
HAL Id: hal-02533537
https://hal.science/hal-02533537v3

Submitted on 21 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Further Results on an Equitable 1-2-3 Conjecture
Julien Bensmail, Foivos Fioravantes, Fionn Mc Inerney, Nicolas Nisse

To cite this version:
Julien Bensmail, Foivos Fioravantes, Fionn Mc Inerney, Nicolas Nisse. Further Results on an Equitable
1-2-3 Conjecture. Discrete Applied Mathematics, 2021, 297, pp.1-20. �10.1016/j.dam.2021.02.037�.
�hal-02533537v3�

https://hal.science/hal-02533537v3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Further Results on an Equitable 1-2-3 Conjecture∗

Julien Bensmail1, Foivos Fioravantes1, Fionn Mc Inerney2, and Nicolas Nisse1

1Université Côte d’Azur, Inria, CNRS, I3S, France
2Laboratoire d’Informatique et Systèmes, Aix-Marseille Université, CNRS, and Université de Toulon

Faculté des Sciences de Luminy, Marseille, France

Abstract

In this work, we consider equitable proper labellings of graphs, which were recently intro-
duced by Baudon, Pilśniak, Przybyło, Senhaji, Sopena, and Woźniak. Given a graph G, the
goal is to assign labels to the edges so that 1) no two adjacent vertices are incident to the same
sum of labels, and 2) every two labels are assigned about the same number of times. Partic-
ularly, we aim at designing such equitable proper k-labellings of G with k being as small as
possible. In connection with the so-called 1-2-3 Conjecture, it might be that labels 1, 2, 3 are,
a few obvious exceptions apart, always sufficient to achieve this just as in the non-equitable
version of the problem.

We provide results regarding some open questions about equitable proper labellings. Via
a hardness result, we first prove that there exist infinitely many graphs for which more labels
are required in the equitable version than in the non-equitable version. This remains true
in the bipartite case. We finally show that, for every k ≥ 3, every k-regular bipartite graph
admits an equitable proper k-labelling.

Keywords: Proper labellings, Equitable labellings, 1-2-3 Conjecture.

1 Introduction
This paper deals with a variant of the so-called 1-2-3 Conjecture, which is defined through the
following notions. Consider a (simple undirected) graph G. Let us consider a k-labelling ` of
G to be an assignment ` : E(G) → {1, . . . , k} of labels to the edges of G. For each vertex v
of G, one can compute, as a colour c`(v) of v, the sum of the labels assigned by ` to the edges
incident to v. We say that ` is proper if c` is indeed a proper vertex-colouring of G, i.e., we have
c`(u) 6= c`(v) for every edge uv ∈ E(G). In this field, we say that G is nice if it has no connected
component isomorphic to K2. This is because K2 is indeed the only connected graph with no
proper labelling. In other words, the parameter χΣ(G), which is the minimum k such that G
admits a proper k-labelling, is defined for every nice graph G. Actually, Karoński, Łuczak, and
Thomason conjectured in 2004 that χΣ(G) should never exceed 3 (see [6]):

Conjecture 1.1 (1-2-3 Conjecture). If G is a nice graph, then χΣ(G) ≤ 3.

A few facts on the 1-2-3 Conjecture are worth mentioning. In particular, the upper bound in the
statement of the conjecture cannot be decreased to 2 in general, as shown for instance by complete
∗This work has been partially supported by the ANR project DISTANCIA (ANR-17-CE40-0015).

1

graphs and odd-length cycles. More generally, it is known that, given a nice graph G, deciding
whether χΣ(G) ≤ 2 holds is NP-complete (thus, unless P=NP, there is no “good” characterisation
of graphs admitting proper 2-labellings) [4]. This contrasts with the bipartite case, however, as
it was more recently shown that bipartite graphs G with χΣ(G) = 3 form a restricted family of
graphs [12]. To date, the best result towards the 1-2-3 Conjecture was established by Kalkowski,
Karoński, and Pfender in [5], who proved that χΣ(G) ≤ 5 holds for every nice graph G. We refer
the interested reader to [10] for a survey by Seamone on this topic.

Several side aspects of the 1-2-3 Conjecture are of interest, such as the importance of the three
labels 1, 2, 3 for designing proper labellings. In particular, a total version of the 1-2-3 Conjecture
introduced by Przybyło and Woźniak in [9], where also the vertices must be labelled, seems to
indicate that, in general, for any nice graph we should be able to design 2-labellings that are close
to proper. As a consequence, to the best of our knowledge there is no known (non-trivial) graph
G with χΣ(G) = 3 for which we must use the three labels 1, 2, 3 with nearly equal proportion
in every proper 3-labelling. As an example, let us mention that for every nice complete graph
Kn, for which χΣ(Kn) = 3, there is a proper 3-labelling assigning label 2 only once [2]. Also, for
every bipartite graph G with χΣ(G) = 3, there exist proper 3-labellings assigning label 3 at most
twice [3]. It might be that, in general, using three labels might be too powerful, in the sense that
two labels are “almost enough”.

Our results in this work are related to a recent take on those questions by Baudon, Pilśniak,
Przybyło, Senhaji, Sopena, and Woźniak. In [1], they investigated proper labellings in which all
labels must be assigned about the same number of times. More precisely, given a labelling ` of a
graph G, one can define, for every label α assigned by `, the value nb`(α) being the number of
edges of G assigned label α. We call ` equitable if, for every two distinct labels α, β assigned by `,
the values nb`(α) and nb`(β) differ by at most 1. We denote by χΣ(G) the smallest k such that G
admits an equitable proper k-labelling. Again, this parameter χΣ is defined for every nice graph.

The authors of [1] have investigated several aspects of equitable proper labellings, most of which
are about the relationship between χΣ(G) and χΣ(G) for a given graph G. For a few families of
graphs G, they have notably established that χΣ(G) = χΣ(G) holds, except for a few exceptions.
In particular:

• For nice forests F , we always have χΣ(F) = χΣ(F) ≤ 2.

• For nice complete bipartite graphs Kn,m, we always have χΣ(Kn,m) = χΣ(Kn,m) ≤ 2, except
for the peculiar case of K3,3 which verifies 2 = χΣ(K3,3) < χΣ(K3,3) = 3.

• For nice complete graphs Kn, we always have χΣ(Kn) = χΣ(Kn) = 3, except for the peculiar
case of K4 which verifies 3 = χΣ(K4) < χΣ(K4) = 4.

At this point, the previous results lead to a number of interesting questions. Is K4 the only
graph G with χΣ(G) > 3? Are graphs G with χΣ(G) < χΣ(G) rare? Can the difference between
χΣ(G) and χΣ(G) be arbitrarily large? In general, is an equitable version of the 1-2-3 Conjecture
plausible?

Conjecture 1.2 (Equitable 1-2-3 Conjecture). If G is a connected graph different from K2 and
K4, then χΣ(G) ≤ 3.

A few more results partially answering some of these questions can be found in Senhaji’s
thesis [11]. In particular:

• Senhaji proved that χΣ(G) = χΣ(G) ≤ 3 holds for a certain number of graphs G, including
nice paths, nice cycles, some Theta graphs, and some Cartesian products.

• Using computer programs, he came up with four cubic bipartite graphs G verifying 2 =
χΣ(G) < χΣ(G) = 3.

2

• For particular cubic bipartite graphs G, such as Hamiltonian ones, he proved that χΣ(G) ≤ 2.

In this work, we provide results towards some of the questions above. In particular, we in-
vestigate the existence of graphs G with χΣ(G) < χΣ(G). In Section 2, we first prove that there
exist infinitely many such graphs. This is obtained through proving that the problem of deciding
whether χΣ(G) = 2 holds for a given graph G with χΣ(G) = 2 is NP-complete. We then investi-
gate, in Section 3, the same question for bipartite graphs. We exhibit operations establishing that
there exist infinitely many bipartite graphs G with χΣ(G) < χΣ(G). We also prove that for every
bipartite graph G with χΣ(G) = 3, we have χΣ(G) = 3. In Section 4, we finally provide a result
on equitable proper labellings of regular bipartite graphs, showing that χΣ(G) ≤ k holds for every
such k-regular graph (k ≥ 3). In particular, we have χΣ(G) ≤ 3 for every cubic bipartite graph G.

2 NP-completeness result
This section is devoted to the proof that the problem of deciding whether χΣ(G) = 2 holds for a
given graph G with χΣ(G) = 2 is NP-complete.

The reduction in the proof of our main result below will be mostly obtained by plugging several
gadgets with specific properties together. More precisely, some of our gadgets will have specific
pendent edges (i.e., with exactly one of their ends being of degree 1) being their inputs or outputs.
Given two disjoint gadgets G and H where e is an output of G and f is an input of H, by plugging
G and H (along e and f) we mean identifying e and f together. More precisely, if e = xy and
f = uv with y and v being the vertices of degree 1 of e and f respectively, then identifying e and
f means identifying x and v, and y and u respectively.

Before proceeding with introducing the needed gadgets, let us first recall the following easy
observation that will serve throughout this work.

Observation 2.1. Let G be a graph with a path (u, v, w, x) where d(v) = d(w) = 2. For any
proper labelling ` of G, we have `(uv) 6= `(wx).

Proof. This is because we would have c`(v) = c`(w) otherwise.

2.1 Initiator gadget
The first gadget we need is the diamond D depicted in Figure 1. Here and further, for every gadget
introduced through a figure, we deal with its vertices and edges following the notation from that
figure. The input of D is the edge u1u2, while the output of D is the edge u9u10. The properties
of interest of D are the following:

Theorem 2.2. D verifies the following:

• |E(D)| = 11.

• In any proper 2-labelling ` of D, we have `(u1u2) = `(u9u10).

• There exist both proper 2-labellings ` of D where `(u1u2) = 1, and proper 2-labellings ` of D
where `(u1u2) = 2.

• In any proper 2-labelling ` of D where `(u1u2) = 1:

– c`(u2) = 4;
– c`(u9) can be any value in {2, 3};
– nb`(1) = 7 and nb`(2) = 4.

• In any proper 2-labelling ` of D where `(u1u2) = 2:

3

1

u1

4

u2

3

u3

5

u4

4

u5

2/3

u6

3/4

u7

4/3

u8

3/2

u9

1

u10

1

1

2

1

1

2

1 1/2 2 2/1 1

(a) `(u1u2) = 1.

2

u1

5

u2

4

u3

6

u4

5

u5

3/4

u6

2/3

u7

3/2

u8

4/3

u9

2

u10

2

1

2

2

1

2

2 1/2 1 2/1 2

(b) `(u1u2) = 2.

Figure 1: The diamond gadget D. The values in each vertex v are the possible colours of c`(v) by
a proper 2-labelling ` of D.

– c`(u2) = 5;
– c`(u9) can be any value in {3, 4};
– nb`(1) = 4 and nb`(2) = 7.

Proof. Let ` be a proper 2-labelling of D. Assume `(u1u2) = 1.
If `(u2u3) = `(u2u4) = 1, then c`(u2) = 3. Since c`(u3) 6= c`(u4), we have `(u3u5) = 1 and

`(u4u5) = 2, or vice versa. Since c`(u3) 6= c`(u2), we have `(u3u4) = 2. This gives c`(u3) = 4 and
c`(u4) = 5. Now we note that no matter what `(u5u6) is, we necessarily get c`(u5) ∈ {4, 5} =
{c`(u3), c`(u4)}, a contradiction. So we cannot have `(u2u3) = `(u2u4) = 1.

If `(u2u3) = `(u2u4) = 2, then c`(u2) = 5. Again, since c`(u3) 6= c`(u4), we have, say, `(u3u5) =
1 and `(u4u5) = 2. Since c`(u4) 6= 5, we have `(u3u4) = 2, which gives c`(u3) = c`(u2) = 5, a
contradiction. Thus, we cannot have `(u2u3) = `(u2u4) = 2.

If, say, `(u2u3) = 1 and `(u2u4) = 2, then c`(u2) = 4. Assume first that `(u3u4) = 2. In that
case, since c`(u3) 6= c`(u2), we have `(u3u5) = 2, and thus c`(u3) = 5. Since c`(u4) 6= c`(u3), we
have `(u4u5) = 2, and thus c`(u4) = 6. Now, we note that no matter what `(u5u6) is, we have
c`(u5) ∈ {5, 6} = {c`(u3), c`(u4)}, a contradiction. So, we have `(u3u4) = 1. Since c`(u3) and
c`(u4) are different from c`(u2), we have `(u3u5) = 1 and `(u4u5) = 2, which gives c`(u3) = 3
and c`(u4) = 5. Now, since c`(u5) 6∈ {3, 5} = {c`(u3), c`(u4)}, we have `(u5u6) = 1, which gives
c`(u5) = 4. By Observation 2.1, we then have `(u7u8) 6= `(u5u6) and `(u9u10) 6= `(u7u8), and thus
`(u7u8) = 2 and `(u9u10) = 1. By the same argument, we have `(u6u7) 6= `(u8u9), and both ways
are possible. Indeed, if on the one hand `(u6u7) = 1 and `(u8u9) = 2, then c`(u6) = 2, c`(u7) = 3,
c`(u8) = 4, and c`(u9) = 3. If on the other hand `(u6u7) = 2 and `(u8u9) = 1, then c`(u6) = 3,
c`(u7) = 4, c`(u8) = 3, and c`(u9) = 2. According to all these arguments, we have that nb`(1) = 7
while nb`(2) = 4. Also, depending on whether `(u6u7) = 1 and `(u8u9) = 2, or `(u6u7) = 2 and

4

`(u8u9) = 1, the value of c`(u9) can be any one in {2, 3}. See Figure 1(a) for an illustration of the
resulting `.

These arguments can be mimicked the exact same way when `(u1u2) = 2. In particular, we
have `(u1u2) = `(u9u10) = 2, nb`(1) = 4 while nb`(2) = 7, and c`(u9) can be any value in {3, 4}.
See Figure 1(b) for an illustration.

The initiator gadget Ik of length k ≥ 2 has one input and one output, and is obtained from k
diamond gadgets as follows. For k = 2, the initiator gadget I2 of length 2 is obtained by plugging
two copies D1 and D2 of the diamond gadget D along the output of D1 and the input of D2. The
input of I2 is then the input of D1 and the output of I2 is then the output of D2. For k > 2, the
initiator gadget Ik of length k is obtained by plugging a copy G of the initiator gadget Ik−1 of
length k − 1 and a new copy H of the diamond gadget D along the output of G and the input of
H. The input of Ik is then the input of G and the output of Ik is then the output of H.

Theorem 2.3. Ik verifies the following, for every k ≥ 2:

• |E(Ik)| = 10k + 1.

• In any proper 2-labelling of Ik, the input and output are assigned the same label.

• There exist both proper 2-labellings of Ik where the input is assigned label 1, and proper 2-
labellings of Ik where the input is assigned label 2.

• In any proper 2-labelling ` of Ik where the input is assigned label 1:

– c`(v) can be any value in {2, 3}, where v denotes the degree-2 vertex of the output of Ik;
– nb`(1) = 6k + 1 and nb`(2) = 4k.

• In any proper 2-labelling ` of Ik where the input is assigned label 2:

– c`(v) can be any value in {3, 4}, where v denotes the degree-2 vertex of the output of Ik;
– nb`(1) = 4k and nb`(2) = 6k + 1.

Proof. This follows mainly from the fact that Ik is made up of k copies of the diamond gadget D
plugged one after another, and that the diamond gadget D has all of the properties described in
Theorem 2.2. In particular, a proper 2-labelling of Ik induces a proper 2-labelling of the k copies
of the diamond gadget D in it. Specifically, it can be checked that no conflict can arise around
the inputs and outputs that were identified. Also, for a proper 2-labelling of Ik assigning label
α ∈ {1, 2} to the input, in each copy of the diamond gadget D label α must be assigned to 7 edges
while the other label must be assigned to 4 edges. Due to how the copies of D were plugged, we
deduce that 7k − (k − 1) = 6k + 1 edges of Ik must be assigned label α, while 4k edges must be
assigned the other label.

2.2 Corrector gadget
The corrector gadget C is the graph depicted in Figure 2. The input of C is the edge u1u2, while
C has no output. Its interesting properties are the following:

Theorem 2.4. C verifies the following:

• |E(C)| = 9.

• There exist both proper 2-labellings ` of C where `(u1u2) = 1, and proper 2-labellings ` of C
where `(u1u2) = 2.

• In any proper 2-labelling ` of C where `(u1u2) = 1:

5

1u1

2u2

3u3

4u4 4 u5

3u6 5 u7

1

1

1 1

1 21 2

1

(a) `(u1u2) = 1, nb`(1) = 7,
nb`(2) = 2.

1u1

3u2

6u3

5u4 5 u5

4u6 6 u7

1

2

2 2

1 21 2

2

(b) `(u1u2) = 1, nb`(1) = 3,
nb`(2) = 6.

2u1

4u2

6u3

5u4 5 u5

4u6 6 u7

2

2

2 2

1 21 2

2

(c) `(u1u2) = 1, nb`(1) = 2,
nb`(2) = 7.

Figure 2: The corrector gadget C. The values in each vertex v are the possible colours of c`(v) by
a proper 2-labelling ` of C.

– c`(u2) ∈ {2, 3};
– either nb`(1) = 7 and nb`(2) = 2, or nb`(1) = 3 and nb`(2) = 6.

• In any proper 2-labelling ` of C where `(u1u2) = 2:

– c`(u2) = 4;
– nb`(1) = 2 and nb`(2) = 7.

Proof. Let ` be a proper 2-labelling of C. Because u6 and u7 both have degree 3, we have that
c`(u6), c`(u7) ∈ {3, 4, 5, 6}. Furthermore, c`(u6) 6= c`(u7), and we cannot have {c`(u6), c`(u7)} =
{3, 6}. We consider all of the remaining possibilities for {c`(u6), c`(u7)} in what follows.

Assume c`(u6) = 3 and c`(u7) = 4. Then, all three edges incident to u6 must be labelled 1,
while we have, say, `(u7u4) = 1 while `(u7u5) = 2. Then, we note that, whatever `(u4u3) is,
we have c`(u4) ∈ {3, 4} = {c`(u6), c`(u7)}, a contradiction. The case where `(u7u4) = 2 while
`(u7u5) = 1 is symmetric with the colour of u5 coming into conflict with that of u6 or u7 instead.
Thus, we cannot have {c`(u6), c`(u7)} = {3, 4}.

Assume c`(u6) = 3 and c`(u7) = 5. Again, all three edges incident to u6 must be labelled 1,
while we have `(u7u4) = `(u7u5) = 2. Now, since c`(u4) and c`(u5) are different from 5 = c`(u7),
we have `(u4u3) = `(u5u3) = 1. This gives c`(u4) = c`(u5) = 4. Now, since c`(u3) is different from
4 = c`(u4) = c`(u5), we have `(u3u2) = 1. Then c`(u3) = 3, and, since c`(u2) 6= c`(u3), we have
`(u2u1) = 1, which yields c`(u2) = 2. This is the labelling depicted in Figure 2(a).

Assume c`(u6) = 4 and c`(u7) = 5. First, assume `(u6u7) = 1. Then we have, say, `(u6u4) = 1
and `(u6u5) = `(u7u4) = `(u7u5) = 2 (the case where `(u6u4) = 2 and `(u6u5) = 1 is symmetric).
Note now that whatever `(u4u3) is, we have c`(u4) ∈ {4, 5} = {c`(u6), c`(u7)}, a contradiction.
Then, assume `(u6u7) = 2. Then we have `(u6u4) = `(u6u5) = 1 and, say, `(u7u5) = 1 and
`(u7u4) = 2 (the case where `(u7u5) = 2 and `(u7u4) = 1 is symmetric). Again, note that
whatever `(u4u3) is, we have c`(u4) ∈ {4, 5} = {c`(u6), c`(u7)}, a contradiction. Thus, we cannot
have {c`(u6), c`(u7)} = {4, 5}

Assume c`(u6) = 4 and c`(u7) = 6. Then, all three edges incident to u7 must be labelled 2,
while we have `(u6u4) = `(u6u5) = 1. Now, since c`(u4) and c`(u5) are different from 4 = c`(u6),
we have `(u4u3) = `(u5u3) = 2. This gives c`(u4) = c`(u5) = 5. Now, since c`(u3) is different from

6

2/3

a1

3/4

a2

2/3

b1

3/4

b2

8/9u2

1/2 1/2

1 2 1 2

2/3

c1

3/4

c2

2/3

d1

3/4

d2

9/10 u3

1/2 1/2

1 2 1 2

3

u1

1 2

1/2

Figure 3: The triangle gadget T2. The values in each vertex v are the possible colours of c`(v) by
a proper 2-labelling ` of T2.

5 = c`(u4) = c`(u5), we have `(u3u2) = 2. Then, c`(u3) = 6, and note that u1u2 can correctly be
assigned either of the labels 1 and 2. In the first case, we get the labelling depicted in Figure 2(b),
in which c`(u2) = 3. In the second case, we get the labelling depicted in Figure 2(c), in which
c`(u2) = 4.

Assume c`(u6) = 5 and c`(u7) = 6. Then, all three edges incident to u7 must be labelled 2,
while we have, say, `(u6u4) = 1 while `(u6u5) = 2 (the case where `(u6u4) = 2 while `(u6u5) = 1 is
symmetric). Then, we note that, whatever `(u5u3) is, we have c`(u5) ∈ {5, 6} = {c`(u6), c`(u7)},
a contradiction. Thus, we cannot have {c`(u6), c`(u7)} = {5, 6}.

2.3 Generator gadget
Let T2 be the triangle gadget depicted in Figure 3, which has no input nor output. We call u1 the
root of T2. Note that T2 has 15 edges. It has the following labelling properties:

Theorem 2.5. In any proper 2-labelling ` of T2:

• {`(u1u2), `(u1u3)} = {1, 2};
• {c`(u2), c`(u3)} = {8, 9} or {c`(u2), c`(u3)} = {9, 10}; furthermore:

– if {c`(u2), c`(u3)} = {8, 9}, then nb`(1) can be any value in {6, . . . , 10};
– if {c`(u2), c`(u3)} = {9, 10}, then nb`(1) can be any value in {5, . . . , 9}.

Proof. Let ` be a proper 2-labelling of T2. Since c`(a1) 6= c`(a2), we have, say, `(a1u2) = 1 and
`(a2u2) = 2. Note that whatever `(a1a2) is, no conflict involving a1 (or a2) and u2 can arise,
due to the larger degree of u2. These arguments also apply around the bi’s, ci’s, and di’s. In
particular, the labels of the four edges joining u2 to the ai’s and bi’s bring 6 to the colour of u2,
and similarly the labels of the four edges joining u3 to the ci’s and di’s bring 6 to the colour of
u3. Now, since c`(u2) 6= c`(u3), we have, say, `(u1u2) = 1 and `(u1u3) = 2. Then, no conflict
involving u2 and u3 can arise, no matter whether u2u3 is labelled 1 or 2. In the first case, we get
(c`(u2), c`(u3)) = (8, 9), while we get (c`(u2), c`(u3)) = (9, 10) in the second case.

The parts of the statement dealing with nb`(1) hold, essentially, because each of the edges a1a2,
b1b2, c1c2, d1d2, and u2u3 can freely be assigned any label in {1, 2} by `.

7

1

u1

4

u2

5

u3

6

u4

10

u5

10

u6

11

u7

3/4

u8

2/3

u9

1

u10

3/4

u11

2/3

u12

1

u13

1

1

2

2

2

2

2

2

2

1/2 1

2

1/2 1

T2

T2

T2

T2

T2

(a) `(u1u2) = 1.

2

u1

5

u2

3

u3

4

u4

8

u5

8

u6

7

u7

2/3

u8

3/4

u9

2

u10

2/3

u11

3/4

u12

2

u13

2

1

2

1

1

1

1

1

1

1/2 2

1

1/2 2

T2

T2

T2

T2

T2

(b) `(u1u2) = 2.

Figure 4: The spreading gadget Gf. Every triangle with a “T2” inside indicates that a copy of the
triangle gadget T2 is attached via its root. The values in each vertex v are the possible colours of
c`(v) by a proper 2-labelling ` of Gf.

The spreading gadget Gf is depicted in Figure 4. The input of Gf is its edge u1u2, while
its two outputs are its edges u9u10 and u12u13. Note that Gf contains five copies of the triangle
gadget T2 attached via their roots. The properties of interest of Gf are the following:

Theorem 2.6. Gf verifies the following:

• |E(Gf)| = 89.

• In any proper 2-labelling ` of Gf, we have `(u1u2) = `(u9u10) = `(u12u13).

• There exist both proper 2-labellings ` of Gf where `(u1u2) = 1, and proper 2-labellings ` of
Gf where `(u1u2) = 2.

• In any proper 2-labelling ` of Gf where `(u1u2) = 1:

– c`(u2) = 4;
– c`(u9) and c`(u12) can be any value in {2, 3}; furthermore:
∗ if c`(u9) = c`(u12) = 2, then nb`(1) can be any value in {35, . . . , 56};
∗ if c`(u9) = c`(u12) = 3, then nb`(1) can be any value in {33, . . . , 54};
∗ if {c`(u9), c`(u12)} = {2, 3}, then nb`(1) can be any value in {34, . . . , 55};

• In any proper 2-labelling ` of Gf where `(u1u2) = 2:

– c`(u2) = 5;
– c`(u9) and c`(u12) can be any value in {3, 4}; furthermore:
∗ if c`(u9) = c`(u12) = 3, then nb`(1) can be any value in {35, . . . , 56};

8

∗ if c`(u9) = c`(u12) = 4, then nb`(1) can be any value in {33, . . . , 54};
∗ if {c`(u9), c`(u12)} = {3, 4}, then nb`(1) can be any value in {34, . . . , 55}.

Proof. Consider ` a proper 2-labelling of Gf. We first note that we have `(u3u5) = `(u4u6).
Indeed, suppose to the contrary that, e.g., `(u3u5) = 1 and `(u4u6) = 2 holds. Since there are
two copies of T2 attached to u5, by Theorem 2.5, the colour of u5 is 7 + `(u5u7) and it is adjacent
to a vertex with colour 9 (in T2). Similarly, because of the two copies of T2 attached to u6, the
colour of u6 is 8 + `(u6u7) and it is adjacent to a vertex with colour 9 (in T2). Then, we must have
`(u5u7) = 1 and `(u6u7) = 2, so that c`(u5) = 8 and c`(u6) = 10. We also know that a neighbour
of u7 from the graph T2 attached to it has colour 9, and that this graph T2 provides 3 to the colour
of u7 by Theorem 2.5. Then, u7 has colour 6 + `(u7u8) + `(u7u11), and the two edges u7u8 and
u7u11 must be labelled (with 1 or 2) in such a way that the colour of u7 does not meet any value
in {8, 9, 10}, which is impossible.

Now suppose `(u1u2) = 1, and consider the edges u2u3 and u2u4 (see Figure 4(a) for an
illustration). First, if `(u2u3) = `(u2u4), then note that ` cannot be proper according to the
arguments above since we would need to have `(u3u5) 6= `(u4u6) since c`(u3) 6= c`(u4). Thus,
`(u2u3) = 1 and `(u2u4) = 2 without loss of generality, and c`(u2) = 4. Note that, if `(u3u4) = 1,
then we necessarily get that c`(u3) or c`(u4) is equal to c`(u2) since we need `(u3u5) = `(u4u6).
Thus, `(u3u4) = 2. We then have `(u3u5) = 2 since c`(u3) 6= c`(u2), and also `(u4u6) = 2 since
c`(u4) 6= c`(u3) (and because `(u4u6) = `(u3u5) by the arguments above).

According to the arguments above, we have `(u5u7) = `(u6u7) = 2. By the same arguments
and since c`(u5) = c`(u6) = 10, we have `(u7u8) = `(u7u11) = 2. Then, `(u9u10) = `(u12u13) = 1
to avoid conflicts. Thus, assuming the input of Gf is labelled 1, then its two outputs are also
labelled 1. A similar case analysis yields an analogous conclusion when `(u1u2) = 2, see Figure 4(b).

Let us conclude by pointing out that, in the proper labellings of Gf mentioned above, the only
edges for which the assigned label can freely be either 1 or 2 are the edges u8u9, u11u12, 4 edges in
each of the four copies of T2 attached to u5 and u6, and 5 edges in the copy of T2 attached to u7.
As pointed out earlier, all other edges must (up to symmetry) receive a particular label in {1, 2}
as soon as that of u1u2 is fixed. It is then easy to check that the parts of the statement dealing
with nb`(1) are true.

The last gadget we need is the generator gadget Gm with m ≥ 3 outputs and one input, which
is obtained from m − 1 spreading gadgets as follows. For m = 3, the generator gadget G3 with
3 outputs is obtained by plugging two copies H1 and H2 of the spreading gadget Gf along any
output of H1 and the input of H2. The input of G3 is then the input of H1 and the 3 outputs of
G3 are the second (unplugged) output of H1 and the two outputs of H2. For m > 3, the generator
gadget Gm with m outputs is obtained by plugging a copy G of the generator gadget Gm−1 with
m− 1 outputs and a new copy H of the spreading gadget Gf along one output of G and the input
of H. The input of Gm is then the input of G and the m outputs of Gm are the remaining m− 2
(unplugged) outputs of G and the two outputs of H.

Theorem 2.7. Gm verifies the following, for every m ≥ 3:

• |E(Gm)| = 88m− 87.
• In any proper 2-labelling of Gm, the input and m outputs are assigned the same label.
• There exist both proper 2-labellings of Gm where the input is assigned label 1, and proper

2-labellings of Gm where the input is assigned label 2.
• In any proper 2-labelling ` of Gm assigning label 1 to the input, nb`(1) ∈ {32m−31, . . . , 55m−

54}.
• In any proper 2-labelling ` of Gm assigning label 2 to the input, nb`(1) ∈ {33m−33, . . . , 56m−

56}.

9

Proof. This follows essentially from Theorem 2.6, since Gm is made up of m− 1 copies of Gf. In
particular, any proper 2-labelling ` of Gm induces one of each of its m − 1 underlying Gf’s. As
pointed out in the statement of Theorem 2.6, vertices identified through the plugging operation
cannot get in conflict.

The part of the statement dealing with nb`(1) is essentially because, in each copy of Gf in Gm,
there are 23 edges that can freely be set to 1 or 2 (4 edges in four attached copies of T2, 5 edges in
the last attached copy of T2, and 2 edges adjacent to the outputs). Assuming the input of Gm is
labelled 1 by `, according to Theorem 2.6 in each of the copies of Gf the number of edges that can
be assigned label 1 essentially ranges from 33 to 56. Thus, in Gm, the number of edges that can be
assigned label 1 ranges from 33(m− 1)− (m− 2) = 32m− 31 to 56(m− 1)− (m− 2) = 55m− 54.
The computation is similar when the input of Gm is assigned label 2, the only difference is that
copies of Gf do not share edges labelled 1.

2.4 Main result
We are now ready for the main result of this section.

Theorem 2.8. Given a graph G with χΣ(G) = 2, deciding if χΣ(G) = χΣ(G) is NP-complete.

Proof. The problem is clearly in NP, so we focus on proving it is NP-hard. We do it by reduction
from the Monotone Cubic 1-in-3 SAT problem, which is NP-hard according to [8]. An instance
of this problem is a 3CNF formula F in which every clause Cj = (x1∨x2∨x3) contains exactly three
distinct variables (not negated) and every variable xi belongs to exactly three distinct clauses. The
question is whether there is a 1-in-3 truth assignment to the variables of F , i.e., a truth assignment
such that every clause has exactly one true variable. Given F , we construct, in polynomial time,
a graph G such that F admits a 1-in-3 truth assignment φ if and only if G admits an equitable
proper 2-labelling `.

High-level description. Before describing the explicit construction of G, let us first give some
intuition about its desired structure, and how all the previous gadgets will be used.

The most important gadget for our construction is the generator gadget Gm, as the fact that
we can generate arbitrarily many pending edges with the same label by a proper 2-labelling is a
very convenient feature. This, for instance, permits to make the colours of some vertices grow by
a similar amount, or, as will be illustrated later, to forbid some values as vertex colours.

Gm has several downsides, however. A first one is that we, a priori, do not know whether its
input and outputs will be labelled 1 or 2 by a proper 2-labelling. A second one is that Gm does
not comply well with equitability, in the sense that, generally speaking, it admits both proper
2-labellings highly favouring the number of assigned 1’s, and proper 2-labellings highly favouring
the number of assigned 2’s.

To overcome these points, we will use the initiator gadget Ik and copies of the corrector gadget
C, in the following way. The initiator gadget Ik will be used to introduce a large imbalance in
favour of one of the two labels by any proper 2-labelling. By that, we mean an imbalance that is
so big that even all the labelling freedom we have in Gm will not allow to close the gap. To make
sure that the whole graph does admit equitable proper 2-labellings, however, we will add several
copies of the corrector gadget C. The most important property of this gadget is that, in terms of
equitability, its behaviour regarding label 1 and label 2 is far from symmetric. By that, we mean,
as noted in Theorem 2.4, that the possibilities C grants highly depend on the label assigned to its
input by a proper 2-labelling. If this label is 1, then we can both favour the number of assigned 1’s
or favour the number of assigned 2’s. On the contrary, if this label is 2, then for sure the number
of assigned 2’s is favoured.

10

ej fj

gj

e′j f ′
j

g′j

e′′j f ′′
j

g′′j

cj

Figure 5: Structure around a clause vertex cj . Wiggly edges are outputs of Gµ.

By properly plugging an initiator gadget Ik (for a well chosen value of k) and corrector gadgets
C onto the generator gadget Gm, we can, in particular, make sure that the outputs of Gm are all
labelled 1 by an equitable proper 2-labelling of the whole graph. This is because, by a proper 2-
labelling assigning label 2 to the outputs, the initiator gadget Ik would introduce a huge imbalance
in favour of the number of assigned 2’s, that is so huge that it cannot be caught up by the labelling
freedom of Gm and the copies of the corrector gadget C.

Once we know that the input and all outputs of Gm must be assigned 1 by an equitable proper
2-labelling, the forcing mechanisms in the whole graph then become much easier to track, and it
then becomes easier to design an equivalence with a 1-in-3 truth assignment φ satisfying F .

Precise details. The construction of G is as follows. Let us start from the cubic bipartite graph
GF modelling the structure of the 3CNF formula F . That is, for every variable xi of F we add a
variable vertex vi to the graph, for every clause Cj of F we add a clause vertex cj to the graph,
and, whenever a variable xi belongs to a clause Cj in F , we add the formula edge vicj to the graph.

We also add a generator gadget Gµ with µ outputs to the graph, where µ = 10(42m + 30n)
(where, here and further, n is the number of variables in F and m is the number of clauses in F)
so that we have sufficiently many outputs on hand to perform what follows. We connect some of
the outputs and make them adjacent to the clause and variable vertices as follows (see Figure 5
for an illustration for clause vertices):

• For every clause vertex cj :

– We first add three new vertices ej , fj , gj , joined via the edges ejfj , fjgj , and ejgj to form
a triangle. We now identify ej and the degree-1 vertex of each of 4 unused outputs of Gµ.
Similarly, we identify fj and the degree-1 vertex of each of 4 unused outputs of Gµ. We
next identify gj and the degree-1 vertex of each of 2 unused outputs of Gµ. We finally
add the edge gjcj to the graph.

– We then add three new vertices e′j , f ′j , g′j , forming a triangle. We then identify e′j and
5 unused outputs of Gµ as above, f ′j and 5 unused outputs of Gµ, and g′j and 3 unused
outputs of Gµ. We finally add the edge g′jcj to the graph.

– We finally add three new vertices e′′j , f ′′j , g′′j , forming a triangle. We then identify e′′j and
7 unused outputs of Gµ as above, f ′′j and 7 unused outputs of Gµ, and g′′j and 5 unused

11

outputs of Gµ. We finally add the edge g′′j cj to the graph.

• For every variable vertex vi:

– We first add three new vertices ri, si, ti joined to form a triangle (ri, si, ti, ri). We then
identify ri and 5 unused outputs of Gµ as above. Similarly, we then identify si and 5
unused outputs of Gµ. Then, we identify ti and 3 unused outputs of Gµ. Finally we add
the edge tivi to the graph.

– We then add three new vertices r′i, s′i, t′i joined to form a triangle (r′i, s
′
i, t
′
i, r
′
i). We then

identify r′i and 6 unused outputs of Gµ as above. Similarly, we then identify s′i and 6
unused outputs of Gµ. Then, we identify t′i and 4 unused outputs of Gµ. Finally we add
the edge t′ivi to the graph.

– Finally, we identify vi with the degree-1 vertex of one unused output of Gµ.

Note that there are, at this point, a total of β = 3m + 12m + 8n = 15m + 8n edges in the
graph that are not part of Gµ. More precisely, 3m of these edges are edges of GF , i.e., formula
edges, 12m of these edges are part or incident to the triangles added above and joined to the clause
vertices, while 8n of these edges are part or incident to the triangles joined to the variable vertices.
We refer to this graph, that is, the current one with β edges, and that contains none of the edges
of Gµ, as G′F .

Note that since µ = 10(42m+30n), then, at this point, only 1
10µ outputs of Gµ have been used.

To each of the 9
10µ unused outputs of Gµ, we plug a new copy of the corrector gadget C. Now, we

add to the graph an initiator gadget Iα of length α that we plug to the input of Gµ, where α is
chosen to be the unique integer such that

2 ≤ ((6α+ 1) + (32µ− 31))− (4α+ (56µ− 56) + β) ≤ 3.

The whole resulting graph is our G, whose input is the input of Iα. Clearly, G is obtained in
polynomial time from F .

Claim 2.9. Let ` be a proper 2-labelling of G. If the input is assigned label 2, then ` cannot be
equitable.

Proof of the claim. Assume this is wrong, and consider ` an equitable proper 2-labelling of G
assigning label 2 to the input. We investigate how many 1’s and 2’s must be assigned to several of
the different gadgets that were plugged together to build G.

• Regarding the initiator gadget Iα of length α used in the construction of G, by Theorem 2.3
we get that ` must assign label 1 to exactly 4α edges and label 2 to exactly 6α+ 1 edges.

• By Theorem 2.7, in G the input of each of the 9
10µ copies of the corrector gadget C have their

input labelled 2 by `, since it coincides with an output of Gµ whose input is labelled 2 (by
Theorem 2.3, since the output of Iα and the input of Gµ coincide). By Theorem 2.4, in each
of these copies of C, there are 2 edges labelled 1 and 7 edges labelled 2.

Omitting all of the contributions of the corrector gadgets, we can state that there are, at this
point, at least 2α+1 more 2’s than 1’s. This imbalance must be fixed via the labelling of the other
edges of Gµ (i.e., not the input of Gµ) and of G′F . By Theorem 2.7, at most 56µ− 56 edges of Gµ
can be assigned label 1 (which yield at least 32µ − 31 edges of Gµ labelled 2, due to the number
of edges of Gµ), while the number of edges of G′F is β. By our choice of α, it is then impossible
that the number of assigned 1’s by ` catches up with the number of assigned 2’s. This contradicts
the equitability of `. �

Towards establishing the equivalence with a 1-in-3 truth assignment φ satisfying F , let us now
see how a proper 2-labelling ` of G assigning label 1 to the input behaves. We start off by pointing
out the following property of the triangles we have joined to the clause and variable vertices.

12

Claim 2.10. Let γ ≥ 4. Let H be any graph with a triangle (u, v, w, u) and an edge xw (where
x 6∈ {u, v}), and ` be a partial proper 2-labelling of H. Assume only the edges uv, vw, wu, and xw
remain to be labelled, that the partial colour of u and v is γ− 2, and that the partial colour of w is
γ−4. Then, in every proper extension of ` to uv, vw, wu, and xw, we have `(uv) = 2, `(xw) = 1,
and c`(w) = γ.

Proof of the claim. Since only uv, vw, wu, and xw remain to be labelled, and u and v currently
have the same partial colour, so that c`(u) 6= c`(v) we have, say, `(uw) = 1 and `(vw) = 2. If
`(uv) = 1, then we get c`(u) = γ, c`(v) = γ + 1, while the partial colour of w is currently γ − 1. It
is then impossible to assign a correct label to xw, i.e., so that c`(w) 6∈ {γ, γ + 1} = {c`(u), c`(v)}.
So, we have `(uv) = 2, in which case c`(u) = γ + 1 and c`(v) = γ + 2. As above, the partial
colour of w is currently γ − 1, and, so that c`(w) 6∈ {γ + 1, γ + 2}, we must set `(xw) = 1. Then,
c`(w) = γ. �

Claim 2.10, applied to the structure ofG (and more precisely to that ofG′F), yields the following.

Claim 2.11. For any proper 2-labelling ` of G assigning label 1 to the input:

• For each clause vertex cj, exactly one of its three incident formula edges is assigned label 1.
Hence, c`(cj) = 8.

• For each variable vertex vi, either all three of its incident formula edges are assigned label 1,
or they are all assigned label 2. Hence, c`(vi) ∈ {6, 9}.

• The number of edges in G′F that are assigned label 1 by ` is 7m + 4n, while the number of
edges assigned label 2 is 8m+ 4n.

Proof of the claim. Let ` be such a labelling of G. By Theorems 2.3 and 2.7, all outputs of Gm
must also be labelled 1 by `.

• Consider any clause vertex cj of G, and, in particular, the neighbouring triangle (ej , fj , gj).
Note that all the conditions are met to apply Claim 2.10. Similarly, this claim applies to the
two triangles (e′j , f

′
j , g
′
j) and (e′′j , f

′′
j , g
′′
j). From the claim, we get that `(gjcj) = `(g′jcj) =

`(g′′j cj) = 1, c`(gj) = 6, c`(g′j) = 7, and c`(g′′j) = 9. Since cj is incident to only three other
edges, formula ones, one of them must be labelled 1 while the other two must be labelled 2
so that c`(cj) 6∈ {6, 7, 9}. Then, c`(cj) = 8.

• Consider any variable vertex vi of G. By the same arguments, we have `(tivi) = `(t′ivi) = 1,
c`(ti) = 7, and c`(t

′
i) = 8. Consequently, the three remaining (formula) edges incident

to vi must either all be labelled 1 by `, so that c`(vi) = 6, or all be labelled 2, so that
c`(vi) = 9 (recall that vi is also incident to an output of Gµ labelled 1). These are the only
two possibilities so that c`(vi) 6∈ {7, 8}.

The last part of the statement follows from Claim 2.10 and the arguments above. This concludes
the proof. Note, in particular, that a consequence is that we have c`(cj) 6= c`(vi) for every clause
vertex cj and variable vertex vi. �

Claim 2.11 gives us a direct equivalence between finding a proper 2-labelling of G where the
input is labelled 1 and a 1-in-3 truth assignment to the variables of F . Indeed, consider a proper
2-labelling ` of G assigning label 1 to the input. We regard the fact that `(vicj) = 1 (respectively
`(vicj) = 2) as having, in F , variable vi bringing truth value true (respectively false) to clause Cj .
The condition in the first item of Claim 2.11 depicts the fact that, by a 1-in-3 truth assignment
of F , a clause is considered satisfied only if it has exactly one true variable. The condition in the
second item depicts the fact that, by a truth assignment, a variable brings the same truth value to
all of the clauses that contain it. Thus, we can design a 1-in-3 truth assignment φ to the variables
of F from `, and vice versa.

13

Thus, F is 1-in-3 satisfiable if and only if G admits proper 2-labellings where the input is
labelled 1. By Claim 2.9, all equitable proper 2-labellings of G (if any) must assign label 1 to
the input. Thus, to prove that F is 1-in-3 satisfiable if and only if G admits equitable proper
2-labellings, it remains to show that G admits proper 2-labellings assigning label 1 to the input if
and only if it admits equitable ones assigning label 1 to the input. Since every equitable proper
labelling is a proper labelling, all that remains is to prove the following claim.

Claim 2.12. If G admits proper 2-labellings where the input is assigned label 1, then G admits
equitable proper 2-labellings where the input is assigned label 1.

Proof of the claim. Let us consider a proper 2-labelling ` of G assigning label 1 to the input,
obtained as follows. From Theorems 2.3 and 2.7, we know that all outputs of Gµ must also be
assigned label 1. We propagate ` in Iα, Gµ, and G′F while guaranteeing the following properties:

• In Iα, exactly 4α edges are assigned label 2 by `, while 6α + 1 edges are assigned label 1.
This is actually the only way to propagate ` in Iα, recall Theorem 2.3. Thus, here, there are
2α+ 1 more assigned 1’s than assigned 2’s.

• In Gµ, the number of assigned 1’s is as small as possible, i.e., is 32µ − 31. In that case, the
number of assigned 2’s is 56µ− 56. Such a labelling can be achieved by Theorem 2.7.

• In G′F , the number of assigned 2’s is m more than the number of assigned 1’s. By Claim 2.11
and since G admits a proper 2-labelling where the input is assigned label 1, this property is
attainable (while maintaining that the labelling is proper) and actually has to hold.

To summarise the above, at this point, the number of assigned 1’s is ((6α + 1) + (32µ −
31)) − (4α + (56µ − 56) + m) more than the number of assigned 2’s. Recall that α was chosen
as the unique integer such that 2 ≤ ((6α+ 1) + (32µ− 31)) − (4α+ (56µ− 56) + β) ≤ 3. Thus,
β−m+ 2 ≤ ((6α+ 1) + (32µ− 31))− (4α+ (56µ− 56) +m) ≤ β−m+ 3, and hence, the number
of assigned 1’s we have considered is either 14m+ 8n+ 2 or 14m+ 8n+ 3 more than the number
of assigned 2’s (recall that β = 15m+ 8n). It remains to consider the 9

10µ = 9(42m+ 30n) copies
of the corrector gadget C in G. This means that the number of copies of C in G is much bigger
than 14m+ 8n+ 3. By Theorem 2.4, we can propagate ` to some copies of C so that 6 edges are
assigned label 2 and 3 edges are assigned label 1. This way, the number of assigned 2’s we have
considered thus far catches up with the number of assigned 1’s.

For the remaining copies of C, we can assume that ` roughly alternates propagating following
the two labelling possibilities described in Theorem 2.4 when the input is labelled 1, so that the
number of assigned 2’s we have considered remains close yet slightly bigger than the number of
assigned 1’s. If, eventually, ` is not equitable because the number of assigned 2’s is slightly bigger
than the number of assigned 1’s, then we can freely switch from 2 to 1 the labels assigned to some
edges of, e.g., triangles in the copies of T2 in some of the spreading gadgets Gf in Gµ. Recall
that all these edges are indeed currently assigned label 2 (since we have minimised the number of
assigned 1’s in Gµ).

Something to take into consideration is that the labelling of Gµ we have considered above,
i.e., the one minimising the number of 1’s, does not comply with the two labelling schemes of
the corrector gadget C. Indeed, when the spreading gadget Gf is labelled so that the input is
labelled 1 and the number of 1’s is minimised, note that the vertices u9 and u12 must have colour 3,
which is not compatible with the labelling of C in Figure 2(b). In this case, it is necessary to make
u9 (or u12) have colour 2 (so that they comply with the desired labelling of C) by just changing
to 1 the label of an incident edge labelled 2. This consequently makes the number of 2’s increase,
which must be taken into consideration for deciding how to label the next copies of C.

Eventually, ` is equitable. �
To finish off the proof, we prove that, regardless of whether F is 1-in-3 satisfiable, there always

exist proper 2-labellings of G. In other words, we always have χΣ(G) = 2.

14

Claim 2.13. There exist proper 2-labellings of G.

Proof of the claim. We show that G admits proper 2-labellings ` where the input is labelled 2.
Recall that we do not care about equitability here. By Theorem 2.3, the output of Iα, which is the
input of Gµ, must be labelled 2 when its input is labelled 2. In turn, by Theorem 2.7, the outputs
of Gµ must be labelled 2 as well. Some of these outputs are the input of corrector gadgets. From
Theorems 2.3, 2.4, and 2.7, we get that there do exist partial proper 2-labellings ` of these gadgets
in G such that no conflicts arise.

It remains to prove that such a partial labelling ` can properly be extended to the edges of
G′F . We demonstrate the arguments for one triangle (ej , fj , gj , ej) adjacent to a clause vertex cj ,
but the arguments are identical regarding the other triangles and the variable vertices. Because
ej and fj are incident to 4 edges of Gµ, which are all labelled 2 by the arguments above, ej and
fj already have partial colour 8. Let us assign label 2 to ejfj and fjgj , and label 1 to ejgj . This
gives c`(ej) = 11 6= c`(fj) = 12. At this point, gj has partial colour 7 (3 from the labelling of ejgj
and fjgj , and 4 from the two outputs of Gµ). Let us assign label 1 to gjcj , so that c`(gj) = 8.
Note that no two of ej , fj , and gj are in conflict, and also their colour is so big that no conflict
with adjacent vertices in Gµ can arise.

By repeating these arguments, for every clause vertex cj , its incident edges cjgj , cjg′j , and cjg′′j
are labelled 1, while gj , g′j , and g′′j have colour at least 8. In particular, cj has partial colour 3 at
this point. Similarly, for every variable vertex vi its incident edges viti and vit′i are labelled 1, and
ti and t′i have colour at least 10. Recall that an output of Gµ, which is labelled 2, is also attached
to vi. Then, the partial colour of vi is 4 at this point. Let us finish the construction of the labelling
` by assigning label 1 to every formula edge. Since every clause vertex cj and variable vertex vi is
incident to exactly three such edges, we get that c`(cj) = 6 and c`(vi) = 7 for every clause vertex
cj and every variable vertex vi. Then, neither clause vertices nor variable vertices get in conflict
with any of their neighbours. In particular, no clause vertex gets in conflict with a variable vertex.
Then, ` is proper, as desired. �

This concludes the proof.

Another interpretation of Theorem 2.8 is that, independently of whether Conjecture 1.2 is true
or not, determining χΣ(G) is an NP-hard problem for a given graph G. It is also worth mentioning
that, in our reduction, the reduced graphs G we construct should always verify χΣ(G) ≤ 3. This
can be seen by noting that all gadgets and structures we have added to G themselves admit many
equitable proper 3-labellings, some of which could possibly be combined to yield one of G.

3 Bipartite graphs G with χΣ(G) < χΣ(G)

In this section, we investigate the existence of bipartite graphs G with χΣ(G) < χΣ(G). In
Section 3.1, we first focus on bipartite graphs G with χΣ(G) = 3, as they stand as good candidates
of graphs that could have χΣ(G) > 3. We prove that, actually, χΣ(G) = 3 holds for all these
graphs. In Section 3.2, we then study the existence of bipartite graphs G with χΣ(G) = 2 and
χΣ(G) = 3. We provide operations for building infinitely many such graphs.

3.1 Bipartite graphs G with χΣ(G) = 3

A precise characterisation of bipartite graphs G with χΣ(G) = 3 was provided by Thomassen, Wu,
and Zhang in [12], where they proved that these graphs, called odd multi-cacti, can be obtained as
follows. The definition is recursive.

• Any cycle C4k+2 with length 4k + 2 (k ≥ 1) with its edges being properly coloured with red
and green (i.e., no two subsequent edges have the same colour) is an odd multi-cactus.

15

• Given an odd multi-cactus G with edges coloured red and green, another odd multi-cactus is
obtained when considering any green edge uv of G, and joining uv by a new path P of length
4k + 1 (k ≥ 1), where the edges of P are properly coloured with red and green in such a way
that the two end-edges (i.e., incident to u and v) are coloured red.

In the next result, we prove that for every odd multi-cactus G, we have χΣ(G) = χΣ(G) = 3.

Theorem 3.1. If G is an odd multi-cactus, then χΣ(G) = 3.

Proof. The proof is by induction on the number of vertices of G. The base case corresponds to
G being C6, the cycle of length 6, which is the smallest odd multi-cactus. We first prove a more
general case, namely that the claim is true whenever G is a cycle with length at least 6 congruent
to 2 modulo 4.

Let G be a cycle with length at least 6 congruent to 2 modulo 4. In this case, an equitable
proper 3-labelling can be obtained as follows. Traverse the successive edges of G starting from
an arbitrary one, and assign labels 1, 2, 3, 1, 2, 3, . . . going along until all edges are labelled. Note
that, doing so, at any moment of the procedure the resulting partial labelling is equitable.

• If the length of G is congruent to 0 or 1 modulo 3, then, by Observation 2.1, the resulting
labelling is proper. This is because no two edges at distance 2 receive the same label, which
is the only colour conflict that can occur in a path.

• If the length of G is congruent to 2 modulo 3 (the smallest such graph is C14), then we get
a conflict because of the last two edges that were labelled l1 = 1 and l2 = 2 respectively,
which are each at distance 2 from an edge with the same label. In this situation, we change l1
into 3 and l2 into 1. Note that no conflict remains now. Furthermore, the labelling remains
equitable (the number of assigned 2’s is one less than the numbers of assigned 1’s and 3’s,
which are equal).

For the general case: suppose that all odd multi-cacti with order at most some x − 1 admit
an equitable proper 3-labelling, and let us consider odd multi-cacti with order x. If x 6≡ 2 mod 4,
then, by construction, there exist no such graphs on x vertices, and the claim is true. Thus, we
assume that x ≡ 2 mod 4.

Let G be an odd multi-cactus with x vertices. Since G can be assumed to be different from a
cycle, it was obtained from a cycle of length 2 modulo 4 by repeated path attachments onto green
edges. Due to the structure of G, it can be noted that there has to exist a green edge uv where:

1. there exist p ≥ 1 disjoint paths P1, . . . , Pp joining u and v, all of whose inner vertices have
degree 2, and

2. the graph G′ obtained by removing the inner vertices of the paths P1, . . . , Pp from G is an
odd multi-cactus where u and v have degree 2.

First off, it can be assumed that all of the Pi’s have length 5. This is a consequence of the
following more general result:

Claim 3.2. Let P9 = (v1, . . . , v9) be the path of length 8, and assume we are given a partial
proper 3-labelling `′ of P9 where only the four edges v1v2, v2v3, v7v8, and v8v9 are labelled, so that
`′(v1v2) 6= `′(v7v8) and `′(v2v3) 6= `′(v8v9). Then, for any permutation {α, β, γ} of {1, 2, 3}, it is
possible to extend `′ to a proper 3-labelling ` of P9 where two of v3v4, v4v5, v5v6, and v6v7 are
labelled α, one of these edges is labelled β, and one of these edges is labelled γ.

Proof of the claim. So that a labelling of P9 is proper, we must only ensure that every two edges at
distance 2 receive distinct labels, recall Observation 2.1. In particular, this implies that labelling
v3v4 and v5v6 can be done independently from labelling v4v5 and v6v7. Then, we will be done if

16

we can prove that labels α and β can correctly be assigned to v3v4 and v5v6, while labels α and γ
can correctly be assigned to v4v5 and v6v7.

Without loss of generality, let us assume we want to assign labels α and β to v3v4 and v5v6.
Note that, at this point, `(v3v4) must only differ from `(v1v2). Let us assume that we can assign
`(v3v4) = α without there being a conflict with `(v1v2), i.e., `(v1v2) 6= α. If no conflict arises upon
setting `(v5v6) = β, then we are done. Otherwise, it means `(v7v8) = β. In that situation, let us
instead set `(v5v6) = α and `(v3v4) = β. If this raises a conflict, this must be because `(v1v2) = β.
But then, we deduce that `(v1v2) = `(v7v8) = β, a contradiction. �

Indeed, assume, without loss of generality, that P1 has length 4k + 1 for some k ≥ 2. Let us
denote by (u, v1, . . . , v4k, v) the successive vertices of P1 from u to v. Let G′ be the graph obtained
from G by removing the edges v2v3, v3v4, v4v5, v5v6, v6v7 and joining the vertices v2 and v7 by an
edge e. Note that G′ is an odd multi-cactus since we have essentially contracted a path of length
4k+1 (with k ≥ 2) into a path of length 4(k−1)+1. Then, by the induction hypothesis, there is an
equitable proper 3-labelling `′ of G′. By definition, note that `′(uv1) 6= `′(e), `′(e) 6= `′(v8v9) (or
`′(e) 6= `′(v8v) if k = 2), and `′(v1v2) 6= `′(v7v8). To extend `′ to an equitable proper 3-labelling
` of G, for every edge that is both in G and G′ we first infer the label by `′ to `. We then set
`(v2v3) to `′(e). Note that no conflict arises in G by this partial labelling. Furthermore, since
`′ is equitable, so is `. Now, consider {α, β, γ} a permutation of {1, 2, 3} such that every two of
nb`′(α) + 2, nb`′(β) + 1, and nb`′(γ) + 1 differ by at most 1. Such an {α, β, γ} exists since `′ is
equitable. By Claim 3.2, the current ` can be extended to the edges v3v4, v4v5, v5v6, v6v7 so that
a proper 3-labelling of G results, and that this can be done by assigning label α twice, and each
of β and γ once. By our choice of α, β, γ, such a resulting labelling is also equitable.

Then, we can assume all Pi’s have length exactly 5. For every i ∈ {1, . . . , p}, let us set
Pi = (u, vi1, . . . , v

i
4, v). Let us also denote by u′ the second neighbour (different from v) of u in

G′, and by v′ the second neighbour (different from u) of v in G′. Our goal is to extend `′ to
the edges of the Pi’s so that no conflict arises, and the resulting 3-labelling ` of G is proper. To
begin, consider {α, β, γ} a permutation of {1, 2, 3}. The choice of α, β, and γ can be done in
such a way that the ensuing labelling ` is equitable. Precisely, if nb`′(1) = nb`′(2) = nb`′(3) or
nb`′(1) + 1 = nb`′(2) = nb`′(3) or nb`′(1) = nb`′(2) = nb`′(3)− 1, then (α, β, γ) = (1, 2, 3), else if
nb`′(1)− 1 = nb`′(2) = nb`′(3) or nb`′(1) = nb`′(2) + 1 = nb`′(3), then (α, β, γ) = (2, 3, 1), and if
nb`′(1) = nb`′(2) = nb`′(3) + 1 or nb`′(1) = nb`′(2)− 1 = nb`′(3), then (α, β, γ) = (3, 1, 2). For all
1 ≤ i ≤ p and for any a, b ∈ Pi such that ab ∈ E(G), it is easy to verify that c`(a) 6= c`(b), for any
of the labellings ` proposed below.

In what follows, let x be any vertex in X = N(u)
p⋂
i=1

Pi, let y be any vertex in Y = N(v)
p⋂
i=1

Pi,

and let w be any vertex in W = (N(u) ∪ N(v))
p⋂
i=1

Pi. Also, for all 1 ≤ i ≤ p, let `(Pi) =

(`(uvi1), `(vi1v
i
2), `(vi2v

i
3), `(vi3v

i
4), `(vi4v)).

Case p = 2:

All the possible subcases are illustrated in Table 1. Note that, in all of these subcases, the
labelling ` has the property that

∑
x∈X

`(ux) =
∑
y∈Y

`(vy), and so, c`(u) 6= c`(v) since c`′(u) 6= c`′(v)

by the inductive hypothesis. Furthermore, note that the maximum colour of any vertex w ∈ W
is 6, no matter the labelling. Lastly, it may seem that the subcase c`′(u) + α + β 6= c`′(u

′),
c`′(v) + α + β = c`′(v

′) has not been treated, but it is actually symmetric to the subcase where
c`′(u) + α + β = c`′(u

′), c`′(v) + α + β 6= c`′(v
′), which has been treated through subcases 2-4 in

Table 1.

Case p ≥ 3:

17

Subcase Labelling of No conflicts between u (v resp.)
conditions paths P1 and P2 and any of its neighbours in P1 or P2

c`′(u) + α+ β 6= c`′(u
′),

c`′(v) + α+ β 6= c`′(v
′)

`(P1) = (α, β, γ, α, β)

`(P2) = (β, α, γ, γ, α)

If α = 1: c`(w) ≤ 4 & c`(u), c`(v) ≥ 5.

If α = 2: c`(u), c`(v) ≥ 7.

If α = 3: c`(w) ≤ 5 & c`(u), c`(v) ≥ 6.

c`′(u) + α+ β = c`′(u
′),

c`′(v) + 2α 6= c`′(v
′),

c`′(v) + 2α 6= α+ γ

`(P1) = (α, β, β, γ, α)

`(P2) = (α, β, γ, γ, α)

If α = 1: c`(x) = 3 & c`(u) ≥ 4.

If α = 2: c`(x) = 5 & c`(u) ≥ 6.

If α = 3: c`(u) ≥ 8.

c`′(u) + α+ β = c`′(u
′),

c`′(v) + 2α 6= c`′(v
′),

c`′(v) + 2α = α+ γ

`(P1) = (α, γ, β, β, α)

`(P2) = (α, γ, γ, β, α)

Since c`′(u) 6= c`′(v), then

c`′(u) + 2α 6= α+ γ.

c`′(u) + α+ β = c`′(u
′),

c`′(v) + 2α = c`′(v
′)

`(P1) = (γ, α, β, γ, α)

`(P2) = (α, γ, β, β, γ)

If α = 1: c`(w) ≤ 5 & c`(u), c`(v) ≥ 6.

If α = 2: c`(w) ≤ 4 & c`(u), c`(v) ≥ 5.

If α = 3: c`(u), c`(v) ≥ 7.

Table 1: The four subcases for p = 2.

Give the same labellings as in the case p = 2 for P1 and P2. For the remainder of the paths,
simply label them so that the labelling ` is equitable (and proper) and so that, for all 3 ≤ j ≤ p,
we have `(uvj1) = `(vvj4). Note that, in this case, for all x ∈ X, it is not possible for c`(u) = c`(x).
Indeed, if c`(u) ≥ 7, then we are done since, for all w ∈ W , we have that c`(w) ≤ 6. Otherwise,
if c`(u) = 6, then, for all x ∈ X, we have that `(ux) ≤ 2, and so, c`(x) ≤ 5. Lastly, if c`(u) = 5
(note that this is the last case since c`(u) ≥ 5), then, for all x ∈ X, we have that `(ux) = 1, and
so, c`(x) ≤ 4. The same can be said for all y ∈ Y and v.

Case p = 1:

All the possible subcases are illustrated in Table 2. Note that, in the first six of these subcases,
the labelling ` has the property that `(uv1) = `(vv4), and so, c`(u) 6= c`(v) since c`′(u) 6= c`′(v)
by the inductive hypothesis. Furthermore, note that the logical subcase that would follow the last
subcase in Table 2 would be that c`′(u) + α = c`′(u

′), c`′(v) + β = c`′(v
′), c`′(u) + β 6= c`′(v) + α,

c`′(v)+α = 2α, and c`′(u)+β = β+α. However, this subcase cannot exist since, if c`′(v)+α = 2α,
then c`′(v) = α, and if c`′(u)+β = β+α, then c`′(u) = α, and hence, we have that c`′(u) = c`′(v),
a contradiction. Lastly, it may seem that the subcase c`′(u) + α 6= c`′(u

′), c`′(v) + α = c`′(v
′) has

not been treated, but again, it is actually symmetric to the subcase where c`′(u) + α = c`′(u
′),

c`′(v) + α 6= c`′(v
′), which has been treated through subcases 4-12 in Table 2. This concludes the

proof as all of the possible cases have now been covered.

3.2 Bipartite graphs G with χΣ(G) = 2

We start by introducing two operations, Operations 1 and 2, which, when applied to graphs G
with χΣ(G) ≥ 3, provide more graphs G′ with χΣ(G′) ≥ 3.

Theorem 3.3 (Operation 1). Let G be a multigraph with χΣ(G) ≥ 3. If G has an edge uv with
multiplicity at least 2, then the graph G′ obtained from G by subdividing one of these edges uv four
times verifies χΣ(G′) ≥ 3.

Proof. Let G′ be obtained from G by replacing one edge uv with a path (u,w, x, y, z, v) of length 5.
Assume there exists `′, an equitable proper 2-labelling of G′. Assume that `′(uw) = α for some

18

Subcase Labelling No conflicts between u (v resp.)
conditions of path P1 and any of its neighbours in P1

c`′ (u) + α 6= c`′ (u
′),

c`′ (v) + α 6= c`′ (v
′),

c`′ (v) + α 6= β + α,
c`′ (u) + α 6= γ + α

`(P1) = (α, γ, β, β, α) By the conditions of the subcase.

c`′ (u) + α 6= c`′ (u
′),

c`′ (v) + α 6= c`′ (v
′),

c`′ (v) + α 6= β + α,
c`′ (u) + α = γ + α

`(P1) = (α, β, β, γ, α) Since c`′ (u) 6= c`′ (v), then c`′ (v) + α 6= γ + α.

c`′ (u) + α 6= c`′ (u
′),

c`′ (v) + α 6= c`′ (v
′),

c`′ (v) + α = β + α

`(P1) = (α, β, β, γ, α)
Since c`′ (u) 6= c`′ (v), then

c`′ (u) + α 6= β + α.

c`′ (u) + α = c`′ (u
′),

c`′ (v) + β 6= c`′ (v
′),

c`′ (v) + β 6= β + γ,
c`′ (u) + β 6= β + α

`(P1) = (β, α, α, γ, β) By the conditions of the subcase.

c`′ (u) + α = c`′ (u
′),

c`′ (v) + β 6= c`′ (v
′),

c`′ (v) + β 6= β + γ,
c`′ (u) + β = β + α

`(P1) = (β, γ, α, α, β)
Since c`′ (u) 6= c`′ (v), then

c`′ (v) + β 6= β + α.

c`′ (u) + α = c`′ (u
′),

c`′ (v) + β 6= c`′ (v
′),

c`′ (v) + β = β + γ

`(P1) = (β, γ, α, α, β)
Since c`′ (u) 6= c`′ (v), then

c`′ (u) + β 6= β + γ.

c`′ (u) + α = c`′ (u
′),

c`′ (v) + β = c`′ (v
′),

c`′ (u) + β = c`′ (v) + α,
c`′ (v) + γ 6= γ + α,
c`′ (u) + β 6= 2β

`(P1) = (β, β, α, α, γ)
By the conditions of the subcase.
Note also that c`(u) 6= c`(v).

c`′ (u) + α = c`′ (u
′),

c`′ (v) + β = c`′ (v
′),

c`′ (u) + β = c`′ (v) + α,
c`′ (v) + γ 6= γ + α,
c`′ (u) + β = 2β

`(P1) = (γ, α, β, β, α)

Since c`′ (u) = β, then
c`′ (v) = 2β − α, c`′ (u

′) = β + α,
c`′ (v

′) = 3β − α, c`(u) = β + γ, and
c`(v) = 2β. It can then be verified

that there are no conflicts.
c`′ (u) + α = c`′ (u

′),
c`′ (v) + β = c`′ (v

′),
c`′ (u) + β = c`′ (v) + α,
c`′ (v) + γ = γ + α

`(P1) = (β, α, α, β, γ)

By the last two conditions of the
subcase, c`′ (u) + β = 2α.
Thus, c`(u) 6= β + α.

Note also that c`(u) 6= c`(v).
c`′ (u) + α = c`′ (u

′),
c`′ (v) + β = c`′ (v

′),
c`′ (u) + β 6= c`′ (v) + α,

c`′ (v) + α 6= 2α,
c`′ (u) + β 6= 2β

`(P1) = (β, β, γ, α, α)
By the conditions of the subcase.
Note also that c`(u) 6= c`(v).

c`′ (u) + α = c`′ (u
′),

c`′ (v) + β = c`′ (v
′),

c`′ (u) + β 6= c`′ (v) + α,
c`′ (v) + α 6= 2α,
c`′ (u) + β = 2β

`(P1) = (β, α, γ, β, α)

Note that β ≥ 2 since c`′ (u) = β.
If β = 2: c`(u) = 4, c`(v) = 5, c`(v′) = 6 &

c`(u′) = c`(x) = c`(y) = 3.
If β = 3: c`(u) = 6, c`(v) = 4, c`(v′) = 7 &

c`(u′) = c`(x) = c`(y) = 5.
c`′ (u) + α = c`′ (u

′),
c`′ (v) + β = c`′ (v

′),
c`′ (u) + β 6= c`′ (v) + α,

c`′ (v) + α = 2α,
c`′ (u) + β 6= β + α

`(P1) = (β, α, γ, β, α)
By the conditions of the subcase.
Note also that c`(u) 6= c`(v).

Table 2: The 12 subcases for p = 1.

19

v1

v2

v3

v4

v5

v6

1 1

2 2

22 1 22

(a) With parallel edges.

v1

v2

v3

v4

v5

v6

v7v8v9v10

2

2

2

22

2

1

1

1

122

1

(b) With adjacent degree-2 vertices.

Figure 6: Proper 2-labellings of two bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3.

α ∈ {1, 2}, and that `′(wx) = β for some β ∈ {1, 2}. Set {α} = {1, 2}\{α} and {β} = {1, 2}\{β}.
Then, by Observation 2.1, we have `′(xy) = α, `′(yz) = β, and `′(zv) = α. By the properness of `′,
since u and v are adjacent in G′, we have that c`′(u) 6= c`′(v). This implies that the 2-labelling ` of
G obtained from `′ by assigning label α to the edge uv that was subdivided for constructing G′, and
setting `(e) = `′(e) for every e ∈ E(G)∩E(G′), is proper. Furthermore, we have {`′(wx), `′(yz)} =
{`′(xy), `′(zv)} = {1, 2}. Hence, nb`(1) = nb`′(1)−2 and nb`(2) = nb`′(2)−2. So, ` is an equitable
proper 2-labelling of G, a contradiction. Thus, χΣ(G′) ≥ 3.

Theorem 3.4 (Operation 2). Let G be a graph with χΣ(G) ≥ 3. If G has an edge uv with d(u) =
d(v) = 2, then the graph G′ obtained from G by subdividing uv four times verifies χΣ(G′) ≥ 3.

Proof. Let us denote by (u,w, x, y, z, v) the path of length 5 of G′ that results from the subdivision
of uv. Let us denote the other neighbour of u by u′, and the other neighbour of v by v′. Assume
there exists `′, an equitable proper 2-labelling of G′. Assume that `′(u′u) = α for some α ∈ {1, 2},
and that `′(uw) = β for some β ∈ {1, 2}. Set {α} = {1, 2} \ {α} and {β} = {1, 2} \ {β}.
According to Observation 2.1, we have `′(wx) = α, `′(xy) = β, `′(yz) = α, `′(zv) = β, and
`′(vv′) = α. It follows that the 2-labelling ` of G obtained from `′ by setting `(uv) = β and
`(e) = `′(e) for every e ∈ E(G) ∩ E(G′) is proper. In particular, note that the above implies
that c`(u) = c`′(u) 6= c`′(v) = c`(v), although u and v are not adjacent in G′. Furthermore,
we have {`′(wx), `′(yz)} = {`′(xy), `′(zv)} = {1, 2}. This implies that nb`(1) = nb`′(1) − 2
and nb`(2) = nb`′(2) − 2. So, ` is an equitable proper 2-labelling of G, a contradiction. Thus,
χΣ(G′) ≥ 3.

We note in particular that Operations 1 and 2 mentioned in Theorems 3.3 and 3.4, when
performed on bipartite graphs, yield graphs that are also bipartite. From this observation, we
come up with two infinite families of bipartite graphs G verifying 2 = χΣ(G) < χΣ(G) = 3.

The first such family is obtained by repeatedly applying Operations 1 and 2 from the cubic
bipartite multigraph depicted in Figure 6(a). This graph indeed has the following properties:

Theorem 3.5. Let G be the cubic bipartite multigraph depicted in Figure 6(a). Then, χΣ(G) = 2
and χΣ(G) = 3.

Proof. Since G is cubic, we have χΣ(G) > 1 and thus, χΣ(G) > 1. Actually, we even have χΣ(G) =
2 since G does not match the definition of an odd multi-cactus (a proper 2-labelling is also included
in Figure 6(a)). Towards a contradiction, assume G admits an equitable proper 2-labelling `. In

20

order to have c`(v1) 6= c`(v2), we have `(v1v3) 6= `(v2v4). Similarly, since c`(v5) 6= c`(v6), we have
`(v5v3) 6= `(v6v4). Now, since c`(v3) 6= c`(v4), we have `(v1v3) = `(v3v5) and `(v2v4) = `(v4v6),
since otherwise, c`(v3) = c`(v4) = 1 + 2 + `(v3v4) by the previous argument. Thus, without loss of
generality, we may assume that `(v1v3) = `(v3v5) = 1 and `(v2v4) = `(v4v6) = 2.

Assume now that `(v3v4) = 1. This gives c`(v3) = 3 and c`(v4) = 5. Now, note that the two
edges joining v1 and v2, and similarly the two edges joining v5 and v6, cannot both be assigned
label 1 (as, otherwise, v1 or v5 would be in conflict with v3). Similarly, to avoid a conflict with v4,
the two edges joining v1 and v2, and similarly the two edges joining v5 and v6, cannot be assigned
labels 1 and 2 respectively. Thus, these four edges must be assigned label 2, which means that
nb`(1) = 3 and nb`(2) = 6. This is a contradiction to the equitability of `. Similar arguments can
be used to show that we cannot have `(v3v4) = 2 either. Thus, χΣ(G) > 2, and one can easily
come up with equitable proper 3-labellings of G.

A second infinite family of bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3 is obtained by
repeatedly applying Operation 2, described in Theorem 3.4, to the graph depicted in Figure 6(b)
(note that this isK3,3 with one edge subdivided 4 times), which indeed has the following properties:

Theorem 3.6. Let G be the subcubic bipartite graph depicted in Figure 6(b). Then, χΣ(G) = 2
and χΣ(G) = 3.

Proof. Again, G is not locally irregular (i.e., it has adjacent vertices with the same degree) and
does not match the structure of an odd multi-cactus, so χΣ(G) = 2 (a proper 2-labelling is also
included in Figure 6(b)). We now prove that χΣ(G) = 3. Let us suppose that there exists an
equitable proper 2-labelling ` of G. By Observation 2.1, we must have `(v1v10) 6= `(v9v8) and
`(v7v6) 6= `(v9v8), and thus, `(v1v10) = `(v7v6). Moreover, either `(v10v9) = `(v1v10) = `(v7v6)
and `(v9v8) = `(v8v7) or `(v1v10) = `(v8v7) = `(v7v6) and `(v10v9) = `(v9v8). This implies that
each of the labels 1 and 2 appears exactly twice in the edges v10v9, v9v8, v8v7, v7v6.

Let G′ be the graph obtained from G by replacing the path P = (v1, v10, v9, v8, v7, v6) by a
single edge v1v6. Moreover, let `′ be the labelling of G′ such that `′(e) = `(e) for every edge
e ∈ E(G′)∩E(G), and `′(v1v6) = `(v1v10). Since ` is equitable and due to the previous remark, `′
is an equitable 2-labelling of G. Now, it suffices to show that `′ is also proper. If this is the case,
we arrive at a contradiction since G′ is isomorphic to K3,3 and χΣ(K3,3) = 3 (as proved in [1]).

For the sake of contradiction, suppose that `′ is not proper. Since ` is a proper labelling of G,
it follows that c`′(v1) = c`′(v6) in G′ and that these are the only two vertices that are in conflict.
Observe that G′ is a cubic graph and thus, for each v ∈ V (G′), we have c`′(v) ∈ {3, 4, 5, 6}. We
distinguish the following cases:

• c`′(v1) = c`′(v6) = 3.
In this case, `′(v4v6) = `′(v2v1) = `′(v3v1) = `′(v5v6) = 1, and so, c`′(v2), c`′(v3), c`′(v4),
c`′(v5) 6= 6. Moreover, so that 3 = c`′(v1) /∈ {c`′(v2), c`′(v3)} and 3 = c`′(v6) /∈ {c`′(v4),
c`′(v5)}, we have that c`′(v2), c`′(v3), c`′(v4), c`′(v5) ∈ {4, 5}. By symmetry, let us assume
that c`′(v2) = 5. Then, we must have c`′(v4) = c`′(v5) = 4 which means `′(v3v4) = 1 and
that we must have c`′(v3) = 5, which is impossible since `′(v3v4) = 1.

• c`′(v1) = c`′(v6) = 4.
First, let us assume that `′(v1v6) = 2. In this case, `′(v4v6) = `′(v2v1) = `′(v3v1) = `′(v5v6) =
1, and so, c`′(v2), c`′(v3), c`′(v4), c`′(v5) 6= 6. Moreover, so that 4 = c`′(v1) /∈ {c`′(v2), c`′(v3)}
and 4 = c`′(v6) /∈ {c`′(v4), c`′(v5)}, we have that c`′(v2), c`′(v3), c`′(v4), c`′(v5) ∈ {3, 5}. By
symmetry, let us assume that c`′(v2) = 5. Then, we have c`′(v4) ∈ {4, 5}, which conflicts with
either v2 or v6.
Second, let us assume that `′(v1v6) = 1. In this case, we may assume by symmetry that
`′(v4v6) = `′(v2v1) = 1 and `′(v3v1) = `′(v5v6) = 2, and so, c`′(v2), c`′(v4) ∈ {3, 5}. By

21

(a) (b)

(c) (d)

Figure 7: Four cubic bipartite graphs G with χΣ(G) = 3.

symmetry, let us assume that c`′(v2) = 5. Therefore, `′(v2v4) = 2 and c`′(v4) ∈ {4, 5} which
conflicts either with v2 or v6.

• c`′(v1) = c`′(v6) ∈ {5, 6}.
These cases can be proved similarly to the previous cases by switching labels 1 and 2.

Corollary 3.7. There exist infinitely many bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3.

We ran computer programs to come up with examples of bipartite graphs admitting no equitable
proper 2-labellings. In particular, we were able to check all cubic bipartite graphs with up to 25
vertices, and all subcubic (non-cubic) bipartite graphs with up to 17 vertices. It turns out that,
for this restricted sampling, all bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3 are either small,
or modifications of these graphs obtained through Operations 1 and 2 described earlier.

All these graphs share particular properties of interest. They are all of minimum degree at
least 2 and of maximum degree 3. They also share two important properties of odd multi-cacti,
as they are 2-connected and both their partition classes are of odd size. All of these graphs
are also related to K3,3 somehow. For instance, the graph in Figure 7(c) can be obtained by
“gluing” two K3,3’s one (with red edges) onto the other (with blue edges) (note indeed that by
contracting the bottom five vertices to a single vertex (and similarly for the top five vertices), it
results in K3,3). Also, the graph in Figure 7(d) can be obtained by subdividing twice the edges of
a perfect matching of K3,3 (resulting in the red edges) and joining the resulting vertices to two new
degree-3 vertices (via blue edges). In the non-cubic case, we observed that repeatedly applying
Operation 1 on the edges of a perfect matching of K3,3 yields subcubic bipartite graphs G with
2 = χΣ(G) < χΣ(G) = 3.

It might be that the four graphs (already mentioned in [11]) depicted in Figure 7 are the only
cubic bipartite graphs G with χΣ(G) = 2 and χΣ(G) = 3. Our feeling is that as soon as a cubic

22

bipartite graph is large enough, there should always be several ways to locally alter a proper 2-
labelling to make it equitable. As a result, we were unsuccessful in coming up with infinite families
of such graphs. For instance, a natural way for generalising the graphs in Figures 7(a) and 7(b) is
as follows: for any n ≡ 2 mod 4, we denote by C×n the cubic graph obtained from Cn by adding an
edge between any two antipodal vertices. Note indeed that the graph in Figure 7(a), which is K3,3,
is also C×6 , while the graph in Figure 7(b) is C×10. Our experimentations show that, unfortunately,
it seems that χΣ(C×n) = 2 whenever n ≥ 14.

In light of these arguments, let us finish this section by raising the following questions:

Question 3.8. Let G be a bipartite graph with 2 = χΣ(G) < χΣ(G) = 3.

• Can we have δ(G) = 1?

• Can we have ∆(G) ≥ 4?

• Can G have cut vertices?

• Can we have |V (G)| 6≡ 2 mod 4?

• Can G be cubic with |V (G)| being arbitrarily large?

• Was G obtained from K3,3 by repeatedly applying certain operations?

4 Equitable proper labellings of regular bipartite graphs
In this section, we mainly prove that, for any k ≥ 3, every k-regular bipartite graph admits
equitable proper k-labellings. As a particular case, we get that cubic bipartite graphs form another
family of graphs verifying Conjecture 1.2.

Our proof makes use of the following result of König from 1916, which says that regular bipartite
graphs are class 1. Recall that a proper edge-colouring of a graph is an edge-colouring where no
two adjacent edges get assigned the same colour. In other words, the edge-set of any k-regular
bipartite graph can be partitioned into k perfect matchings.

Lemma 4.1 (König [7]). All k-regular bipartite graphs admit proper k-edge-colourings.

We are now ready for our main result.

Theorem 4.2. For all k ≥ 3, if G = (A,B,E) is a k-regular bipartite graph, then χΣ(G) ≤ k.

Proof. Initially, apply a proper k-edge colouring to G, which exists by Lemma 4.1. This initial
k-labelling ` is equitable, but it is not proper, since every vertex has colour p = k(k+1)

2 (each
vertex is incident to exactly k edges, each with a unique label from 1 to k). The following four-
step algorithm which makes local swaps of labels is applied to the k-labelling ` of G, until the
k-labelling ` becomes proper. Note that the algorithm only swaps labels of edges, and therefore,
the k-labelling ` remains equitable throughout. In what follows, for a vertex v ∈ V (G), an edge
uv ∈ E(G), and an integer i ≥ 1, let ci`(v) and `i(uv) be the colour of the vertex v and the label of
the edge uv respectively, after the (i − 1)th iteration (and before the ith iteration) of the current
step being considered. Also, the superscript is omitted from the colour notation when the current
colour is being mentioned. The algorithm begins as follows:

1. While there exists a subgraph of G isomorphic to P3 = (u, x, v) such that u, v ∈ A and
c`(u) = c`(v) = p, swap `(ux) with `(vx).

There are three things to note after the first step of the algorithm. The first is that, for each pair
of vertices u, v ∈ A that are dealt with in the ith iteration of Step 1, ci+1

` (u) 6= p and ci+1
` (v) 6= p

for all i ≥ 1. Indeed, their colours were p before the step was executed but since `(ux) 6= `(vx)

23

for all these pairs u, v ∈ A (x is incident to exactly one edge with label j for all 1 ≤ j ≤ k),
their colours cannot be p after the step is executed. Also, only the labels of edges incident to
the vertices u and v are changed and so, the edges whose labels are changed at each execution of
Step 1 are all disjoint. The second thing is that, for every vertex u ∈ B, we have c`(u) = p. The
third thing is that, once Step 1 can no longer be executed, for any two vertices u, v ∈ A such that
c`(u) = c`(v) = p, we have that dist(u, v) ≥ 4. Now, the algorithm proceeds as follows:

2. While there exists an induced subgraph of G isomorphic to P5 = (u, x, z, y, v) such that
u, v ∈ A and c`(u) = c`(v) = p,

(a) swap `(ux) with `(xz) if this results in c`(z) 6= p;
(b) else, swap `(vy) with `(yz) if this results in c`(z) 6= p;
(c) else, swap `(ux) with `(xz) and `(vy) with `(yz).

Claim 4.3. If one of Steps 2(a)-(c) is executed on the ith iteration of Step 2, then ci+1
` (z) 6= p.

Moreover, after any of them is executed, each vertex in B is still incident to exactly one edge with
label j for all 1 ≤ j ≤ k.

Proof of the claim. If Step 2(a) or Step 2(b) is executed, then ci+1
` (z) 6= p by definition. If Step

2(a) cannot be executed, then ci`(z) − `i(xz) + `i(ux) = p. Observe that `i(ux) 6= `i(xz) and
`i(vy) 6= `i(yz) since x, y ∈ B and each vertex in B is still incident to exactly one edge with label
j for all 1 ≤ j ≤ k (trivial induction on the number of times such a process has been performed
before this step). Therefore, ci`(z)− `i(xz) + `i(ux)− `i(yz) + `i(vy) = p− `i(yz) + `i(vy) 6= p and
so, ci+1

` (z) 6= p if Step 2(c) is executed. �

Note that in all cases of Step 2, after its ith execution, either ci+1
` (u) 6= p or ci+1

` (v) 6= p.
Moreover, if ci+1

` (u) = p (ci+1
` (v) = p respectively), then none of the labels of the edges incident

to u (v respectively) were changed. Note that Step 2 eventually ends since no new vertices get
colour p by Claim 4.3 and at least one vertex changes from colour p to another colour after each
execution of Step 2. Once Step 2 can no longer be executed, for any two vertices u, v ∈ A such
that c`(u) = c`(v) = p, we have that dist(u, v) > 4. The algorithm proceeds as follows:

3. While there exists a subgraph of G isomorphic to C4 = (u, x, z, y, u) such that u ∈ A and
c`(u) = p,

(a) swap `(ux) with `(xz) if this results in c`(z) 6= p;
(b) else, swap `(uy) with `(yz) if this results in c`(z) 6= p;
(c) else, swap `(ux) with `(xz) and `(uy) with `(yz).

From a proof analogous to that of Claim 4.3, if one of Steps 3(a)-(c) is executed at the ith
iteration of Step 3, then ci+1

` (z) 6= p. Furthermore, in all cases of Step 3, after its ith iteration, we
have ci+1

` (u) 6= p, which is obvious except for in the case that Step 3(c) was executed. Note that if
ci+1
` (u) = p after the ith iteration of Step 3(c), then ci`(u)− `i(ux) + `i(xz)− `i(uy) + `i(yz) = p.
In this case, `i(xz) − `i(ux) = `i(uy) − `i(yz), since ci`(u) = p. But then, since Steps 3(a) and
3(b) were not executable, ci`(z)− `i(xz) + `i(ux) = ci`(z)− `i(yz) + `i(uy) = p, which implies that
`i(ux)−`i(xz) = `i(uy)−`i(yz). This is a contradiction since both `i(xz)−`i(ux) = `i(uy)−`i(yz)
and `i(ux)− `i(xz) = `i(uy)− `i(yz) hold if and only if `i(xz) = `i(ux), but `i(xz) 6= `i(ux) since
x, y ∈ B and each of the vertices of B is still incident to exactly one edge with label j for all
1 ≤ j ≤ k, even after each iteration of Step 3 is executed until Step 3 can no longer be executed.
Therefore, Step 3(a) or 3(b) was executable and so, Step 3(c) would not have been executed.

Note that Step 3 eventually ends since no new vertices get colour p and one vertex changes from
colour p to another colour after each execution of Step 3. Once Step 3 can no longer be executed,
then for any vertex u ∈ A such that c`(u) = p, we have that for any two vertices x, y ∈ N(u), it
holds that N(x) ∩N(y) = u. The remainder of the algorithm depends on the value of k with the

24

case where k = 3 being different from the case k ≥ 4. In what follows, we denote by Sx the star
with x leaves (being isomorphic to K1,x).

Case k = 3: note that p = 6 in this case. The algorithm proceeds as follows:

4. While there exists a subgraph of G isomorphic to S3, with center u and leaves x, y, z such
that u ∈ A and for all w ∈ N(u), we have that c`(u) = c`(w) = 6, then, w.l.o.g., we may
assume that `i(ux) = 1, `i(uy) = 2, and `i(uz) = 3, and

(a) if for some w ∈ N(u) and some v ∈ N(w) \ {u}, swapping `(uw) with `(wv) results in
c`(v) 6= 6, then swap `(uw) with `(wv);

(b) else, for all q ∈ N(x) \ {u}, for all r ∈ N(y) \ {u}, and for all s ∈ N(z) \ {u}, remove
the labels of the edges xq, yr, and zs, for a total of 6 labels removed. Note that two 1’s,
two 2’s, and two 3’s have been removed since each vertex in the closed neighbourhood
of u is incident to exactly one edge with label j for all 1 ≤ j ≤ 3. Then, assuming this
is the ith iteration of Step 4, for all q ∈ N(x) \ {u}, for all r ∈ N(y) \ {u}, and for all
s ∈ N(z) \ {u}, set `i+1(xq) = 2, `i+1(yr) = 3, and `i+1(zs) = 1.

First, note that only edges incident to vertices at distance at most 2 from u have their labels
changed and so each execution of Step 4 deals with disjoint vertices and edges in relation to the other
executions of Step 4. If Step 4(a) is executed at the ith iteration, then ci+1

` (u) 6= 6 and no other
vertex changed from colour 6 to another colour or from another colour to 6. If Step 4(b) is executed
at the ith iteration, then ci+1

` (u) = 6 remains unchanged, however, ci+1
` (x) = 5, ci+1

` (y) = 8, and
ci+1
` (z) = 5. Moreover, since Step 4(a) was not executed, then for all q ∈ N(x) \ {u}, after the ith
iteration of Step 4 (specifically Step 4(b) was executed), we have ci+1

` (q) 6= ci+1
` (x) and ci+1

` (q) 6= 6.
Indeed, let α, β = N(x) \ {u}. For exactly one q ∈ N(x) \ {u}, say α, the label of xα was changed
from 3 to 2. But since Step 4(a) was not executed, we have that ci`(α)−3+1 = 6 and so, ci`(α) = 8.
Therefore, ci+1

` (α) = 7. Also since Step 4(a) was not executed, we have that ci`(β)−2+1 = 6 and so,
ci`(β) = 7. Since none of the labels incident to β changed, ci`(β) = ci+1

` (β) = 7. Analogously, for all
r ∈ N(y)\{u} and for all s ∈ N(z)\{u}, we have ci+1

` (r) 6= ci+1
` (y), ci+1

` (r) 6= 6, ci+1
` (s) 6= ci+1

` (z),
and ci+1

` (s) 6= 6. Indeed, it is easy to check that for all r ∈ N(y) \ {u} and for all s ∈ N(z) \ {u},
we have ci+1

` (r) = 7 and ci+1
` (s) = 4.

Note that Step 4 eventually ends since either c`(u) 6= 6 or all of the neighbours of u have
a colour different from 6 after each execution of Step 4, no vertices change to colour 6, and no
new vertices come into conflict in terms of colour. Once, Step 4 can no longer be executed, the
3-labelling ` is proper and equitable. Indeed, there are no more vertices in A whose colour conflicts
with a vertex in B.

Case k ≥ 4: the algorithm proceeds as follows:

4. While there exists a subgraph of G isomorphic to Sk, with center u such that u ∈ A and for
all w ∈ N(u), we have that c`(u) = c`(w) = p (see Figure 8),

(a) if for some w ∈ N(u) and some v ∈ N(w) \ {u}, swapping `(uw) with `(wv) results in
c`(v) 6= p, then swap `(uw) with `(wv);

(b) else, let x, y ∈ N(u), q, r ∈ N(x) \ {u} and s ∈ N(y) \ {u} such that, if this is the ith
iteration of Step 4, `i(ux) = ∆ − 1, `i(uy) = ∆, `i(xq) = 1, `i(xr) = 2, `i(ys) = 1, and
swap the labels of these edges so that `i+1(ux) = 1, `i+1(uy) = ∆ − 1, `i+1(xq) = ∆,
`i+1(xr) = 1, and `i+1(ys) = 2 (see Figure 8). Note that such a labelling `i exists since
each vertex in the closed neighbourhood of u is incident to exactly one edge with label j
for all 1 ≤ j ≤ k.

First, note that only edges incident to vertices at distance at most 2 from u have their labels
changed and so each execution of Step 4 deals with disjoint vertices and edges in relation to

25

q r s

x y

u

1 2 1

∆ − 1 ∆

(a) Before Step 4(b) is executed.

q r s

x y

u

∆ 1 2

1 ∆ − 1

(b) After Step 4(b) is executed.

Figure 8: The case before and after Step 4(b) is executed when k ≥ 4.

the other executions of Step 4. If Step 4(a) is executed at the ith iteration of Step 4, then
ci+1
` (u) 6= p and no other vertex changed from colour p to another colour or from another colour
to p. If Step 4(b) is executed at the ith iteration of Step 4, then ci+1

` (u) = p − ∆ + 1 6= p,
ci+1
` (x) = p −∆ + 1 + ∆ − 2 + 1 = p, ci+1

` (y) = p −∆ + ∆ − 1 − 1 + 2 = p, and since Step 4(a)
was not executed, ∆ 6= ∆− 1, and ∆ 6= 2, we have that ci+1

` (q) 6= p, ci+1
` (r) 6= p, and ci+1

` (s) 6= p.
Note that Step 4 eventually ends since c`(u) 6= p after each execution of Step 4 and no new

vertices come into conflict in terms of colour. Once, Step 4 can no longer be executed, the k-
labelling ` is proper and equitable. Indeed, there are no more vertices in A whose colour conflicts
with a vertex in B.

5 Conclusion and open questions
In this work, we have provided several results on equitable proper labellings, a notion that was
previously introduced and studied in [1] and [11]. Answering a question of Senhaji, we proved
that there exist infinitely many graphs G with χΣ(G) < χΣ(G). Actually, unless P=NP, there is
no good characterisation of the graphs with χΣ(G) = χΣ(G). In the bipartite case, we exhibited
operations for building infinitely many bipartite graphs G with χΣ(G) < χΣ(G). We also proved
that, for every bipartite graph G with χΣ(G) = 3, we have χΣ(G) = 3. Finally, we proved that
χΣ(G) ≤ k holds for every k-regular bipartite graph G with k ≥ 3.

Regarding our results, some aspects remain open.

• In particular, we still wonder whether there is a good characterisation of bipartite graphs G
with 2 = χΣ(G) < χΣ(G) = 3. Recall that all such graphs we have exhibited share very
particular properties, which led to raising Question 3.8, whose aspects are very intriguing. If
such a good characterisation was to not exist, then that would be an interesting contrast with
the non-equitable case (regarding the characterisation of odd multi-cacti from [12]).

• Regarding Conjecture 1.2, only the case k = 3 of our Theorem 4.2 gives a satisfying answer.
A next step could be to prove Conjecture 1.2 for all k-regular bipartite graphs with k ≥ 4.
Recall that König’s Theorem (Lemma 4.1) was a nice tool for ensuring equitability in our
proof of Theorem 4.2; another interesting direction could be to consider generalisations of our
approach to more families of class-1 graphs, i.e., graphs with chromatic index equal to the
maximum degree.

More generally speaking, there are still fundamental aspects of Conjecture 1.2 which we barely
understand. In particular, it would be nice to provide any general constant upper bound on χΣ.
Providing such a bound even in the bipartite case would already be something. Also, it would be
interesting to know whether K4 is the only connected graph for which χΣ is more than 3.

26

References
[1] O. Baudon, M. Pilśniak, J. Przybyło, M. Senhaji, É. Sopena, M. Woźniak. Equitable

neighbour-sum-distinguishing edge and total colourings. Discrete Applied Mathematics,
222:40-53, 2017.

[2] J. Bensmail, B. Li, B. Li, N. Nisse. On Minimizing the Maximum Color for the 1-2-3 Conjec-
ture. Discrete Applied Mathematics, 289:32-51, 2021.

[3] J. Bensmail, F. Fioravantes, N. Nisse. On Proper Labellings of Graphs with Minimum Label
Sum. In: Gąsieniec L., Klasing R., Radzik T. (eds) Combinatorial Algorithms. IWOCA 2020.
Lecture Notes in Computer Science, vol 12126. Springer, Cham.

[4] A. Dudek, D. Wajc. On the complexity of verterx-coloring edge-weightings. Discrete Mathe-
matics Theoretical Computer Science, 13(3):45-50, 2011.

[5] M. Kalkowski, M. Karoński, F. Pfender. Vertex-coloring edge-weightings: towards the 1-2-3
Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[6] M. Karoński, T. Łuczak, A. Thomason. Edge weights and vertex colours. Journal of Combi-
natorial Theory, Series B, 91:151–157, 2004.

[7] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre.
Mathematische Annalen, 77(4):453–465, 1916.

[8] W. Mulzer, G. Rote. Minimum-weight triangulation is NP-hard. Journal of the ACM, 55(2):11,
2008.

[9] J. Przybyło, M. Woźniak. On a 1,2 Conjecture. Discrete Mathematics and Theoretical Com-
puter Science, 12(1):101-108, 2010.

[10] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Preprint, 2012. Available
at http://arxiv.org/abs/1211.5122.

[11] M. Senhaji. Neighbour-distinguishing decompositions of graphs. Ph.D. thesis, University of
Bordeaux, 2018. Available at https://tel.archives-ouvertes.fr/tel-01962280.

[12] C. Thomassen, Y. Wu, C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the 1-2-3-
conjecture. Journal of Combinatorial Theory, Series B, 121:308-325, 2016.

27

