M. K. Abd-ellah, A. I. Awad, A. A. Khalaf, and H. F. Hamed, Design and implementation of a computer-aided diagnosis system for brain tumor classification, 28th 880 International Conference on, pp.73-76, 2016.

M. U. Akram and A. Usman, Computer aided system for brain tumor detection and segmentation, Computer Networks and Information Technology (ICCNIT), 2011 International Conference on, pp.299-302, 2011.

R. Al-rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau et al., , p.885

J. Belikov, A. Belopolsky, and A. , Theano: A python framework for fast computation of mathematical expressions, 2016.

D. Axel, H. Mohammad, W. David, B. Antoine, T. Lam et al., Brain tumor segmentation with deep neural networks, Proceedings MICCAI-BRATS, pp.1-05, 2014.

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, 2015.

M. Ben-naceur, R. Kachouri, M. Akil, and R. Saouli, A new online class-weighting approach with deep neural networks for image segmentation of highly unbalanced glioblastoma tumors, International Work-Conference on Artificial Neural Networks, pp.555-567, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02172208

M. Ben-naceur, R. Saouli, M. Akil, and R. Kachouri, Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in mri images, Computer Methods and Programs in Biomedicine, vol.166, pp.39-49, 2018.

S. M. Bhandarkar and P. Nammalwar, Segmentation of multispectral mr images using a hierarchical self-organizing map, Proceedings. 14th IEEE 900 Symposium on, pp.294-299, 2001.

S. Bianco, R. Cadene, L. Celona, and P. Napoletano, Benchmark analysis of representative deep neural network architectures, IEEE Access, vol.6, pp.64270-64277, 2018.

A. Canziani, A. Paszke, and E. Culurciello, An analysis of deep neural network models for practical applications, 2016.

V. Caselles, F. Catté, T. Coll, and F. Dibos, A geometric model for active contours in image processing, Numerische mathematik, vol.66, issue.1, pp.1-31, 1993.

J. E. Cates, R. T. Whitaker, and G. M. Jones, Case study: an evaluation of user-assisted hierarchical watershed segmentation, Medical Image Analysis, vol.9, issue.6, pp.566-578, 2005.

P. D. Chang, Fully convolutional neural networks with hyperlocal features for brain tumor segmen-910 tation, Proceedings MICCAI-BRATS Workshop, pp.4-9, 2016.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, Y. et al., Semantic image segmentation with deep convolutional nets and fully connected crfs, 2014.

L. Chen, G. Papandreou, F. Schroff, A. , and H. , Rethinking atrous convolution for semantic image segmentation, 2017.

Ö. Ç-içek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, net: learning dense volumetric segmentation from sparse annotation, International conference on medical image computing and computer-assisted intervention, pp.424-432, 2016.

M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, F. R. Murtagh et al., , 1998.

, Automatic tumor segmentation using knowledge-based techniques, IEEE transactions on medical imaging, vol.920, issue.2, pp.187-201

R. Desimone, J. Moran, and H. Spitzer, Neural mechanisms of attention in extrastriate cortex of monkeys, Dynamic interactions in neural networks: Models and data, pp.169-182, 1989.

M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, The importance of skip connections in biomedical image segmentation, Deep Learning and Data Labeling for Medical Applications, 925 volume, vol.10008, pp.179-187, 2016.

E. A. El-dahshan, H. M. Mohsen, K. Revett, and A. M. Salem, Computer-aided diagnosis of human brain tumor through mri: A survey and a new algorithm, Expert systems with Applications, vol.41, issue.11, pp.5526-5545, 2014.

A. Ellwaa, A. Hussein, E. Alnaggar, M. Zidan, M. Zaki et al., , 2016.

, Brain tumor segmantation using random forest trained on iteratively selected patients, International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp.129-137

L. M. Fletcher-heath, L. O. Hall, D. B. Goldgof, and F. R. Murtagh, Automatic segmentation of non-enhancing brain tumors in magnetic resonance images, Artificial intelligence in medicine, vol.21, issue.1-3, pp.43-935, 2001.

K. Fukushima and S. Miyake, Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position, Pattern recognition, vol.15, issue.6, pp.455-469, 1982.

H. Ghebrechristos and G. Alaghband, Exploring deep learning using information theory tools and patch ordering, International Conference on Learning Representations, 2018.

P. Gibbs, D. L. Buckley, S. J. Blackband, and A. Horsman, Tumour volume determination from mr images by morphological segmentation, Physics in Medicine & Biology, vol.41, issue.11, p.2437, 1996.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.249-256, 2010.

M. Goetz, C. Weber, F. Binczyk, J. Polanska, R. Tarnawski et al., Dalsa: domain adaptation for supervised learning from sparsely annotated mr images, IEEE transactions on medical imaging, vol.35, issue.1, pp.184-196, 2016.

C. C. Goodman and K. S. Fuller, Pathology-E-Book: Implications for the Physical Therapist, 2014.

A. Gupta and T. Dwivedi, A simplified overview of world health organization classification update of central nervous system tumors 2016, Journal of neurosciences in rural practice, vol.8, issue.4, p.629, 2017.

S. R. Hashemi, S. S. Salehi, D. Erdogmus, S. P. Prabhu, S. K. Warfield et al., , 2018.

, Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection, IEEE Access, vol.7, pp.1721-1735

S. R. Hashemi, S. S. Salehi, D. Erdogmus, S. P. Prabhu, S. K. Warfield et al., , 2019.

, Asymmetric similarity loss function to balance precision and recall in highly unbalanced deep medical image segmentation, IEEE Access, vol.7, pp.1721-1735

M. Havaei, A. Davy, D. Warde-farley, A. Biard, A. Courville et al., Brain tumor segmentation with deep neural networks, Medical image analysis, vol.960, pp.18-31, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, pp.1026-1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, pp.770-778, 2016.

M. H. Herzog and A. M. Clarke, Why vision is not both hierarchical and feedforward, Frontiers in computational neuroscience, vol.8, p.135, 2014.

E. C. Holland, Progenitor cells and glioma formation, Current opinion in neurology, vol.14, issue.6, pp.683-688, 2001.

G. Huang, Z. Liu, L. Van-der-maaten, and K. Q. Weinberger, Densely connected convolutional networks, CVPR, vol.1, p.3, 2017.

D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, The Journal of physiology, vol.160, issue.1, pp.106-154, 1962.

A. I??n, C. Direkoglu, and M. ?ah, Review of mri-based brain tumor image segmentation using deep learning methods, Procedia Computer Science, vol.102, pp.317-324, 2016.

K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A. V. Nori et al., , p.975

B. , Deepmedic for brain tumor segmentation, International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp.138-149, 2016.

K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane et al., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation, Medical image analysis, vol.36, pp.61-78, 2017.

M. R. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz et al., Automated segmentation of mr images of brain tumors, Radiology, vol.218, issue.2, pp.586-591, 2001.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning. nature, vol.521, p.436, 2015.

Y. Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard et al., , 1989.

, Backpropagation applied to handwritten zip code recognition, Neural computation, vol.1, issue.4, pp.541-551

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2323, 1998.

A. E. Lefohn, J. E. Cates, and R. T. Whitaker, Interactive, gpu-based level sets for 3d segmentation, 2003.

, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.564-572

M. Lin, Q. Chen, Y. , and S. , Network in network, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01950552

L. Liu, H. Zhang, I. Rekik, X. Chen, Q. Wang et al., Outcome prediction for patient with high-grade gliomas from brain functional and structural networks, International Conference on 995, 2016.

, Medical Image Computing and Computer-Assisted Intervention, pp.26-34

T. Logeswari and M. Karnan, An improved implementation of brain tumor detection using segmentation based on soft computing, Journal of Cancer Research and Experimental Oncology, vol.2, issue.1, pp.6-014, 2009.

J. Long, E. Shelhamer, D. , and T. , Fully Convolutional Networks for Semantic Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3431-3440, 2015.

D. N. Louis, A. Perry, G. Reifenberger, A. Von-deimling, D. Figarella-branger et al., The 2016 world health organization classification of tumors of the central nervous system: a summary, Acta neuropathologica, vol.131, issue.6, pp.803-820, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

M. Manassi, B. Sayim, and M. H. Herzog, When crowding of crowding leads to uncrowding, Journal of Vision, vol.13, issue.13, pp.10-10, 2013.

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-cramer, K. Farahani et al., , 2015.

, The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Transactions on Medical Imaging, vol.34, issue.10, pp.1993-2024

B. H. Menze, K. Van-leemput, D. Lashkari, M. Weber, N. Ayache et al., A generative model for brain tumor segmentation in multi-modal images, International Conference on 1010, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00813776

, Medical Image Computing and Computer-Assisted Intervention, pp.151-159

F. Milletari, N. Navab, and S. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, 2016 Fourth International Conference on 3D Vision (3DV), pp.565-571, 2016.

P. Mlynarski, H. Delingette, A. Criminisi, A. , and N. , 3d convolutional neural networks for 1015 tumor segmentation using long-range 2d context, Computerized Medical Imaging and Graphics, vol.73, pp.60-72, 2019.

T. Ono and H. Nishijo, Neurophysiological basis of the klüver-bucy syndrome: Responses of monkey amygdaloid neurons to biologically significant objects, 1992.

Q. T. Ostrom, L. Bauchet, F. G. Davis, I. Deltour, J. L. Fisher et al., The epidemiology of glioma in adults: 1020 a "state of the science, review. Neuro-oncology, vol.16, issue.7, pp.896-913, 2014.

S. Pereira, A. Oliveira, V. Alves, and C. A. Silva, On hierarchical brain tumor segmentation in mri using convolutional neural networks: a preliminary study, Bioengineering (ENBENG), 2017 IEEE 5th Portuguese Meeting on, pp.1-4, 2017.

S. Pereira, A. Pinto, V. Alves, and C. A. Silva, Deep convolutional neural networks for the seg-1025 mentation of gliomas in multi-sequence mri, International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp.131-143, 2015.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, Efficient neural architecture search via parameter sharing, 2018.

M. Prastawa, E. Bullitt, N. Moon, K. Van-leemput, and G. Gerig, Automatic brain tumor 1030 segmentation by subject specific modification of atlas priors1, Academic radiology, vol.10, issue.12, pp.1341-1348, 2003.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating 1035 errors, nature, vol.323, issue.6088, p.533, 1986.

T. Schneider, C. Mawrin, C. Scherlach, M. Skalej, and R. Firsching, Gliomas in adults, Deutsches Arzteblatt International, vol.107, issue.45, p.799, 2010.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

A. Singh, S. Bajpai, S. Karanam, A. Choubey, and T. Raviteja, Malignant brain tumor detection, International Journal of Computer Theory and Engineering, vol.4, issue.6, p.1002, 2012.

A. Stadlbauer, E. Moser, S. Gruber, R. Buslei, C. Nimsky et al., , 2004.

, Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1h-mrsi metabolites in gliomas, Neuroimage, vol.23, issue.2, pp.454-461

C. Szegedy, S. Ioffe, V. Vanhoucke, A. , and A. A. , Inception-v4, inception-resnet and the impact of residual connections on learning, AAAI, vol.4, p.12, 2017.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1-9, 2015.

N. Tustison and W. M. , Ants andárboles, Proceedings MICCAI-BRATS challenge, pp.47-50, 2013.

G. Urban, M. Bendszus, F. Hamprecht, and J. Kleesiek, Multi-modal brain tumor segmenta-1055 tion using deep convolutional neural networks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winning contribution, pp.31-35, 2014.

W. Wu, A. Y. Chen, L. Zhao, and J. J. Corso, Brain tumor detection and segmentation in a crf (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features, International journal of computer assisted radiology and surgery, vol.9, issue.2, pp.241-253, 2014.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pp.5987-5995, 2017.

S. Yang and D. Ramanan, Multi-scale recognition with dag-cnns, Proceedings of the IEEE International Conference on Computer Vision, pp.1215-1223, 2015.

R. J. Young and E. A. Knopp, Brain mri: tumor evaluation, Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.24, issue.4, pp.709-724, 2006.

C. Zhang, X. Shen, H. Cheng, and Q. Qian, Brain tumor segmentation based on hybrid clustering and morphological operations, International Journal of Biomedical Imaging, 2019.

Y. Zhang, M. Brady, and S. Smith, Segmentation of brain mr images through a hidden markov 1070 random field model and the expectation-maximization algorithm, IEEE transactions on medical imaging, vol.20, issue.1, pp.45-57, 2001.

X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang et al., A deep learning model integrating fcnns and crfs for brain tumor segmentation, Medical image analysis, vol.43, pp.98-111, 2018.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, Learning transferable architectures for scalable 1075 image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.8697-8710, 2018.