Mp.R,fi_, (a, qfi—l)’ and Cprf,_, (a, qu‘—1) based
on q’s central symmetry voxel qy, , at image f;_1 in plane XY (see Fig. 2(c)
for a sample of this computation). Those are then integrated into different
ways €2 to form space-completed patterns. Therein, Q = {p_rr/c, p/a/csete.}
where signs “.” and “,” mean operations of concatenating and jointing prob-
ability distributions of the components respectively, e.g., “p_y7/c” indicates
that a joint histogram of M(.) and C(.) is concatenated to that of D(.).

3.4 Local Rubik-based Pattern (LRP)

Based on the concept of complemented model in the previous section, we
introduce hereafter the novel LRP operator. For a video V, let a center
voxel q € V be an intersection point of orthogonal plane images f; € XY,
fj € XT, and f € YT where {XY, XT,YT} are planes of V. A rubik cube
I'" of q is addressed in consideration of the previous and posterior plane-
images of f;, fj, and fy respectively (i.e., fi—1, fi+1 for XY, fj_1, fj41 for
XT, fr—1, frs1 for YT, see Fig. 2(b) for a graphical instance). A local rubik-
based pattern for q is structured by integrating complementary components
computed on 6 sides and 3 orthogonal plane-images of rubik cube I' as
follows.

LRPro(q) = (4 [DMCprala, ay)] (12)

fer
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Figure 2: (Best viewed in color) Computing parts of our framework. (a):
A model of encoding feature for a voxel q (in red) based on its central
symmetry voxel g (in blue) on plane image f. (b): A graphical illustration
of LRP construction at voxel q. (c): A calculation of an integrated histogram
DMC(.) for voxels {q € f;} along with their symmetry points in images f;_;
and f;1 of plane XY in a video.

in which |4 denotes a concatenating function of histograms,

F = {fi—17fi7fi+17fj—lvfj)fj-f-l)fk—lafkufk-i—l}

is a set of 6 sides and 3 orthogonal plane-images of rubik cube I', qy is the
central symmetry voxel of q that is orthogonally projected on plane-image
f (see Fig. 2(a) for an instance of a projection of q).

Our LRP operator is different from LBP-based variants in several prop-

erties to improve the performance:

e LRP structures a voxel in consideration of rich spatio-temporal rela-
tionships extracted from 6 sides of the rubik cube (see Fig. 2(b)) while
other LBP-based variants mostly based on three orthogonal planes for
DT representation [24, 37].

e Discriminative information of a center voxel is embedded into encoding
side patterns against near-uniform regions.



©  (d)

Figure 3: An instance of 3D Gaussian-based filters. (a) is an input gray-
scale frame of a DT video. (b) and (c¢) are 3D smoothed frames of (a) using
o1 = 0.5 and o2 = 4 respectively. (d) denotes the 3D DoG of (b) and (c).

A

e Based on a block shape, LRP is more suitable for encoding DT videos
than LBP-based variants which are separately applied to still images
of the planes in videos.

e By addressing previous and posterior plane-images, LRP can capture
changes of a voxel in global spatio-temporal appearances. In the mean-
while, VLBP for structuring temporal appearances in plane XY, and
LBP-TOP for addressing local orthogonal patterns [20].

3.5 RUbik Blurred-Invariant Gaussian (RUBIG) features

As a derivation of the LBP-based computation, encoding rubik-based pat-
terns can be faced with sensitivity to noise and illumination problems. To
treat those, Gaussian-based filtering kernels in Equations (3) and (4) are
addressed as a pre-processing step to reduce the negative impacts of envi-
ronmental changes on DT representation. It should be noted that Gaussian
filter has been addressed together with LBP operator in [38]. However, it
employed a 2D Gaussian kernel to analyze neighborhoods at different area
scales of a pixel for texture description, while [39] utilized it for capturing
spatio-temporal features from filtered images of planes in a video. Accord-
ingly, for a video V along with pre-defined couples of standard deviations
A = {(04,0})},, a series of volumes of blurred Gaussian features V< and
the difference of Gaussians V£ Og are computed as follows. Figure 3 shows

several samples of this filtering.
VS = GI(n) * V, and V2% = [DoGZ. ., (on)| # V (13)

Wy

where “#” is a convolving operator, and o; < 0. We then utilize the pro-

posed LRP operator for each filtered volume to capture RUbik Blurred-

Invariant Gaussian (RUBIG) features for DT description (see Fig. 1 for

a graphical illustration of this construction). The obtained histograms are
then normalized and concatenated to form a discriminative descriptor.

G G

RUBIGroa(V) = [LRPRQ(VUI.), LRPF,Q(Vg?ag)}Zl (14)

Our RUBIG is based on two important properties to boost its perfor-

mance compared to that of V-BIG [27] (see Table 3 for a specific performing



comparison): i) RUBIG is enriched by rich spatio-temporal features thanks
to our novel, discriminative operator LRP. #7) RUBIG can be better resistant
to the illumination and noise since its blurred-invariant features are encoded
from multi-scale Gaussian-based volumes. Besides the beneficial properties
inheriting from Gaussian-based filtering (see Section 3.2), our RUBIG has
also following properties.

o Multi-scale and rich spatio-temporal features: RUBIG is concerned
with analysis of rich spatio-temporal features to form an effective de-
scriptor that is more discriminative than CLBP features of V-BIG.
Moreover, it is enriched by robust clues based on various scales of
Gaussian kernels taken into account the filtering, while V-BIG is lack
of multi-scale analysis due to just a single-scale involved in.

e Informative vozel discrimination: Shape and motion cues are jointly
structured thanks to voxels in a DT video enriched by discriminative
information with 3D Gaussian kernels. In the meanwhile, FoSIG [39]
just captures spatio-temporal features of voxels on 2D Gaussian filtered
images of the planes in the video.

3.6 Complexity of RUBIG and other LBP-based descriptors

Typically, the complexity of structuring our RUBIG is as simple as that
of the LBP-based variants for DT representation. Indeed, for a video V
with H x W x T dimension, let Qrgp.-Top = O(P X H x W x T) be
the complexity of computing the basic LBP-TOP patterns for encoding
V based on three orthogonal planes {XY, XT,YT}, where P is the num-
ber of considered neighbors (refer to [20] for more detail). It can be con-
duced that the complexities of calculating descriptors FoSIG and V-BIG are
Qrosic = Qv.Bic ~ 3 X Qrep-Top + Q¢ since they are based on 3 CLBP’s
components that are computed independently (refer to [30] for more de-
tail). Therein, Q¢ denotes the computational cost of Gaussian-based filter-
ings in general. Also, our LRP is formed by independent computations of
its components (i.e., D, M, and C (see Section 3.3)) that are based on 6
sides and 3 orthogonal plane-images of a rubik cube (see Section 3.4), i.e.,
QuLrp ~ 9xQrpp-Top. Therefore, it can be deduced from Equation (14) that
the RUBIG’s complexity is estimated as Qrusic = 2 X m X (QLrp + Q¢)-
Due to the much smaller value of parameter m compared to the others, as
well as the separable property of Gaussian filtering, they can be ignored.
Consequently, Qrupic =~ O(P x H x W x T). In addition, our Qrupic is
also the same order as that of other LBP-based descriptors: CSAP-TOP
[37], CVLBC [36], CVLBP [23], VLBP [20], etc. (refer to these works for
detail). In terms of processing time, we have implemented some of them
and made a comparison with ours (see Table 1). It is noteworthy that raw
MATLAB codes of these implementations are run on a 64-bit Linux desktop
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Table 1: Comparison of processing time of encoding a video with 50 x 50 x 50
dimension in DynTex++ dataset.

Descriptor {(o,0")} | {(P, R)} | Mapping | Runtime (s)
VLBP [20] T [{& Dy - ~ 0.22
LBP-TOP [20] C {6 D) w2 ~ 0.15
CLSP-TOP [40] - {(8,1)} | riu2 ~ 0.27
CSAP-TOP [37] - {(8,1)} | riu2 ~ 0.50
FoSIG [39] {(0.5,6)}| {(8,1)} | riu2 ~ 0.37
V-BIG [27] {(0.5,6)}] {(8,1)} | riu2 ~ 0.35
Our RUBIG {(0.5,6)}] {(8,1)} | riu2 ~ 0.56
Note: “-” means “not available”.

of CPU Core i7 3.4GHz 16G RAM.

4 Experiments

In this section, our proposal is judged for DT classification task on various
benchmark datasets (UCLA, DynTex, and DynTex++). We address a lin-
ear multi-class SVM algorithm of LIBLINEAR library [41] with the default
settings for classifying DTs in comparison with state-of-the-art results.

4.1 Experimental settings

The 3-dimensional Gaussian-based kernels are exploited to capture volumes
of blurred-invariant features, where the kernel width of each axis is tra-
ditionally truncated to [—30,30] (o is the standard deviation of Gaussian
distribution) for optimally capturing the energy of Gaussian distribution.
We then consider a set of couples of standard deviations A = {(¢;,0})}7*, =
{(0.5,6), (0.75,5), (1,4)} (i.e., m = 3) in order to compute DoG together
with Gaussian-filtered outcomes. In brief, for each couple (o;,0}), two fol-
lowing outcomes VUGZ., and Vg_ 009 are produced and then are encoded by our
LRP operator in the next stepf It should be noted that the large scale ra-
tios between two scales of each couple of standard deviations are taken into
account. Our idea is to highlight the invariant features of DoG outcome ex-
tracted from two different scales of Gaussian filtering. Empirically, the more
two standard deviations are different, the more DoG outcome contains rich,
discriminative, and robust features for LRP operator. Therefore, this con-
cept justifies the large scale ratios of standard deviations between two scales
in our model. For DT representation, LRP features are extracted from the
filtered volumes by utilizing parameters of riu2 mapping, {(P, R)} = {(8,1)}

11



for single-scale relationships, and {(8, 1), (8,2)} for multi-scale in further lo-
cal regions. The achieved components are integrated in two investigations
of @ = {p amc, pmjc} to form corresponding RUBIG descriptors with
dimensions of 540 and 3600 bins respectively.

4.2 Datasets and protocols

In this section, benchmark datasets and corresponding protocols for experi-
ments of DT classification are detailed. A brief of those is then indicated in
Table 2 for at a glance.

UCLA dataset includes 200 videos with dimension of 110 x 160 x 75,
which are categorized into 50 groups of DT sequences [5]. The first line
in Fig. 4 shows some samples of those. The following sub-datasets are
usually addressed and rearranged for evaluations of DT classification. 50-
class breakdown uses two following protocols to recognize DT's on the original
50 groups: leave-one-out (LOO) [3, 42] and 4-fold cross validation [40, 16].
Two more challenging breakdowns are constructed by composing from the
original 50 categories. 9-class includes “plants” (108), “sea” (12), “fire”
(8), “flowers” (12), “fountains” (20), “smoke” (4), “water” (12), “boiling
water” (8), and “waterfall’ (16), where the numbers of videos are indicated
in parentheses. Due to the dominant quantity of the “plants”, it is removed
to form 8-class with more challenging [43]. The protocol for two schemes
is similar to that in [44, 40], where a half of samples in each category is
randomly picked out for testing and the rest for training. The final rates
are reported from 20 runtimes.

DynTex dataset consists of over 650 high-resolution DT videos in AVI
format which are captured in various circumstances of environment [45].
Following settings in [46, 47|, the version of sequences with 352 x 288 x 250
dimension is addressed for our evaluations of DT classification using the
LOO protocol (see the second line in Fig. 4 for some samples). There are
4 challenging subsets rearranged from the original as follows. DynTex35
includes 10 classes formed by splitting from 35 videos as follows. Eight
non-overlapping sub-videos are obtained by randomly clipping each video
at separating points along X, Y, and T axes, but not at the half of them.
Two more are resulted using another cutting operation according to its T
axis [20, 24]. Three remaining challenges are composed as follows. Alpha
consists of 60 DTs divided into three groups: “trees’, “sea’, and “grass’
with 20 samples for each. Beta contains 162 videos in 10 labels with various
numbers of samples for each of them. Lastly, Gamma includes 10 classes of
264 DT videos with different quantities.

DynTex++ dataset is constructed from 345 raw DynTex videos, in
which each of them is pre-processed to capture major chaotic DTs and set-
tled in 50 x 50 x 50 dimension [44]. The obtained DTs (3600 sequences)
are then divided into 36 classes with 100 samples for each of them. For

12



Table 2: A brief review of DT datasets’ properties.

Dataset Sub-dataset || # Videos Resolution | #Classes | Protocol
50-class 200 110 x 160 x 75 50|LOO and 4fold
UCLA 9-class 200 110 x 160 x 75 9150%/50%
8-class 92 110 x 160 x 75 8150%,/50%
DynTex35 350 | different dimensions 10|LOO
DynTex Alpha 60 352 x 288 x 250 3|LOO
Beta 162 352 x 288 x 250 10| LOO
Gamma 264 352 x 288 x 250 10| LOO
DynTex++ 3600 50 x 50 x 50 36 [50%/50%

Note: LOO and 4fold are leave-one-out and four cross-fold validation respectively. 50%/50%
denotes a protocol of taking randomly 50% samples for training and the remain (50%) for testing.

‘?

3o e SR B i
foliage fountain

Figure 4: Sample videos of UCLA (above row) and DynTex (bottom row).

evaluations, a half of items is randomly selected from each class for testing
and the rest for training. The final rate is reported from the average of 10
repetitions [3].

4.3 Experimental results

Specific experimental results of our descriptor RUBIG on benchmark datasets
are shown in Table 4 with the highest rates in bold. It should be noted that
only results of the setting of p /¢ are reported due to its high performance.
As expected, it can be verified from Tables 3, 4 that RUBIG outperforms
compared to those of FoSIG and V-BIG thanks to the crucial contributions
of the proposed operator LRP utilized for capturing rich spatio-temporal
patterns in the Gaussian-based filtered volumes. The experiments have also
validated that RUBIG’s performance becomes more “stable” in considera-
tion of various scales of Gaussian-based kernels (see Table 4). In general,
our framework performs very well in comparison with the state-of-the-art
approaches, including deep-learning-based methods in several circumstances
(see Tables 5, 6). Due to these recognition rates on most of DT datasets,
the settings of p/y/c and {(0.5,6),(0.75,5),(1,4)} for the multi-scale LRP
encoding are addressed for comparison (see Table 4). Hereinafter, we detail
evaluations of RUBIG’s performances.

UCLA dataset: It can be verified from Table 4 that RUBIG obtains
very good results on DT recognition. In comparison with the state-of-the-
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Table 3: Comparison contributions in rates (%) on DynTex++ between
components of descriptors FoSIG, V-BIG and RUBIG.

(0,0") = (0.5,6) FoSIGgh? | V-BIGg4? | our RUBIGg?
G2Prsb 95.73 96.01 96.23
DoG2"P 93.78 94.43 95.06
G"PPP 4 DGR 95.99 96.59 96.68

Table 4: Classification rates (%) on benchmark datasets.

Dataset UCLA DynTex D
{(o3,0))},{(8,1)} 50-LOO | 50-4fold | 9-class | 8-class || Dyn35 | Alpha | Beta | Gamma ynt+
{(0.5,6)} 100 100| 98.25| 98.04| 98.57| 100| 92.59 93.18 96.68
{(0.75,5)} 100 100| 99.15| 98.48|| 98.00| 100| 92.59| 92.42| 96.22
{(1,4)} 100 100 | 98.60 | 98.80| 98.29| 100| 93.83 92.80 95.94
{(0.5,6),(0.75,5)} 100 100 | 98.65| 98.26| 97.71| 100| 93.83 93.18 96.48
{(0.75,5), (1,4)} 100 100 | 98.15| 99.13| 98.86| 100| 93.21 93.18 96.66
{(0.5,6), (0.75,5), (1,4)} 100 100 | 98.50| 97.07| 97.43| 100 | 94.44 93.18 96.79
{(Ui70£)}7{(871)7(872)} H

{(0.5,6)} 100 100 | 98.90| 99.13| 99.14| 100| 93.83| 93.56 96.76
{(0.75,5)} 100 100| 99.05| 98.80| 99.43| 100| 94.44 93.18 96.64
{(1,4)} 100 100 | 98.95| 98.37| 98.57| 100 | 94.44| 93.56 96.12
{(0.5,6),(0.75,5)} 100 100| 98.95| 99.24 | 99.43 | 100 | 94.44 93.18 96.92
{(0.75,5), (1,4)} 100 100 | 98.20| 99.13|| 98.57| 100 | 94.44| 93.56 96.54
{(0.5,6), (0.75,5), (1,4)} 100 100| 99.20| 99.13|| 98.86| 100|95.68| 93.56| 97.08

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation. Dyn35
and Dyn++ are shortened for DynTex35 and DynTex++ sub-datasets respectively.

are approaches, our descriptor gains the best performance in schemes of 50
categories, 100% for both 50-LOO and 50-4fold. In the meanwhile, the deep-
learning methods are just at 99.5% for PCANet-TOP [46] and DT-CNN
[16] (see Table 5). In terms of two remaining breakdowns, with the set-
tings for comparison, RUBIG achieves rates of 99.2% for 9-class and 99.13%
for 8-class, the highest compared to the LBP-based methods, including two
methods FoSIG and V-BIG utilizing 2D /3D Gaussian kernels against illumi-
nation and noise. It should be noted that ours are also better than those of
DT-CNN on these schemes. In the meanwhile, STRF N-jet [33] has nearly
the same our performances; FD-MAP [2] and DNGP [4] obtain a little higher
than ours but not on 50 categories. More evaluations of confusion matrices
and F-measure on these schemes are detailed in a supplementary material
of this work.

DynTex dataset: The proposed descriptor achieves the highest rate of
99.43% using the settings of Gaussian-based kernels {(0.75,5)} and {(0.5,6), (0.75,5)}
along with multi-local-region relationships {(8,1), (8,2)} (see Table 4). With
the settings for comparison, it just gains 98.86%, a little lower than V-BIG
(99.43%), FoSIG (99.14%), MEWLSP [48] (99.71%) but those methods are
either not validated (MEWLSP) or not better than ours in other datasets
(V-BIG, FoSIG) (see Tables 5, 6). In respect of DT classification on Alpha,
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Table 5: Comparison of recognition rates (%) on UCLA.

Group || Encoding method 50-LOO | 50-4fold | 9-class | 8-class
A FDT [2] 98.50 99.00 | 97.70 | 99.35
FD-MAP [2] 99.50 99.00 | 99.35| 99.57

B AR-LDS [5] 89.90N - - -
Chaotic vector [7] - - | 85.10N | 85.00N
3D-OTF [11] - 87.10| 97.23| 99.50

C DFS [43] - 100 | 97.50 | 99.20
STLS [13] - 99.50 | 97.40| 99.50
MBSIF-TOP [3] 99.50N - - -

D DNGP 4] - -1 99.60| 99.40
STRF N-jet [33] - 100 | 99.20 | 99.00
VLBP [20] - 89.50" | 96.30" | 91.96™
LBP-TOP [20] - 94.50N | 96.00N | 93.67N
CVLBP [23] -| 93.00% | 96.90 | 95.65"
HLBP [24] 95.00N | 95.00™ | 98.35N | 97.50"
CLSP-TOP [40] 99.00N | 99.00™ | 98.60~ | 97.72N

E MEWLSP [48] 96.50N | 96.50™ | 98.55N | 98.04N
WLBPC [42] - 96.50N | 97.17% | 97.61N
CVLBC [36] 98.50N | 99.00™ | 99.20™ | 99.02~
CSAP-TOP [37] 99.50 99.50 | 96.80| 95.98
FoSIG [39] 99.50 100 | 98.95| 98.59
V-BIG [27] 99.50 99.50 | 97.95| 97.50

Our RUBIGZ%‘;?U’(&Q)}{(0.5., 6), (0.75,5), (1,4)} 100 100 | 99.20| 99.13
DL-PEGASOS [44] - 97.50 | 95.60 -
PI-LBP+super hist [49] - 100N | 98.20N -

r Orthogonal Tensor DL [18] - 99.80 | 98.20 | 99.50
PCANet-TOP [46] 99.50" - - -
DT-CNN-AlexNet [16] -1 99.50" | 98.05" | 98.48"
DT-CNN-GoogleNet [16] -1 99.50" | 98.35" | 99.02"

Note: “-” means “not available”. “*” indicates result using deep learning algorithms. “N” is rate with 1-NN

classifier. 50-Loo and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold val-
idation respectively. Group A denotes optical-flow-based methods, B: model-based, C: geometry-based, D: filter-
based, E: local-feature-based, F: learning-based.

Beta, and Gamma, it can be seen from Table 6 that RUBIG outperforms
the same as V-BIG, DT-CNN, and D3 [17] with the best rate of 100% on
subset Alpha. It also obtains significant rates of 95.68% on Beta, 93.56%
on Gamma while only 92.59%, 92.42% for FoSIG, and 95.06%, 94.32% for
V-BIG respectively. In comparison with other approaches, STRF N-jet [33]
obtains significant results, especially with rate of 95.5% on Gamma, about
2% better than ours (see Table 6). In the meanwhile, the deep-learning
methods (i.e., DT-CNN and D3) achieve the best performances. However,
they take a long time for learning DT features along with complicated algo-
rithms involved with.

DynTex++ dataset: It can be observed from Table 6 that with the
comparing settings, RUBIG obtains the highest rate of 97.08% compared to
most of the existing methods, including Gaussian-based approaches FoSIG
and V-BIG. Ours is the same as filter-based method MBSIF-TOP (97.12%),
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Table 6: Comparison of rates (%) on DynTex and DynTex++.

Group || Encoding method Dyn35 | Alpha | Beta | Gamma || Dyn++
A FDT [2] 98.86 | 98.33| 93.21 91.67 95.31
FD-MAP [2] 98.86 | 98.33| 92.59 91.67 95.69
3D-OTF [11] 96.70 | 83.61| 73.22 72.53 89.17

C DFS [43] 97.16| 85.24| 76.93 74.82 91.70
2D+T [47] - 85.00| 67.00 63.00 -
STLS [13] 98.20| 89.40| 80.80 79.80 94.50
MBSIF-TOP [3] 98.61N | 90.00~ | 90.70N | 91.30N 97.12N

D ||DNGP [4] - - - | 9380
STRF N-jet [33] - 100 | 95.10 95.50 -
VLBP [20] 81.14N - - - || 94.98N
LBP-TOP [20] 92.45% | 98.33 | 88.89| 84.85N || 94.05%
DDLBP with MJMI [50] - - - - 95.80
CVLBP [23] 85.14% - - - -
HLBP [24] 98.57N - - - || 96.28~

E CLSP-TOP [40] 98.29% | 95.00™ [ 91.98N | 91.29N || 95.50N
MEWLSP [48] 99.71% - - | 98.4s¥
WLBPC [42] - - - | 95017
CVLBC [36] 98.86N - - - 91.31™
CSAP-TOP [37] 100 | 96.67| 92.59 90.53 -
FoSIG [39] 99.14| 96.67 | 92.59 92.42 95.99
V-BIG [27] 99.43 100 | 95.06 94.32 96.65

Our RUBIGE?Z,ZU,(S,Z)}{(0'57 6),(0.75,5),(1,4)} 98.86 100 | 95.68 93.56 97.08
DL-PEGASOS [44] - - - - 63.70
PCA-cLBP/PI/PD-LBP [49] - - - - 92.40
Orthogonal Tensor DL [18] -| 87.80| 76.70 74.80 94.70
Equiangular Kernel DL [19] -| 88.80| 77.40 75.60 93.40

F st-TCoF [15] -| 100" | 100" | 98.11" -
PCANet-TOP [46] -1 96.67° | 90.74" | 89.39" -

D3 [17] -| 100" | 100" 98.11" -
DT-CNN-AlexNet [16] -| 100" | 99.38" | 99.62" 98.18"
DT-CNN-GoogleNet [16] -| 100" | 100" | 99.62" | 98.58"

Note: “” means “not available”. Superscript “*” indicates result using deep learning algorithms. “N” is rate with 1-NN

classifier. Dyn35 and Dyn++ are stood for DynTex35 and DynTex++ sub-datasets. Group A denotes optical-flow-based
methods, C: geometry-based, D: filter-based, E: local-feature-based, F: learning-based.

and just about 1% lower than DT-CNN with 98.18% for AlexNet framework
and 98.58% for GoogleNet. MEWLSP gains 98.48% but as mentioned above,
it has not been verified on challenging subsets of DynTex and not better than
our performance on UCLA.

4.4 Global discussion

e Empirically, closed values of o and ¢’ lead to reduction of performance
due to lack of differences of blurred-invariant features. For instance,
using (¢, ') = (1.5, 2), RUBIG§4 just obtains 99.5% for 50 categories
and about 98% for 9-class and 8-class breakdowns in UCLA.

e For DT recognition on simple datasets (e.g., UCLA), the setting of
“p_myc” should be exploited in practice since its performance is nearly
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the same that of “p/pr/c” but in much lower dimension, 540 bins ver-
sus 3600 for each video encoding. In fact, using this jointing prototype,
RUBIG&?’% with kernel of {(0.5,6)} obtains rates of 100% for 50 cat-
egories, 98.55% for 9-class and 98.04% for 8-class.

e For a trade-off between the dimension of descriptor and accuracy rates,
RUBIGs with two Gaussian-based filtering scales (e.g., {(0.5,6), (0.75,5)})
may be taken into account real applications due to their reasonable
performance on most of the benchmark datasets (see Table 4).

5 Conclusions

An efficient model for DT description has been introduced in this work
in which Gaussian-based filtering outcomes, computed from two different
scales, are taken into account to extract blurred-invariant features from a DT
scene. Those outputs are then addressed by a discriminative LRP operator
thanks to a novel concept of supporting region, and an effective model of
completed components. Moreover, we have presented a new mechanism of
thresholding/encoding to capture rich spatio-temporal relationships from a
rubik cube centered at each voxel in order to structure a robust descriptor
against the negative impacts of environmental changes. The experiments
for DT recognition on the benchmark datasets have validated the interest
of our proposal in comparison with the existing approaches.
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