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Abstract
The number of possible unrooted binary trees (phylogenies) increases super-exponentially with
the number of taxa. To find the Maximum Likelihood (ML) tree one has to enumerate and
evaluate all these trees. As we will see, this is computationally not feasible. Therefore, one
predominantly deploys ad hoc tree search methods that strive to find a “good” ML tree in the
hope that it will be close, either with respect to the likelihood score or the topological structure,
to the globally optimal ML tree. In this chapter we provide an overview over the most popular
and efficient ML tree search techniques.
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1 Introduction

The number of possible phylogenetic trees grows super-exponentially with the number of
taxa. In many cases such a combinatorial explosion means that the optimization problem,
that is, finding the ML tree, is what is called NP-hard in computer science.

In simple words, NP-hardness means that there does not exist any known algorithm for
solving the problem requiring polynomial runtime as a function of the input size. In our case,
the input size is the number of taxa and number of sites of the input, that is, the Multiple
Sequence Alignment (MSA) of the taxa for which we desire to infer a tree. Throughout this
chapter we will assume that the MSA is given.

Using the machinery of theoretical computer science, it has been formally proved that
finding the optimal tree for character-based tree scoring criteria such as parsimony (Day,
1987) and ML (Roch, 2006) is NP-hard. In other words, we will need to calculate the ML
score of every single possible tree to find the ML tree.

With the computer power available today, this might, at first glance not appear to be
problematic. Assume, however, that we want to infer a ML tree on a MSA with 100 taxa
which is, by current standards, only a medium-sized dataset with respect to the number of
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1.2:2 Efficient Tree Building

taxa. For 100 taxa there exist roughly 1.7× 10182 distinct unrooted phylogenies as calculated
by our TreeCounter tool that we have found helpful for teaching purposes (available at
https://github.com/stamatak/TreeCounter).

The exact number of possible unrooted binary trees for 100 taxa is:

1700458809293409622837847870503541607357725018410424900227835868363625808886
28332485131901009696411611113290250954694628264213300391989811682923929339908
722247494604289531707763671875

Further, for the sake of simplicity, assume that calculating the ML score on one tree
takes 1 second. To find the ML tree, one has to score all 1.7 × 10182 phylogenies. This
requires an overall runtime of roughly 5 × 10174 years. In turn, this corresponds to only
about the 3.8× 10164-fold age of our universe. It is important to note that, using powerful
parallel supercomputers does not help to reduce this comparatively long waiting time as
supercomputers reduce running times linearly (w.r.t., the number of processors they have) at
best, but unfortunately, not super-exponentially. Assuming that we could use a rather large
supercomputer with 1012 processors1, we would still have to wait for the 3.8× 10152-fold age
of the universe for the ML tree.

As we presumably do not want to wait for this long, we need to devise heuristic search
strategies that navigate through this enormous space of phylogenies in an “intelligent” way
and return a tree with a “good” score. As mentioned before, most of the heuristics currently
used are ad hoc strategies. In other words, they do not offer any theoretical guarantees of how
close or far away (regarding the ML score) the tree they return is from the globally optimal
tree. This is also the reason why the sloppy terminology that we often observe in empirical
evolutionary biology papers is potentially misleading. Papers often refer to “the ML tree”.
However, this is simply the best phylogeny found by the completely ad hoc heuristic search
strategy.

Given the prolegomena, one might wonder what the computational complexity of Bayesian
Inference of phylogenies might be, since it essentially also relies on repeated likelihood
evaluations on trees (see Chapter 1.4 [Lartillot 2020a]). One would assume that their
complexity must also somehow be affected by the vastness of tree space. If we simply look at
Bayes’ equation:

P (T |D) = P (T )× P (D|T )
P (D) (1)

where T is the tree, D the data, P (T ) is the prior probability and P (D|T ) the standard
phylogenetic likelihood (as used for ML inference) score of the tree. The computational
problem is hidden in P (D) that represents the marginal probability of the data which cannot
be computed exactly but needs to be approximated. An exact evaluation of this term would,
again, as for ML, require calculating the likelihood scores of all possible topologies and, in
the Bayesian setting, also for all possible remaining parameter values (e.g., branch lengths,
rates of nucleotide substitution etc.). So calculating P (D) exactly would require even longer
waiting times than for ML above. As a consequence, one would rather not opt to calculate
the posterior probability P (T |D) exactly. As a work-around, the posterior probability is
approximated via Markov-Chain Monte-Carlo (MCMC) methods. Unfortunately, these
MCMC chains are only guaranteed to converge to the true posterior distribution if they are

1 Evidently, no such supercomputer exists yet.
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run for infinity. In practice, the lack of MCMC convergence can be assessed using so-called
convergence analysis tools (e.g. Nylander et al., 2008). It can not be emphasized frequently
enough that, these methods can not be used to demonstrate that the chains have converged.
Based on the mathematical foundations of MCMC the chains will only converge to the
true posterior probability distribution if executed eternally. Convergence analysis tools can
therefore only detect lack of convergence. If there is no lack of convergence, then what they
do indicate is that the MCMC process has reached an area of apparent convergence.

In the following sections we will introduce ML tree search algorithms in a top-down fashion.
Initially, we discuss the commonalities of ML search strategies in Section 2. Subsequently
we discuss the most common mechanisms for changing tree topologies in Section 2.2 and
also cover some important implementation details (Section 2.3). In Section 3 we discuss how
search strategies use these tree change moves to find “good” trees. We also discuss why we
think that divide-and-conquer strategies for ML-based tree inference have not been successful
to date (Section 3.1) and how terraces in tree space affect tree searches (Section 3.2).

In Section 4 we discuss the computation of support values using the standard phylogenetic
bootstrap procedure and take a critical look at some recently proposed methods for obtaining
approximate support values. We conclude in Section 5 with some notes of caution and
recommendations on how to best infer a phylogeny from our point of view with a focus on
selecting the best search strategy. For the sake of clarity, we deliberately omitted other
important topics such as model selection or the selection of the most appropriate partitioning
scheme.

2 Top-Level View of Search Algorithms

Initially, we will discuss the basic components that form part of almost every ML-based tree
search algorithm. Most search strategies comprise the following two steps:

1. Construct an initial comprehensive tree that contains all taxa of the input MSA and
compute its ML score

2. Start changing this initial comprehensive topology to find a tree with a better ML score

The most widely-used tools for ML-based inference (RAxML (Stamatakis, 2014), IQ-
Tree (Nguyen et al., 2015), PHYML (Guindon et al., 2010), and GARLI (Zwickl, 2006))
implement this strategy. However, researchers have also experimented with divide and conquer
approaches where the comprehensive tree is assembled by puzzling together independently
optimized smaller subtrees. We discuss these approaches in more detail in Section 3.1.

2.1 Constructing Comprehensive Trees
There are at least three solutions to constructing a comprehensive starting tree: random
topology, neighbor-joining (NJ) or its variants such as BioNJ (Gascuel, 1997), and parsimony.
As predominantly done in Bayesian phylogenetic inference (since by definition a randomized
stochastic sampling should start at a random point), one can simply construct a complete
random starting tree. Alternatively, one might opt to infer a somewhat reasonable tree using
a simpler tree building method such as neighbor-joining (NJ). A NJ starting tree typically
has a better likelihood score than a complete random tree. On the other hand, just using
the NJ tree, might drive the subsequent tree search into a local optimum. Because of the
immense vastness of tree space that might exhibit a plethora of local optima, it is thus
desirable to implement mechanisms (usually relying on some sort of randomization) that
allow for navigating out of local optima (see Figure 8 for an example of a local optimum)

PGE



1.2:4 Efficient Tree Building

in some way. This can either be achieved by generating a distinct set of starting trees or
via a randomization step in the tree search procedure. For now, we will focus on generating
distinct starting trees. If our tool deploys complete random starting trees, obtaining a set of
n distinct starting trees is straight-forward as we simply need to generate n comprehensive
trees at random.

If we want to obtain a set of distinct starting trees with a better (i.e., non-random) initial
likelihood score than a random tree, we can deploy the so-called randomized stepwise addition
algorithm described below, using a simple criterion of our choice. Simple, in this context
means, cheap-to-compute with respect to the computational cost of likelihood calculations.
The parsimony or least-squares criteria are good examples of such simple criteria. Such
reasonable yet simple criteria will generate starting trees that have a “good” initial likelihood
score. Therefore, the subsequent tree search on the comprehensive tree (see Section 2.2) is
likely to converge faster, hence reducing inference times. See Figure 1 for an example.

Execution time

Likelihood 

score

random tree

’good’ starting tree

Figure 1 Schematic ML run time differences when initiating tree searches on random versus
“good” comprehensive trees.

In the following, we will briefly outline the randomized stepwise addition order algorithm
given a MSA with n taxa. The algorithm is also outlined in Figure 2.

1. Chose three taxa t1, t2, t3 at random and use them to construct the only possible unrooted
strictly binary three taxon tree

2. Chose the next taxon ti to insert at random from the list of the remaining n− 3 taxa
3. Insert ti into every branch of the already constructed tree that has i− 1 taxa. For each

insertion of ti into a branch calculate and store the score using, for instance, parsimony.
Then, remove ti from the current branch again.

4. Once, we have computed insertion scores for all branches, finally insert ti into the branch
that yielded the best insertion score.

5. Continue adding taxon after taxon to the tree as above until no taxa are left to insert.
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In general, applying this procedure several times using distinct randomized taxon addition
orders (e.g., inserting in this order t1, t2, t3, t4, t5 versus inserting in the following order
t3, t1, t5, t2, t4) we will obtain a set of topologically distinct comprehensive initial trees.
However, if the signal in the data is very strong (e.g., large concatenated supermatrices as
in Misof et al. (2014) it might well be, and we have observed this while analyzing empirical
datasets, that several distinct addition orders do yield the same tree. Therefore, one should
first check, for instance, by computing the Robinson-Foulds distances (Robinson and Foulds,
1981) between all pairs of starting trees (e.g., using an appropriate script or -rfdist command
of RAxML-NG), how many distinct trees the inferred starting tree set does contain, prior to
launching computationally intensive ML searches on these trees.

One might wonder, why we typically do not use likelihood as a criterion for this randomized
stepwise addition procedure. This is simply again due to the computational cost of ML. Note
that, evaluating likelihoods on trees takes between 85%-95% of overall runtime in all likelihood-
based tree inference tools (this also holds for Bayesian inference). In addition, using likelihood
in this step does not yield substantially better trees than using parsimony (Morrison, 2007).
Moreover, one will typically observe larger likelihood improvements by applying topological
changes to the comprehensive tree (see Section 2.2 below). Thus, using parsimony or
NJ/BioNJ represents a classic engineering trade-off between the quality (likelihood score)
of the initial tree and the time required to construct it. For the sake of completeness, it
is worth mentioning that some older tools, namely fastDNAml (Olsen et al., 1994) and
PAUP* (Swofford, 2001), implemented a randomized stepwise addition procedure using
Maximum Likelihood as an option.

T2

T4T5

T3

T2

T4T5

T3T2

T4T5

T2

T4T5

T3

T3
T3

T2

T4T5

T1

T1

T1

T1

T1

T1

T3

three taxon tree

calculate best 
position for T3

best insertion score

best insertion score

T1

Empty

taxon 

list 

Taxon list

T2

T1

T2

T3

T4

T5

T1
T2
T3

T4
T5

T3

T4

T5

Figure 2 Example of randomized stepwise addition algorithm for constructing an initial tree
comprising 5 taxa.

To conclude, using parsimony-based randomized stepwise addition order starting trees
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(as in RAxML or IQ-Tree) might potentially bias the search towards specific parts of the
tree space and particular local optima. Therefore, search strategies relying on comprehensive
starting trees and subsequent greedy hill climbing can benefit from using different starting
tree types (e.g., both random and parsimony) to more thoroughly explore tree space. In
general, this needs to be assessed on a case by case basis, depending on the data at hand.
The way we imagine the search space is visualized in Figure 3.

global maximum we are unlikely
to ever reach

tree space

local maxima

likelihood

score

random trees

good starting trees

tree search paths

Figure 3 Our way of imagining tree search space, including random starting trees, “good”
starting trees, and tree search paths that take us closer to the desired global maximum, that is the
ML tree.

As already mentioned, most Bayesian inference programs typically start from a random
tree. However, some implementations (MrBayes (Ronquist et al., 2012), ExaBayes (Aberer
et al., 2014)) do offer the option to also initiate the MCMC procedure on a randomized
stepwise addition order parsimony tree.

2.2 Changing Topologies - Searches on Comprehensive Trees
Now that we know how to compute a comprehensive starting tree, we can consider the basic
techniques for changing that tree in order to further improve the likelihood.

We will first only consider the widely-used standard tree moves that allow us to change
the tree to varying degrees. In other words, we will consider bold (change the tree topology
substantially) versus conservative (slightly change the tree) topological alteration mechanisms.
We will discuss how to use these standard mechanisms to build a tree search strategy in
Section 3 including several examples. When discussing moves, we always refer to a given tree
as the current tree. This can, for instance, be the best tree we have found so far and that is
stored in memory. Via a tree move we then attempt to construct a new tree by changing the
current tree in the hope that this new tree will have a better likelihood than the current tree.

The three most widely used fundamental tree moves (also referred to as topological
alteration mechanisms) are the following:

1. NNI: Nearest Neighbour Interchange (see Figure 4)
2. SPR: Subtree Pruning and Re-grafting (see Figure 5)
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3. TBR: Tree Bisection and Reconnection (see Figure 6)

The most simple as well as most conservative move is the NNI move. To apply a NNI
move we first need to select (how we do this selection is a matter of designing the search
strategy) an inner branch of the tree that defines a blue (B), a yellow (Y), a red (R), and a
green (G) subtree. In our example in Figure 4 subtrees B and R are located on one side
of the branch and Y and G on the other side. To generate alternative trees with NNI we
can now flip our colored subtrees over the inner branch. Thereby, from the tree containing
this inner branch, we can construct two alternative, not substantially different (in terms of
topological distance to the initial tree; for bolder moves see SPR and TBR explained below),
tree topologies and evaluate their likelihood scores.
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1. NNI

2. NNI

Figure 4 Outline of the two possible NNI moves as executed on an inner branch of a phylogenetic
tree defining red, blue, green, and yellow subtrees.

A more bold move than the NNI is the SPR move. To carry out a SPR move, we first
select the root of a subtree in the comprehensive tree. Again, how and in which order we
select such a root depends on the actual tree search strategy. In RAxML, for instance, we
conduct a depth first traversal of the tree and apply SPR moves to all subtrees we encounter.
Once we have selected a subtree root, we initially prune the subtree (called candidate subtree)
by removing its subtree root from the branch to which it is attached to. We call the original
branch in the current tree where the subtree was pruned the pruning branch. Then we can
start inserting, calculating the likelihood, and removing again our candidate subtree into the
neighboring branches of the pruning branch. We can define the size of this neighborhood by
the so-called rearrangement radius (see Figure 5). The rearrangement radius allows us to
determine up to how many nodes away from the pruning branch we desire to re-insert our
candidate subtree. If we set the rearrangement radius to 1, we will only execute conservative
SPR moves, whereas if we set the rearrangement radius to the total number of inner nodes
in the tree (remember that this is n − 2 for an unrooted binary tree with n taxa), we
perform bold moves and explore a larger portion of the colossal tree space. How to set this
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rearrangement radius 
of size 1

evaluate 4 

distinct trees

prune

candidate

subtree

re−insert

distinct trees

evaluate 8

rearrangement radius

of size 2

Figure 5 Outline of the Subtree Pruning and Re-Grafting Procedure. First, a candidate subtree
is selected. Then, it is pruned from the current tree. Subsequently, one can re-insert it at all branches
that are one node away from the pruning branch (rearrangement radius of 1), all branches that are
two nodes away from the pruning branch (rearrangement radius of 2), etc.

rearrangement radius, how to adapt it to the MSA at hand, and how to potentially change it
over the course of a tree search is again subject to search strategy development. In RAxML,
for instance, the default behavior is to automatically determine a “good” rearrangement
radius using the following strategy (implementation details omitted): choose the smallest
SPR radius that yields the largest likelihood improvement on the starting tree. In most other
tools, the rearrangement radius is set to a fixed default value, but can be changed by the
user via respective command line flags.

The most drastic tree move is the TBR move (see Figure 6). A TBR move is drastic
because it can induce large topological changes on the tree. As a consequence, a TBR move
can also either substantially increase or decrease the likelihood of a tree. To execute a TBR
move one initially selects a branch to bisect the current tree to obtain two unconnected
subtrees t1 and t2. Then, one generates alternative tree topologies by reconnecting the two
subtrees. This is accomplished by connecting all pairs of branches in the two unconnected
subtrees via a new branch. Thereby, one obtains n×m alternative tree topologies, where n
is the number of branches in t1 and m the number of branches in t2. As for SPR moves, one
can limit the range of these reconnection operations to a neighborhood around the respective
positions from which the original branch was removed.

2.3 Implementation Details
The three fundamental tree moves appear to be relatively straight-forward. To maximize
computational efficiency, that is, to minimize the amount of phylogenetic likelihood calcu-
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bisect

reconnect on second branch

reconnect on first

branch

Figure 6 Outline of the tree bisection and reconnection move. The tree is initially bisected by
removing the red branch in the top left corner of the figure to obtain two disjoint subtrees t1 and t2.
Then, we can start reconnecting them by visiting each branch of the left subtree and connecting it
with all branches of the right subtree as shown for two out of the five branches of the left subtree in
the bottom of the figure.

lations, a plethora of shortcuts and heuristics are applied in practice. In principle, after
each tree move, for instance, after applying a NNI move, one would need to re-optimize
all branch length values and all remaining model parameters (e.g. GTR rates, α shape
parameter of the Γ distribution to model rate heterogeneity) to obtain the ML score of the
tree generated via the move. As such global optimization operations on phylogenies are
highly compute-intensive because they require repeatedly traversing and re-computing the
likelihood on the entire tree, all common ML based tree inference programs use shortcuts. In
other words, they only compute an approximate likelihood score for a tree generated via a
tree move and not the ML score.

Typically there are three types of shortcuts that are used by ML software developers.

2.3.1 Avoiding model parameter optimization

To circumvent the high computational cost of re-estimating the ML model parameters (GTR
rates, α parameter) with the exception of the branch lengths, one relies on the following
empirical observation: As long as the tree we are applying our moves to is reasonable
(i.e., non-random) the model parameter estimates will not change substantially. Thus, it is
sufficient to only re-estimate them periodically after having applied a relatively large number
of tree moves and potential changes to the tree topology.

PGE



1.2:10 Efficient Tree Building

2.3.2 Avoiding global branch length optimization
To avoid re-estimating all branch lengths of the new tree after a move, program developers
rely on the following intuition: The branch lengths that are in the neighborhood where the
tree was changed should be affected most by the move. Hence, only those supposedly most
affected branch lengths are typically re-estimated. Consider, for instance, a NNI move. Here,
one assumes that the 5 branches shown in black in Figure 4 are affected most by the NNI
move. Thus, one would only re-estimate these 5 branch lengths after applying a NNI. One
could even decide to only re-estimate the center branch. What works best is a matter of
numerous trial-and-error experiments on benchmark datasets during program development.
For SPR moves one can apply the so-called lazy SPR move technique that was introduced in
RAxML. Here, only the three branch lengths adjacent to the subtree insertion position are
re-estimated (see Figure 7). In GARLI there is a more elaborate method for conducting lazy
SPR moves. GARLI tries to dynamically determine the number of branches that need to
be re-estimated after a move. In other words, it optimizes branch lengths at an increasing
distance from the subtree insertion position until they do not change significantly any more.
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re−optimize all branches lazy SPR move
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Figure 7 Outline of a standard versus a lazy SPR move on the subtree with the red branches.
In the left hand bottom corner we conduct a standard SPR move, that is, we re-optimize all branch
lengths of the tree (indicated by thick lines). In the right hand bottom corner we conduct a lazy
SPR move, that is, we only re-optimize the three branches (shown by thick lines) that are adjacent
to the insertion position of the subtree.

2.3.3 Locality of tree move applications
To avoid jumping back and forth between different distant regions of the tree while applying
topological moves, most ML search algorithms apply moves systematically to the tree in
a pre-defined order (e.g., a depth first traversal of the tree). This improves computational
efficiency as the moves (and hence the costly updates of Conditional Probability Vectors)
are always taking place in only one region of the tree, while the rest of the tree remains
unaltered. Then, one moves on to a neighboring region (e.g., a neighboring subtree which
one tries to rearrange with SPR moves).
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3 Search Strategies

Given our set of fundamental tree moves, we can now design tree search strategies. Most
popular search algorithms repeatedly apply one or several of these moves to the current
tree until there is no move that yields a tree with a better ML score. Once, no move can
be applied that further improves the ML score, the algorithm converges and returns the
best-scoring ML tree it was able to find.

A simple search strategy as implemented in the original version of PHYML (Guindon
and Gascuel, 2003)
1. Build a NJ starting tree.
2. Repeatedly apply NNI moves to all inner branches of the tree.
3. Terminate if for none of the inner branches there is a NNI move that can further improve

the ML score of the tree.

The key pitfall of such a simple search strategy is that it is highly likely to get stuck early
in a local optimum as outlined in Figure 8.

likelihood

trees

local NNI optimum

local SPR or TBR 

optimum 

global optimim 

we will never 

reach 

simulated annealing

MCMC, the ratchet

or randomized NNIs

can help to traverse

this valley 

Figure 8 Example of how ML searches can get stuck in local optima. The first local optimum on
the right could be a local NNI-optimum, that is, we are not able to navigate out of this optimum by
applying NNI moves. One could move from this optimum to the better local optimum in the middle
of the graph via SPR or TBR moves or by applying a stochastic search (e.g., simulated annealing or
MCMC in the Bayesian setting. To the right we see the global optimum which we are unlikely to
ever reach.

One way to alleviate this is to use more radical moves such as SPR or TBR that allow to
more easily move away from such a local optimum again. RAxML and GARLI mainly rely
on lazy SPR moves, while PHYML version 3 also introduced SPR moves (Guindon et al.,
2010).

In addition, one can conduct multiple tree searches on several distinct randomized addition
order parsimony starting trees (e.g., RAxML [Stamatakis 2014] or IQ-Tree (Nguyen et al.,
2015)). While these search strategies are still highly likely to be stuck in local optima when
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they converge, those local optima will have higher ML scores than the local optima the above
simple algorithm will become stuck in.

As IQ-Tree mainly relies on NNI moves and is thus more prone to getting stuck in local
optima, apart from using distinct parsimony starting trees, it deploys an additional technique.
Once it is stuck in a so-called NNI optimum, it applies a couple of completely random NNI
moves (without taking the likelihood score of these moves into account). This perturbs the
tree sufficiently to move out of the local optimum. After this perturbation, a new round
of NNI moves for improving the ML score is applied which is highly likely to end up in a
distinct, potentially better, local optimum.

An alternative approach for navigating out of local optima by means of random perturb-
ations is the ratchet method that has been applied to parsimony (Nixon, 1999) and ML
searches (Vos, 2003). Here, the idea is to first randomly change the weights of the MSA sites,
then apply a couple of NNI or SPR moves to this perturbed MSA, and subsequently restore
the original MSA. Thereafter, one re-applies the search strategy to the new tree generated
by the perturbed MSA.

GARLI (Zwickl, 2006) deploys a rather different approach to escaping local optima. It
uses a so-called genetic algorithm. Instead of working on a single tree, GARLI conducts
searches on a set (population) of trees. Periodically, information (e.g., subtrees) is exchanged
among the trees in the population to improve the quality (ML scores) of the overall tree
population.

Yet another option for escaping local optima is to deploy the simulated annealing search
technique. Simulated annealing allows for carrying out backward steps, that is, it will
occasionally conduct tree moves to trees with lower ML scores. This might allow to navigate
out of local maxima in parsimony (Barker, 2004) and ML-based (Stamatakis, 2005) tree
searches.

It is worth noting that simulated annealing is very similar to Bayesian MCMC sampling,
as MCMC chains also occasionally accept so-called downhill steps to sample trees with a
lower posterior probability.

Finally, there also exists the issue of what we have termed “rough likelihood surface”.
Such a rough likelihood surface typically emerges when analyzing datasets with comparatively
few sites and a large number of taxa (e.g., a single-gene 16S RNA alignment comprising
thousand taxa, or more). Typically, the search space will exhibit a large number of local
optima that (i) can not be distinguished from each other using the standard likelihood-based
significance tests as implemented, for instance, in CONSEL (Shimodaira and Hasegawa,
2001) and (ii) that exhibit large pairwise topological distances exceeding 20% or even 30%
on average. Stamatakis (2011) gave an example of such a rough likelihood surface using
an empirical single-gene dataset. In general, the key challenge with such datasets is that
100 distinct ML searches are likely to yield 100 topologically substantially different, but
statistically indistinguishable trees.

3.1 Divide-and-Conquer Approaches
Thus far, we have briefly discussed how the most popular ML tree search strategies work.
An alternative approach to designing phylogenetic search strategies is to deploy a divide-
and-conquer strategy. Here, the idea is to initially divide the input sequences into disjoint or
partially overlapping sets of closely related sequences (e.g., simply by clustering sequences or
using a parsimony tree), then infer individual trees on those subsets, and finally merge these
subtrees into one large comprehensive tree. The merging step can also be interpreted as a
supertree reconstruction problem, provided that the sequence subsets overlap.
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In general, all attempts to devise efficient divide-and-conquer tree search algorithms for
ML have not been particularly successful with respect to speed and/or accuracy improvements
over the aforementioned search methods that operate on a comprehensive tree. It turns out
that all divide-and-conquer methods that have been devised so far, require an additional
global optimization of the tree topology, the branch lengths, and the model parameters on
the comprehensive tree to compete (with respect to accuracy) with the standard approaches
described in Section 3. This requirement for additional global optimizations on a compre-
hensive tree also has a negative impact on the potential speed savings a divide-and-conquer
approach could have.

While this is not properly understood yet, we suspect that global optimization on the
comprehensive tree is required, because the information on branch lengths and model
parameters that is propagated from an individual subtree has an important influence on
the tree topology and branch lengths in the remaining subtrees. In other words, the sub-
problems (subtrees) we are attempting to solve do not appear to be sufficiently independent
from each other to allow for applying a divide-and conquer approach. Some examples for
divide-and-conquer or similar approaches with rather disappointing results have been shown
by Roshan et al. (2004), Le Vinh et al. (2005) and Izquierdo-Carrasco et al. (2011).

A somewhat related approach is the quartet puzzling idea as implemented in Tree-Puzzle
(Schmidt et al., 2002). It initially builds quartet trees (trees with 4 taxa) from the MSA and
then puzzles them together into a comprehensive tree.

3.2 Terraces in Tree Space
A recently discovered phenomenon affecting likelihood-based phylogenetic inference (ML and
BI) are terraces in tree space (Sanderson et al., 2011). A terrace is a, potentially large set, of
topologically distinct tree topologies with exactly the same analytical likelihood score. Note
that, numerical likelihood values might differ slightly because of roundoff error propagation.

Under likelihood, terraces may emerge for partitioned phylogenomic alignments when
using unlinked branch length estimates. Branches are said to be unlinked, when we estimate
a completely independent set of branch lengths for each partition (e.g., each gene) of the
phylogenomic MSA (also known as supermatrix in this context). Terraces only emerge when
branch lengths are unlinked, because the overall likelihood score of the entire concatenated
MSA is the sum of the independently optimized per-partition likelihoods. In contrast to this,
when branch lengths are not unlinked (i.e., scaled or joint branch length estimates), they can
not be optimized independently for each partition separately. In other words, the partitions
are somehow connected to each other via the shared (potentially scaled) branch length values
which prevents the emergence of terraces.

If an a MSA (under an unlinked branch model) and respective partitioning scheme
contains one or several terraces depends on the missing data pattern (Sanderson et al.,
2011). Therefore, in the context of designing tree searches, one should avoid conducting
tree moves that will just take the search to another tree located on the same terrace, or
at least omit such redundant computations. Tree moves omitting unnecessary likelihood
computations in a prototype RAxML implementation were pioneered by Stamatakis and
Alachiotis (2010), essentially through implicit recognition of terraces, even before they were
mathematically characterized in 2011. Later on, Chernomor presented work on omitting
redundant computations for standard tree move operations using more elegant data structures
than we did as well as a production-level implementation in IQ-Tree (Chernomor et al., 2015,
2016).

While the techniques implemented in RAxML and IQ-Tree allow for avoiding redundant
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likelihood calculations on a terrace, they do not provide explicit mechanisms to move away
from the terrace in tree space.

Terraces are not only relevant with respect to reducing the computational cost of ML
searches. Their presence can also mislead downstream analyses.

For instance, the presence of terraces can severely bias bootstrap and Bayesian support
values (Sanderson et al., 2014). Moreover, it is currently unknown how many published
phylogenetic trees actually do reside on a terrace. The first study devoted to this topic (Dobrin
et al., 2018) analyzed a collection of 26 large empirical phylogenomic datasets and showed
that terraces are present in “nearly all datasets” and that “terraces found during bootstrap
resampling reduced overall support”.

One reason for this is that standard phylogenetic inference tools do not routinely assess if
the final tree they generated resided on a terrace or not. However, there now exists a highly
efficient C++ library (Biczok et al., 2018) for this purpose, that has already been integrated
into RAxML-NG.

4 Computing Support Values

An important aspect when conducting empirical phylogenetic studies is the inference of
support values on trees. The standard method is the non-parametric bootstrap (BS) as
proposed by Felsenstein (1985) (but also see an interesting very recent modification of the
phylogenetic bootstrap by Lemoine et al., 2018) The idea is to re-sample sites from the
original MSA at random with replacement to assemble a set of 100 or more slightly perturbed
BS replicate MSAs. One then applies the same algorithm as used for inferring the best-known
ML tree on the original —unperturbed— MSA to each of those BS replicate MSAs. This
yields a set of 100 (or more) BS trees that can subsequently be used to, either build a
consensus tree, or map branch support values to the best-known ML tree inferred on the
original MSA. Finally, a more elaborate approach to mapping BS support values onto a
given tree, that also takes the size of the respective tree space into account, has recently
been presented (Lemoine et al., 2018).

How many BS replicates are required is hard to determine, but it seems to heavily depend
on the data at hand. For a criterion to determine the number of BS replicates, see Pattengale
et al. (2010).

Evidently, the bootstrap procedure is computationally extremely expensive. Thus, there
have been several attempts to devise faster and hence more approximate methods for inferring
support values on phylogenies. It is important to note that, they represent "approximations
of an approximation" as finding the optimal ML tree is NP-hard and the strategies presented
in Section 3 already represent ad hoc heuristics. As such, using these fast methods for
inferring support values can always, and perhaps rightfully so, be criticized by reviewers as
being too approximate. From our point of view, despite having designed an approximate
method ourselves, they do not capture that well, the search complexity of the problem that
is associated to the vast tree search space, and the mere fact that we are already using
heuristics. Thus, from our personal point of view, it is always best to conduct BS replicate
searches using the standard search strategies with the standard bootstrap procedure, if the
dataset size and the available computational resources allow for this.

In RAxML we introduced the so-called rapid bootstrap (Stamatakis et al., 2008) that
essentially relies on a more approximate, less thorough version of the standard RAxML
search algorithm, that can more easily be trapped in local maxima.

The so-called ultrafast bootstrap (Minh et al., 2013) implemented in IQ-Tree relies on an
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approximate sampling of emulated BS replicates during the search on the original MSA. As
such, it depends heavily on whether the regions of tree space that are explored by the search
on the original MSA also form part of the BS replicate tree search space. In other words,
one needs those two regions (original MSA and BS replicate MSA region) of the tree search
space to overlap sufficiently in order for the approximation to be accurate. This is, however,
not guaranteed a priori.

Finally, the approximate Likelihood Ratio Test (aLRT, Anisimova and Gascuel, 2006)
takes a given best-known ML tree and conducts a statistical test on each inner branch of the
tree by computing likelihood scores for the three possible NNI configurations (see Figure 4)
around this branch and subsequently using them for the test statistic. The aLRT can be
criticized for exclusively relying on the very local NNI-based likelihoods for computing the
test statistics.

We believe that all of the above approximations for obtaining support values are useful.
We nonetheless wish to emphasize that they remain approximations of an approximation
and are thus prone to criticism.

5 Conclusion

In this book chapter we have presented the basic components, tree alteration operations,
and flavors of commonly used tree search strategies under ML. Moreover, we discussed
the standard phylogenetic BS procedure for inferring support values on trees as well as
some faster and more approximate methods for this task. We also briefly reviewed the
time complexity for finding the ML tree and explained the intuition behind the concept of
NP-hardness. Finally, we also briefly outlined the additional problems that arise when the
dataset to be analyzed contains so-called terraces in its tree search space.

Practitioners should keep in mind that all tree search tools implement ad hoc heuristic
search strategies that have been developed and tested using some simulated and some
empirical benchmark test datasets. It is thus likely that they will fail, that is, perform
sub-optimally on other datasets under distinct or difficult settings. Also, the search strategies
presented here do not have any performance guarantees, that is, how far away from the
global maximum the trees they infer are.

The best approach is to conduct searches using several ML tree inference tools (e.g.
Chapter 1.3 [Kozlov and Stamatakis 2020]) as well as tools for Bayesian phylogenetic
inference (e.g. Chapter 1.5 [Lartillot 2020b]) and subsequently compare the results. This
also helps to minimize the impact of potential programming errors (Darriba et al., 2018) as
tree inference software has become more complex and supports substantially more, as well as
more complex models than 10 - 15 years ago.
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